1
|
Snijders GJLJ, Gigase FAJ. Neuroglia in mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:287-302. [PMID: 40148049 DOI: 10.1016/b978-0-443-19102-2.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple lines of evidence indicate that mood disorders, such as major depressive and bipolar disorder, are associated with abnormalities in neuroglial cells. This chapter discusses the existing literature investigating the potential role of astrocytes, oligodendrocytes, and microglia in mood pathology. We will describe evidence from in vivo imaging, postmortem, animal models based on (stress) paradigms that mimic depressive-like behavior, and biomarker studies in blood and cerebrospinal fluid in patients with mood disorders. The effect of medication used in the treatment of mood disorders, such as antidepressants and lithium, on glial function is discussed. Lastly, we highlight the most relevant findings about potential deficiencies in glia-glia crosstalk in mood disorders. Overall, decreased astrocyte and oligodendrocyte density and expression and microglial changes in homeostatic functions have frequently been put forward in MDD pathology. Studies of BD report similar findings to some extent; however, the evidence is less well established. Together, these findings are suggestive of reduced glial cell function leading to potential white matter abnormalities, glutamate dysregulation, disrupted neuronal functioning, and neurotransmission. However, more research is required to better understand the exact mechanisms underlying glial cell contributions to mood disorder development.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Ishizuka T, Nagata W, Nakagawa K, Takahashi S. Brain inflammaging in the pathogenesis of late-life depression. Hum Cell 2024; 38:7. [PMID: 39460876 DOI: 10.1007/s13577-024-01132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Late-life depression (LLD) is a prevalent mental disorder among older adults. Previous studies revealed that many pathologic factors are associated with the onset and development of LLD. However, the precise mechanisms that cause LLD remain elusive. Aging induces chronic inflammatory changes mediated by alterations of immune responses. The chronic systemic inflammation termed "inflammaging" is linked to the etiology of aging-related disorders. Aged microglia induce senescence-associated secretory phenotype (SASP) and transition to M1-phenotype, cause neuroinflammation, and diminish neuroprotective effects. In addition, there is an age-dependent loss of blood-brain barrier (BBB) integrity. As the BBB breakdown can lead to invasion of immune cells into brain parenchyma, peripheral immunosenescence may cause microglial activation and neuroinflammation. Therefore, it is suggested that these mechanisms related to brain inflammaging may be involved in the pathogenesis of LLD. In this review, we described the role of brain inflammaging in LLD. Pharmacologic approaches to prevent brain inflammaging appears to be a promising strategy for treating LLD.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
4
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
5
|
Pan M, Roe JM, Nudel R, Schork AJ, Iakunchykova O, Fjell AM, Walhovd KB, Werge T, Chen CH, Benros ME, Wang Y. Circulating S100B levels at birth and risk of six major neuropsychiatric or neurological disorders: a two-sample Mendelian Randomization Study. Transl Psychiatry 2023; 13:174. [PMID: 37225692 PMCID: PMC10209162 DOI: 10.1038/s41398-023-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Circulating levels of the astrocytic marker S100B have been associated with risk of neuropsychiatric or neurological disorders. However, reported effects have been inconsistent, and no causal relations have yet been established. We applied two-sample Mendelian Randomization (MR) on the association statistics from genome-wide association studies (GWAS) for circulating S100B levels measured 5-7 days after birth (the iPSYCH sample) and in an older adult sample (mean age, 72.5 years; the Lothian sample), upon those derived from major depression disorder (MDD), schizophrenia (SCZ), bipolar disorder (BIP), autism spectral disorder (ASD), Alzheimer's disease (AD), and Parkinson's disease (PD). We studied the causal relations in the two S100B datasets for risk of these six neuropsychiatric disorders. MR suggested increased S100B levels 5-7 days after birth to causally increase the risk of MDD (OR = 1.014; 95%CI = 1.007-1.022; FDR-corrected p = 6.43×10-4). In older adults, MR suggested increased S100B levels to have a causal relation to the risk of BIP (OR = 1.075; 95%CI = 1.026-1.127; FDR-corrected p = 1.35×10-2). No significant causal relations were found for the other five disorders. We did not observe any evidence for reverse causality of these neuropsychiatric or neurological disorders on altered S100B levels. Sensitivity analyses using more stringent SNP-selection criteria and three alternative MR models suggested the results are robust. Altogether, our findings imply a small cause-effect relation for the previously reported associations of S100B and mood disorders. Such findings may provide a novel avenue for the diagnosis and management of disorders.
Collapse
Affiliation(s)
- Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Ron Nudel
- Copenhagen Research Centre for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 2900, Hellerup, Denmark
| | - Andrew J Schork
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), 445 N. Fifth Street, 85004, Phoenix, AZ, USA
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Boserupvej 2, 4000, Roskilde, Denmark
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, POB 4950, Nydalen, 0424, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, POB 4950, Nydalen, 0424, Oslo, Norway
| | - Thomas Werge
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), 445 N. Fifth Street, 85004, Phoenix, AZ, USA
- Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Boserupvej 2, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Chi-Hua Chen
- Department of Radiology, University of California in San Diego, Gilman Drive 9500, 92093, La Jolla, CA, USA
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 2900, Hellerup, Denmark
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
6
|
Neuroinflammatory Biomarkers in Cerebrospinal Fluid From 106 Patients With Recent-Onset Depression Compared With 106 Individually Matched Healthy Control Subjects. Biol Psychiatry 2022; 92:563-572. [PMID: 35659385 DOI: 10.1016/j.biopsych.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroinflammation has been linked to depression; however, neuroinflammatory biomarkers in the cerebrospinal fluid (CSF) have not previously been thoroughly investigated in a large group of patients with recent-onset depression compared with healthy control subjects. METHODS We conducted an individually matched case-control study comparing patients with recent-onset depression (ICD-10: F32) to control subjects. Primary outcomes were CSF white cell count (WCC), CSF-to-serum albumin ratio, CSF total protein, and immunoglobulin G (IgG) index. Secondary outcomes were CSF WCC differential count and CSF neutrophil-to-lymphocyte, CSF-to-serum IgG, and CSF-to-plasma glucose ratios. Linear models adjusting for sex and age were applied. RESULTS We included 106 patients with recent-onset depression (84.0% outpatients) and 106 healthy control subjects. Patients had 18% higher CSF WCC relative to control subjects (relative mean difference [MD]: 1.18; 95% CI: 1.02-1.40; p = .025). CSF WCC differed with depression symptomatology (p = .034), and patients with severe depression (n = 29) had 43% higher CSF WCC relative to control subjects (MD: 1.43; 95% CI: 1.13-1.80, p = .003). Two (1.9%) patients and no controls (0.0%) had CSF WCC above the normal range (>5 × 106/L). No significant differences between groups were observed regarding CSF-to-serum albumin ratio (MD: 1.07; 95% CI: 0.97-1.18; p = .191), CSF total protein (MD: 1.01; 95% CI: 0.94-1.09; p = .775), or IgG index (MD: 1.05; 95% CI: 0.97-1.15; p = .235). Regarding secondary outcomes, the proportion of CSF neutrophils was lower among patients (MD: 0.22; 95% CI: 0.08-0.59; p = .003) relative to control subjects, whereas the remaining outcomes were not significantly different (all p > .06). CONCLUSIONS Patients had higher CSF WCC relative to control subjects, indicating increased neuroimmunologic activation, particularly for severe depression.
Collapse
|
7
|
Polyakova M, Mueller K, Arelin K, Lampe L, Rodriguez FS, Luck T, Kratzsch J, Hoffmann KT, Riedel-Heller S, Villringer A, Schoenknecht P, Schroeter ML. Increased Serum NSE and S100B Indicate Neuronal and Glial Alterations in Subjects Under 71 Years With Mild Neurocognitive Disorder/Mild Cognitive Impairment. Front Cell Neurosci 2022; 16:788150. [PMID: 35910248 PMCID: PMC9329528 DOI: 10.3389/fncel.2022.788150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is considered a pre-stage of different dementia syndromes. Despite diagnostic criteria refined by DSM-5 and a new term for MCI – “mild neurocognitive disorder” (mild NCD) – this diagnosis is still based on clinical criteria. Methods To link mild NCD to the underlying pathophysiology we assessed the degree of white matter hyperintensities (WMH) in the brain and peripheral biomarkers for neuronal integrity (neuron-specific enolase, NSE), plasticity (brain-derived neurotrophic factor, BDNF), and glial function (S100B) in 158 community-dwelling subjects with mild NCD and 82 healthy controls. All participants (63–79 years old) were selected from the Leipzig-population-based study of adults (LIFE). Results Serum S100B levels were increased in mild NCD in comparison to controls (p = 0.007). Serum NSE levels were also increased but remained non-significant after Bonferroni-Holm correction (p = 0.04). Furthermore, age by group interaction was significant for S100B. In an age-stratified sub-analysis, NSE and S100B were higher in younger subjects with mild NCD below 71 years of age. Some effects were inconsistent after controlling for potentially confounding factors. The discriminatory power of the two biomarkers NSE and S100B was insufficient to establish a pathologic threshold for mild NCD. In subjects with mild NCD, WMH load correlated with serum NSE levels (r = 0.20, p = 0.01), independently of age. Conclusion Our findings might indicate the presence of neuronal (NSE) and glial (S100B) injury in mild NCD. Future studies need to investigate whether younger subjects with mild NCD with increased biomarker levels are at risk of developing major NCD.
Collapse
Affiliation(s)
- Maryna Polyakova
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- University Clinic for Psychiatry and Psychotherapy, Leipzig University, Leipzig, Germany
- *Correspondence: Maryna Polyakova
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katrin Arelin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Francisca S. Rodriguez
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Research Group Psychosocial Epidemiology and Public Health, German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Tobias Luck
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Faculty of Applied Social Sciences, University of Applied Sciences Erfurt, Erfurt, Germany
| | - Jürgen Kratzsch
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | | | - Steffi Riedel-Heller
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute of Neuroradiology, University Clinic, Leipzig, Germany
| | - Peter Schoenknecht
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- University Clinic for Psychiatry and Psychotherapy, Leipzig University, Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University Affiliated Hospital Arnsdorf, Technical University of Dresden, Dresden, Germany
| | - Matthias L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Tural U, Irvin MK, Iosifescu DV. Correlation between S100B and severity of depression in MDD: A meta-analysis. World J Biol Psychiatry 2022; 23:456-463. [PMID: 34854356 DOI: 10.1080/15622975.2021.2013042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have demonstrated elevated levels of the S100B protein (located in glial cells) in major depressive disorder (MDD) as compared to healthy controls. However, studies reporting correlation between S100B levels and depression severity have been conflicting. METHODS We investigated, through systematic review and meta-analysis, whether the correlation between S100B levels and depression severity is significant in patients with MDD. Pearson correlation coefficients reported in the individual studies were converted to Fisher's Z scores, then pooled using the random effects model. Meta-regression was used to test modifiers of the effect size. RESULTS Sixteen studies including 658 patients with MDD met eligibility criteria. No publication bias was observed. There was a significant and positive correlation between serum S100B level and depression severity (r = 0.204, z = 2.297, p = 0.022). A meta-regression determined that onset age of MDD and percentage of female participants are significant modifiers of this correlation. A moderate, but non-significant heterogeneity was observed in serum studies (44%). CONCLUSION As many studies have reported significantly increased levels of S100B in MDD compared to controls, this meta-analysis supports the assumption that the increase in S100B correlates with the severity of MDD. Additional studies investigating the precise biological connection between S100B and MDD are indicated.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Molly Kennedy Irvin
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Dan Vlad Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Psychiatry Department, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Singer T, Ding S, Ding S. Astroglia Abnormalities in Post-stroke Mood Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:115-138. [PMID: 34888833 DOI: 10.1007/978-3-030-77375-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stroke is the leading cause of human death and disability. After a stroke, many patients may have some physical disability, including difficulties in moving, speaking, and seeing, but patients may also exhibit changes in mood manifested by depression, anxiety, and cognitive changes which we call post-stroke mood disorders (PSMDs). Astrocytes are the most diverse and numerous glial cell type in the central nervous system (CNS). They provide structural, nutritional, and metabolic support to neurons and regulate synaptic activity under normal conditions. Astrocytes are also critically involved in focal ischemic stroke (FIS). They undergo many changes after FIS. These changes may affect acute neuronal death and brain damage as well as brain recovery and PSMD in the chronic phase after FIS. Studies using postmortem brain specimens and animal models of FIS suggest that astrocytes/reactive astrocytes are involved in PSMD. This chapter provides an overview of recent advances in the molecular base of astrocyte in PSMD. As astrocytes exhibit high plasticity after FIS, we suggest that targeting local astrocytes may be a promising strategy for PSMD therapy.
Collapse
Affiliation(s)
- Tracey Singer
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Sarah Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Karr JE, Iverson GL, Isokuortti H, Kataja A, Brander A, Öhman J, Luoto TM. Preexisting conditions in older adults with mild traumatic brain injuries. Brain Inj 2021; 35:1607-1615. [PMID: 34546830 DOI: 10.1080/02699052.2021.1976419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study examined the prevalence of preexisting conditions that could affect premorbid brain health, cognition, and functional independence among older adults with mild traumatic brain injury (MTBI), and the relationship between preexisting conditions, injury characteristics, and emergency department (ED) discharge location (home versus continued care). METHODS Older adults (N = 1,427; 55-104 years-old; 47.4% men) who underwent head computed tomography (CT) after acute head trauma were recruited from the ED. Researchers documented preexisting medical conditions retrospectively from hospital records. RESULTS Multiple preexisting conditions increased in frequency with greater age, including circulatory and nervous system diseases and preexisting abnormalities on head CT. Psychiatric and substance use disorders (SUDs) decreased in frequency with greater age. Among participants with uncomplicated MTBI and GCS = 15, preexisting nervous system diseases and preexisting CT abnormalities were associated with higher odds of continued care for all participants, whereas psychiatric disorders and SUDs were only associated with higher odds of continued care among participants <70 years-old. Preexisting circulatory diseases, loss of consciousness, and amnesia were unassociated with discharge location. CONCLUSIONS Preexisting medical conditions that could affect brain and cognitive health occur commonly among older adults who sustain MTBIs. These conditions can confound research examining post-injury outcomes within this age group.
Collapse
Affiliation(s)
- Justin E Karr
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Spaulding Rehabilitation Hospital and Spaulding Research Institute; and Home Base, a Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - Harri Isokuortti
- Helsinki University Central Hospital, Neurocenter, Department of Neurology, Helsinki, Finland
| | - Anneli Kataja
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Antti Brander
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Juha Öhman
- Department of Neurosurgery, Tampere University, Tampere, Finland
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
11
|
Brain injury markers in new-onset seizures in adults: A pilot study. Seizure 2021; 92:62-67. [PMID: 34455195 DOI: 10.1016/j.seizure.2021.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biochemical markers of brain pathology could potentially contribute to diagnosis and prediction in epilepsy. We describe levels of five brain injury markers in adults with new-onset seizures, and assess group differences in patients with a single seizure, epilepsy, and poststroke epilepsy. METHODS In this prospective observational study, adults with new-onset seizures were recruited at Sahlgrenska University Hospital, Sweden, and concentrations of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), microtubule-associated protein tau (tau), S100 calcium-binding protein (S100B), and neuron-specific enolase (NSE) were measured. Participants were categorized as epilepsy, poststroke epilepsy (PSE), or single seizure (no additional seizures). Patients were followed until a diagnosis of epilepsy or PSE, or for at least two years in single seizure cases. RESULTS The cohort included 23 (37%) individuals with a single seizure, 24 (39%) with epilepsy, and 15 (24%) with PSE. The concentrations of S100B were higher in patients with epilepsy and PSE than in single seizures (p = 0.0023 and p = 0.0162, respectively). The concentrations of NfL were higher in patients with PSE than in single seizures (p=0.0027). After age-normalization, levels of S100B were higher in patients with epilepsy and levels of NfL were higher in patients with PSE (p = 0.0021 and p = 0.0180). CONCLUSION Levels of S100B and NfL were higher in patients with epilepsy or PSE than patients with single seizures. Further studies are needed to investigate the biomarker potential of brain injury markers as predictors of epilepsy course or indicators of epileptogenesis.
Collapse
|
12
|
Rajewska-Rager A, Dmitrzak-Weglarz M, Kapelski P, Lepczynska N, Pawlak J, Twarowska-Hauser J, Skibinska M. Longitudinal assessment of S100B serum levels and clinical factors in youth patients with mood disorders. Sci Rep 2021; 11:11973. [PMID: 34099858 PMCID: PMC8184924 DOI: 10.1038/s41598-021-91577-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Mood disorders have been discussed as being in relation to glial pathology. S100B is a calcium-binding protein, and a marker of glial dysfunctions. Although alterations in the S100B expression may play a role in various central nervous system diseases, there are no studies on the potential role of S100B in mood disorders in adolescents and young adults . In a prospective two-year follow-up study, peripheral levels of S100B were investigated in 79 adolescent/young adult patients (aged 14–24 years), diagnosed with mood disorders and compared with 31 healthy control subjects. A comprehensive clinical interview was conducted which focused on clinical symptoms and diagnosis change. The diagnosis was established and verified at each control visit. Serum S100B concentrations were determined. We detected: lower S100B levels in medicated patients, compared with those who were drug-free, and healthy controls; higher S100B levels in a depressed group with a family history of affective disorder; correlations between age and medication status; sex-dependent differences in S100B levels; and lack a of correlation between the severity of depressive or hypo/manic symptoms. The results of our study indicate that S100B might be a trait-dependent rather than a state-dependent marker. Due to the lack of such studies in the youth population, further research should be performed. A relatively small sample size, a lack of exact age-matched control group, a high drop-out rate.
Collapse
Affiliation(s)
- Aleksandra Rajewska-Rager
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Natalia Lepczynska
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St, 60-572, Poznań, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Joanna Twarowska-Hauser
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| |
Collapse
|
13
|
O'Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021; 69:2077-2099. [PMID: 33734498 DOI: 10.1002/glia.23994] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Postmortem investigations have implicated astrocytes in many neurological and psychiatric conditions. Multiple brain regions from individuals with major depressive disorder (MDD) have lower expression levels of astrocyte markers and lower densities of astrocytes labeled for these markers, suggesting a loss of astrocytes in this mental illness. This paper reviews the general properties of human astrocytes, the methods to study them, and the postmortem evidence for astrocyte pathology in MDD. When comparing astrocyte density and morphometry studies, astrocytes are more abundant and smaller in human subcortical than cortical brain regions, and immunohistochemical labeling for the astrocyte markers glial fibrillary acidic protein (GFAP) and vimentin (VIM) reveals fewer than 15% of all astrocytes that are present in cortical and subcortical regions, as revealed using other staining techniques. By combining astrocyte densities and morphometry, a model was made to illustrate that domain organization is mostly limited to GFAP-IR astrocytes. Using these markers and others, alterations of astrocyte densities appear more widespread than those for astrocyte morphologies throughout the brain of individuals having died with MDD. This review suggests how reduced astrocyte densities may relate to the association of depressive episodes in MDD with elevated S100 beta (S100B) cerebrospinal fluid serum levels. Finally, a potassium imbalance theory is proposed that integrates the reduced astrocyte densities generated from postmortem studies with a hypothesis for the antidepressant effects of ketamine generated from rodent studies.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Serum BDNF levels correlate with regional cortical thickness in minor depression: a pilot study. Sci Rep 2020; 10:14524. [PMID: 32883977 PMCID: PMC7471294 DOI: 10.1038/s41598-020-71317-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Serum brain-derived neurotrophic factor (BDNF) reflects state changes in mood disorders. But its relation to brain changes in depression has rarely been investigated in humans. We assessed the association between serum BDNF, cortical thickness, or gray matter volume in 20 subjects with a minor depressive episode and 40 matched healthy subjects. Serum BDNF positively correlated with cortical thickness and volume in multiple brain regions in the minor depression group: the bilateral medial orbitofrontal cortex and rostral anterior cingulate cortex, left insula, and cingulum, right superior frontal gyrus, and other regions—regions typically affected by major depression. Interestingly, these correlations were driven by subjects with first episode depression. There was no significant association between these imaging parameters and serum BDNF in the healthy control group. Interaction analyses supported this finding. Our findings point to a specific association between serum BDNF and magnetic resonance imaging parameters in first-episode minor depression in a region- and condition-dependent manner. A positive correlation between serum BDNF and structural gray matter estimates was most consistently observed for cortical thickness. We discuss why cortical thickness should be preferred to volumetric estimates for such analyses in future studies. Results of our pilot study have to be proven in future larger-scale studies yielding higher statistical power.
Collapse
|
15
|
Ottesen NM, Meluken I, Frikke-Schmidt R, Plomgaard P, Scheike T, Kessing LV, Miskowiak K, Vinberg M. S100B and brain derived neurotrophic factor in monozygotic twins with, at risk of and without affective disorders. J Affect Disord 2020; 274:726-732. [PMID: 32664008 DOI: 10.1016/j.jad.2020.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The calcium binding protein S100B and brain derived neurotrophic factor (BDNF) are both biomarkers implicated in neuronal processes in the central nervous system and seem to be associated with affective disorders. Here we investigated both markers in a sample of monozygotic (MZ) twins with, at risk of and without affective disorders, aiming to evaluate whether these markers have a role as causal factors- or trait markers for affective disorders. METHOD We measured serum S100B and plasma BDNF levels in 204 monozygotic twins (MZ) with unipolar or bipolar disorder in remission or partial remission (affected), their unaffected co-twins (high-risk) and twins with no personal or family history of affective disorder (low-risk). RESULTS No significant group differences in S100B and BDNF levels were found between the three groups. Exploratory analysis revealed that higher S100B levels were correlated with lower cognitive performance. LIMITATIONS The cross-sectional design cannot elucidate the two neuronal biomarkers role as causal factors. We would have preferred a higher sample size in the high- and low-risk groups. CONCLUSION The present result did not support a role for S100B and BDNF as neither causal factors nor trait markers for affective disorders. Elevated S100B levels may associate with impaired cognition, but further studies are warranted.
Collapse
Affiliation(s)
- Ninja Meinhard Ottesen
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Iselin Meluken
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen University Hospital; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Peter Plomgaard
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen University Hospital; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Thomas Scheike
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Kamilla Miskowiak
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Department of Psychology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød.
| |
Collapse
|
16
|
Futtrup J, Margolinsky R, Benros ME, Moos T, Routhe LJ, Rungby J, Krogh J. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case-control studies. Brain Behav Immun Health 2020; 6:100102. [PMID: 34589864 PMCID: PMC8474159 DOI: 10.1016/j.bbih.2020.100102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022] Open
Abstract
Background Blood-brain barrier (BBB) pathology may be associated with mental disorders. The aim of this systematic review and meta-analysis is to identify, evaluate and summarize available evidence on whether potential biomarkers of BBB pathology are altered in patients with schizophrenia spectrum disorders, major depression and bipolar disorder compared to healthy controls. Methods The primary outcome is blood S100B, while secondary outcomes include biomarkers in blood and/or cerebrospinal fluid, i.e. albumin ratio, fibrinogen, immunoglobulin G, glial fibrillary acidic protein, amyloid beta (Aβ), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases, endothelial glycocalyx constituents, and cell adhesion molecules (CAMs). A systematic search in PubMed, Embase and PsycINFO resulted in 131 eligible studies, of which 93 were included in the meta-analysis. Meta- and subgroup analyses were undertaken using random-effects modelling. The protocol was a priori registered on PROSPERO (CRD42020152721). Results S100B was increased in schizophrenia spectrum disorders (24 studies; 1107 patients; standardized mean difference (SMD) = 0.82; 95% confidence interval (CI) = 0.51 to 1.13; I2 = 90%), major depression (13 studies; 584 patients; SMD = 0.57; 95% CI = 0.31 to 0.83; I2 = 73%) and bipolar disorder (4 studies; 142 patients; SMD = 0.55; 95% CI = 0.16 to 0.94; I2 = 48%). Similarly, numerous secondary outcomes, including albumin ratio, fibrinogen, Aβ, MMPs and CAMs, were altered. Results of the included studies varied considerably, and important confounders were often not accounted for. Conclusions The findings implicate occurrence of BBB pathology in patients with schizophrenia spectrum disorders, major depression and bipolar disorder compared to healthy controls. However, definite conclusions cannot be drawn, mainly because the investigated biomarkers are indirect measures of BBB pathology. The blood-brain barrier (BBB) can be studied indirectly through markers in blood and CSF. Markers of BBB pathology were altered in schizophrenia, depression and bipolar disorder. The findings implicate occurrence of BBB pathology in patients compared to controls. BBB pathology is expected to contribute to the pathogenesis of severe mental disorders.
Collapse
Affiliation(s)
- Jesper Futtrup
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Margolinsky
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Mental Health Centre Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| | - Lisa Juul Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| | - Jørgen Rungby
- Copenhagen Center for Translational Research, University Hospital of Bispebjerg, Copenhagen, Denmark.,Department of Endocrinology, University Hospital of Bispebjerg, Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology, University Hospital of Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
17
|
Snoer AH, Vollesen ALH, Beske RP, Guo S, Hoffmann J, Jørgensen NR, Martinussen T, Ashina M, Jensen RH. S100B and NSE in Cluster Headache - Evidence for Glial Cell Activation? Headache 2020; 60:1569-1580. [PMID: 32548854 DOI: 10.1111/head.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neuronal-specific enolase (NSE) and protein S100B have gained considerable interest as the markers of CNS injury, glial cell activation, and/or blood-brain barrier (BBB) disruption. No studies have investigated NSE and S100B in cluster headache (CH), but these biomarkers could contribute to the understanding of CH. METHODS Patients with episodic CH in bout (eCHa), in remission (eCHr), and chronic CH (cCH) were included in this randomized, double-blind, placebo-controlled, 2-way cross-over provocation study carried out at the Danish Headache Center. The primary endpoints included (1) differences of NSE and S100B in between groups (eCHa, eCHr, and cCH) at baseline; (2) differences over time in plasma concentrations of NSE and S100B between patient developing an attack and those who did not; (3) differences in plasma concentrations over time of NSE and S100B between active day and placebo day. Baseline findings were compared to the historical data on migraine patients and healthy controls and presented with means ± SD. RESULTS Nine eCHa, 9 eCHr, and 13 cCH patients completed the study and blood samples from 11 CGRP-induced CH attacks were obtained. There were no differences in NSE levels between CH groups at baseline, but CH patients in active disease phase had higher levels compared with 32 migraine patients (9.1 ± 2.2 µg/L vs 6.0 ± 2.2 µg/L, P < .0001) and 6 healthy controls (9.1 ± 2.2 µg/L vs 7.3 ± 2.0 µg/L, P = .007). CGRP-infusion caused no NSE changes and, but a slight, non-significant, increase in NSE was seen in patients who reported a CGRP-induced CH attack (2.39 µg/L, 95% Cl [-0.26, 3.85], P = .061). At baseline S100B levels in eCHa patients were higher compared to cCH patients (0.06 ± 0.02 µg/L vs 0.04 ± 0.02 µg/L, P = .018). Infusion of CGRP and CGRP-induced attacks did not change S100B levels. Apart from induced CH-attacks no other adverse events were noted. CONCLUSIONS At baseline eCHa patients had higher S100B plasma levels than cCH patients and there was a slight, however not significant, NSE increase in response to CGRP-induced CH attack. Our findings suggest a possible role of an ictal activation of glial cells in CH pathophysiology, but further studies are warranted.
Collapse
Affiliation(s)
- Agneta H Snoer
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise H Vollesen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Paulin Beske
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet Glostrup, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
19
|
Machado-Santos AR, Alves ND, Araújo B, Correia JS, Patrício P, Mateus-Pinheiro A, Loureiro-Campos E, Bessa JM, Sousa N, Pinto L. Astrocytic plasticity at the dorsal dentate gyrus on an animal model of recurrent depression. Neuroscience 2019; 454:94-104. [PMID: 31747562 DOI: 10.1016/j.neuroscience.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Astrocytes are now known to play crucial roles in the central nervous system, supporting and closely interacting with neurons and therefore able to modulate brain function. Both human postmortem studies in brain samples from patients diagnosed with Major Depressive Disorder and from animal models of depression reported numerical and morphological astrocytic changes specifically in the hippocampus. In particular, these studies revealed significant reductions in glial cell density denoted by a decreased number of S100B-positive cells and a decrease in GFAP expression in several brain regions including the hippocampus. To reveal plastic astrocytic changes in the context of recurrent depression, we longitudinally assessed dynamic astrocytic alterations (gene expression, cell densities and morphologic variations) in the hippocampal dentate gyrus under repeated exposure to unpredictable chronic mild stress (uCMS) and upon treatment with two antidepressants, fluoxetine and imipramine. Both antidepressants decreased astrocytic complexity immediately after stress exposure. Moreover, we show that astrocytic alterations, particularly an increased number of S100B-positive cells, are observed after recurrent stress exposure. Interestingly, these alterations were prevented at the long-term by either fluoxetine or imipramine treatment.
Collapse
Affiliation(s)
- Ana R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno D Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana S Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Abstract
BACKGROUND S100B is a calcium-binding protein located in glial cells; it is regarded as a potential biomarker in affective disorders. AIM To review the literature investigating the role of S100B in patients with affective disorders. METHOD A systematic review of original English language studies investigating S100B in serum, cerebrospinal fluid, plasma and lymphocytes, in patients with affective disorders, was conducted. The literature search was conducted within the PubMed database. Effect sizes were calculated to adjust for systematic measurement effects. RESULTS Twenty studies were included, with a total of 1292 participants. Of these, 398 patients had or have had depressive disorder, 301 patients had bipolar disorder and 593 were healthy controls. S100B levels in serum were consistently elevated in studies with statistically significant results which investigated acute affective episodes (comprising major depressive episode in major depressive disorder, and both manic and depressive episodes in patients with bipolar disorder), in comparison to healthy controls. There were few studies assessing S100B levels in cerebrospinal fluid, plasma or lymphocytes, and these had inconsistent results. CONCLUSION The results indicated that elevated S100B levels might be associated with mood episodes in affective disorders. However, the role of S100B, and its possible impact in affective disorders, requires further investigation and at the present S100B does not have a role as clinically biomarker in affective disorder. Future longitudinal multicentre studies with larger transdiagnostic real life patient cohorts are warranted.
Collapse
Affiliation(s)
- Hilda Kroksmark
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| | - Maj Vinberg
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Cox SR, Allerhand M, Ritchie SJ, Muñoz Maniega S, Valdés Hernández M, Harris SE, Dickie DA, Anblagan D, Aribisala BS, Morris Z, Sherwood R, Abbott NJ, Starr JM, Bastin ME, Wardlaw JM, Deary IJ. Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936. Neurobiol Aging 2018; 69:274-282. [PMID: 29933100 PMCID: PMC6075468 DOI: 10.1016/j.neurobiolaging.2018.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
Elevated serum and cerebrospinal fluid concentrations of S100β, a protein predominantly found in glia, are associated with intracranial injury and neurodegeneration, although concentrations are also influenced by several other factors. The longitudinal association between serum S100β concentrations and brain health in nonpathological aging is unknown. In a large group (baseline N = 593; longitudinal N = 414) of community-dwelling older adults at ages 73 and 76 years, we examined cross-sectional and parallel longitudinal changes between serum S100β and brain MRI parameters: white matter hyperintensities, perivascular space visibility, white matter fractional anisotropy and mean diffusivity (MD), global atrophy, and gray matter volume. Using bivariate change score structural equation models, correcting for age, sex, diabetes, and hypertension, higher S100β was cross-sectionally associated with poorer general fractional anisotropy (r = -0.150, p = 0.001), which was strongest in the anterior thalamic (r = -0.155, p < 0.001) and cingulum bundles (r = -0.111, p = 0.005), and survived false discovery rate correction. Longitudinally, there were no significant associations between changes in brain imaging parameters and S100β after false discovery rate correction. These data provide some weak evidence that S100β may be an informative biomarker of brain white matter aging.
Collapse
Affiliation(s)
- Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Mike Allerhand
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Stuart J Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Maria Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - David Alexander Dickie
- Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary & Life Sciences University of Glasgow, UK
| | - Devasuda Anblagan
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Benjamin S Aribisala
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; Department of Computer Science, Lagos State University, Lagos, Nigeria
| | - Zoe Morris
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Roy Sherwood
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, UK
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
22
|
Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 2018; 726:133664. [PMID: 29966749 DOI: 10.1016/j.neulet.2018.06.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).
Collapse
|
23
|
Shi J, Guo H, Fan F, Fan H, An H, Wang Z, Tan S, Yang F, Tan Y. Sex differences of hippocampal structure in bipolar disorder. Psychiatry Res Neuroimaging 2018; 273:35-41. [PMID: 29329741 DOI: 10.1016/j.pscychresns.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Abstract
Although differential patterns in clinical characteristics have been consistently noted between male and female patients with bipolar disorder (BD), the effect of sex on the hippocampal structure remains unclear. To address this, the present study investigated the effects of BD and sex on the hippocampal structure, and the relationship between the hippocampal structure and cognitive performance. Morphometric and neurocognitive analyses were performed in 91 subjects (patients with BD: male/female = 33/19; normal controls: male/female = 22/17). Patients had significantly decreased left parahippocampal gyrus area and left/right hippocampal volume compared to normal controls. Within the BD group only, female patients presented with smaller right hippocampal volume than males. In the Spatial Span (SS) test (used to assess working memory capacity) and the Maze test (used to evaluate the ability to anticipate), patients demonstrated decreased performance compared to normal controls, with a significant main effect of sex. Left parahippocampal gyrus area and right hippocampal volume were positively correlated with SS and Maze in patients; moreover, right hippocampal volume predicted 17.4% of SS performance variance. These results suggest that there may be a difference between male and female patients with regard to right hippocampal volume, and that female patients may need more attention than males.
Collapse
Affiliation(s)
- Jing Shi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hua Guo
- The Psychiatric Hospital of Zhumadian, Zhumadian City, Henan Province, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Huimei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
24
|
Cingi Yirün M, Yirün O, Ünal K, Yüksel RN, Altunsoy N, Tatlidil Yaylaci E, Aydemir MÇ, Göka E. Serum TNF-related weak inducer of apoptosis (TWEAK) and TNF-related apoptosis-inducing ligand (TRAIL) levels of patients with bipolar disorder in manic episode, in remission and healthy controls. Psychiatry Res 2017; 257:338-345. [PMID: 28800513 DOI: 10.1016/j.psychres.2017.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 12/13/2022]
Abstract
TNF-related weak inducer of apoptosis (TWEAK) and TNF-related apoptosis-inducing ligand (TRAIL) are members of TNF superfamily, which has various roles in immunologic and inflammatory reactions in the organism. Pathophysiology in bipolar disorder is still under investigation and altered serum levels of cytokines are often encountered. Aim of this study is to detect serum TWEAK and TRAIL levels of patients with bipolar disorder and healthy controls. For this purpose, 55 patients with bipolar disorder -27 manic episode (ME), 28 remission (RE) and 29 healthy controls (HC) were included. TWEAK levels of ME and RE groups were significantly lower than HC. TWEAK levels of bipolar patients (BP) were also lower than HC. TRAIL levels of ME, RE, HC groups and BP, HC groups were statistically similar. In our knowledge, this is the first study concerning about TWEAK and TRAIL levels in bipolar disorder and our results pointed that TWEAK-related immune response might be impaired in bipolar disorder, but our study fails to eradicate the confounders such as medication, smoking and body mass index. Studies having larger samples and limited confounders are needed to be able to evaluate these changes better and detect possible alterations about TRAIL and other TNF superfamily members.
Collapse
Affiliation(s)
- Merve Cingi Yirün
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Onur Yirün
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Kübranur Ünal
- Ankara Numune Education and Research Hospital, Biochemistry Department, Ankara, Turkey.
| | - Rabia Nazik Yüksel
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Neslihan Altunsoy
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Elif Tatlidil Yaylaci
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | | | - Erol Göka
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| |
Collapse
|
25
|
Abstract
OBJECTIVE The exact pathophysiology of bipolar disorder (BD) is not yet fully understood, and there are many questions in this area which should be answered. This review aims to discuss the roles of glial cells in the pathophysiology of BD and their contribution to the mechanism of action of mood-stabilising drugs. METHODS We critically reviewed the most recent advances regarding glial cell roles in the pathophysiology and treatment of BD and the neuroprotective and neurotrophic effects of these cells. RESULTS Postmortem studies revealed a decrease in the glial cell number or density in the specific layers of prefrontal and anterior cingulate cortex in the patients with BD, whereas there was no difference in other brain regions, such as entorhinal cortex, amygdala and hippocampus. Astrocytes and oligodendrocytes were the most important glial types that were responsible for the glial reduction, but microglia activation rather than loss may be implicated in BD. The decreased number or density of glial cells may contribute to the pathological changes observed in neurons in the patients with BD. Alteration of specific neurotrophic factors such as glial cell line-derived neurotrophic factor and S100B may be an important feature of BD. Glial cells mediate the therapeutic effects of mood-stabilising agents in the treatment of BD. CONCLUSION Recent studies provide important evidence on the impairment of glial cells in the pathophysiology and treatment of BD. However, future controlled studies are necessary to elucidate different aspects of glial cells contribution to BD, and the mechanism of action of mood-stabilising drugs.
Collapse
|
26
|
Poletti S, Aggio V, Brioschi S, Dallaspezia S, Colombo C, Benedetti F. Multidimensional cognitive impairment in unipolar and bipolar depression and the moderator effect of adverse childhood experiences. Psychiatry Clin Neurosci 2017; 71:309-317. [PMID: 28004481 DOI: 10.1111/pcn.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
Abstract
AIM Studies have demonstrated neuropsychological deficits across a variety of cognitive domains in depression. These deficits are observable both in major depressive disorder (MDD) and in bipolar disorder (BD) and are present in each phase of the illness, including euthymia. Adverse childhood experiences (ACE) have been associated with an increased risk of developing psychiatric disorders and cognitive deficits. The aim of this study was to assess neuropsychological performances in a sample of MDD and BD patients during a depressive episode compared to healthy controls (HC) and, to investigate if ACE affect the cognitive profiles in the three groups. METHODS Seventy-six BD patients, 57 MDD patients, and 57 HC underwent neuropsychological assessment for cognitive performances through the Brief Assessment of Cognition in Schizophrenia and Wisconsin Card Sorting Test. RESULTS Both BD and MDD patients obtained significantly lower domain scores across the entire battery compared to HC. Splitting the sample according to exposure to ACE (high and low), the differences observed in the whole sample persisted only in the subsample of those patients exposed to high ACE. CONCLUSION This study confirms that cognitive impairment is present both in MDD and BD, albeit in different degrees of severity, and highlights the importance of early stress as a moderator factor when investigating cognitive functions in mood disorders.
Collapse
Affiliation(s)
- Sara Poletti
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Aggio
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Brioschi
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Sara Dallaspezia
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Division of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.,C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
27
|
Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, da Cruz Cittadin Soares E, Reis PA, de Castro Faria Neto HC, Petronilho F. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition 2017; 35:119-127. [DOI: 10.1016/j.nut.2016.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
|
28
|
Wang CH, Gu JY, Zhang XL, Dong J, Yang J, Zhang YL, Ning QF, Shan XW, Li Y. Venlafaxine ameliorates the depression-like behaviors and hippocampal S100B expression in a rat depression model. Behav Brain Funct 2016; 12:34. [PMID: 27931233 PMCID: PMC5146825 DOI: 10.1186/s12993-016-0116-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B may be involved in the pathophysiology of depression. No published study has examined the effect of the antidepressant drug venlafaxine on S100B in animal models of depression. This study investigated S100B expression in the hippocampus and assessed the effect of venlafaxine on S100B mRNA level and protein expression in rats exposed to chronic unpredictable mild stress (CUMS). Methods Forty Sprague-Dawley rats were randomly divided into four groups as control, 0, 5 and 10 mg venlafaxine groups. The venlafaxine groups were exposed to CUMS from day 2 to day 43. Venlafaxine 0, 5 and 10 mg/kg were then administered from day 23 to day 43. We performed behavioral assessments with weight change, open-field and sucrose preference, and analyzed S100B protein expression and mRNA level in the hippocampus. Results The CUMS led to a decrease in body weight, locomotor activity and sucrose consumption, but venlafaxine treatment (10 mg) reversed these CUMS-induced decreases Also, CUMS increased S100B protein expression and mRNA level in the hippocampus, but venlafaxine treatment (10 mg) significantly decreased S100B protein expression and mRNA level, which were significantly lower than the other treatment groups, without significant difference between the 10 mg venlafaxine and the control groups. Conclusions Our findings showed that venlafaxine treatment (10 mg) may improve the depression-like behaviors and decrease over-expression of S100B protein and mRNA in the hippocampus in a rat model of depression. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jun Yang
- Standard Technological Co. Ltd. (Xinxiang Institute for New Medicine), Xinxiang, 453003, Henan, China.,Xinjiang Hongda Food & Beverage Co. Ltd., Xinjiang, 043102, Shanxi, China
| | - Ying-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Wen Shan
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
29
|
Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J Affect Disord 2016; 206:210-215. [PMID: 27475892 DOI: 10.1016/j.jad.2016.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a neuropsychiatric disorder characterized by recurrent episodes of mania/hypomania, affecting more than 1% of the world population. S100B is a calcium-binding protein, mostly produced and secreted by astrocytes in the CNS that participate in several cellular responses. Previous studies have shown that patients with bipolar disorder had higher peripheral S100B levels than healthy individuals, suggesting a potential role for S100B BD. METHODS In this study, a systematic and quantitative meta-analysis of studies S100B serum was performed according to the guidelines PRISMA-statement to confirm the increase of serum S100B in patients with manic bipolar disorder. RESULTS We included in the meta-analysis two studies that reported the mean and standard deviation of serum S100B 52 patients manic BP and 52 control studies. Our results showed higher levels of S100B peripheral TB patients compared with healthy controls. In this meta-analysis, we found evidence that serum S100B are increased in patients with bipolar disorder. CONCLUSION In conclusion, several studies have observed morphological abnormalities in the brains of bipolar disorder patients, changes in the peripheral S100B levels in mood disorders were described, and this protein could be a putative marker for damage to the brain. Thus, in this meta-analysis we have found evidence, based on two studies of 52 patients and 52 healthy controls, that the serum concentrations of S100B are increased in bipolar disorder patients.
Collapse
|
30
|
Luo Y, He H, Zhang M, Huang X, Fan N. Altered serum levels of TNF-α, IL-6 and IL-18 in manic, depressive, mixed state of bipolar disorder patients. Psychiatry Res 2016; 244:19-23. [PMID: 27455146 DOI: 10.1016/j.psychres.2016.07.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 05/09/2016] [Accepted: 07/16/2016] [Indexed: 02/04/2023]
Abstract
Bipolar disorder (BD) is associated with alterations of cytokines in the immune system. The aim of this study was to assess the serum levels of TNF-α, IL-6 and IL-18 in manic, depressive, mixed state patients of BD. The correlations between the serum cytokines levels with the demographic characteristics and the psychiatric symptoms were also assessed. We measured serum TNF-α, IL-6 and IL-18 levels using an enzyme-linked immunosorbent assay (ELISA) from 59 BD patients (37 in manic state, 12 in depressive state, 10 in mixed state) and 80 healthy control subjects. The psychotic symptoms of BD were assessed using the Hamilton Depression Scale (HAMD) and the Young Mania Rating Scale (YMRS). The results showed that serum TNF-α and IL-6 levels in manic, depressive and mixed state BD patients were significantly higher than that in controls, while serum IL-18 level was only significantly higher in depressive patients. Serum IL-6 level was significantly positively correlated with YMRS scores in manic episode as well as in mixed episode. When gender and age were added as potentially confounding covariate terms, the differences between controls and each mood state patients were still significant. Our findings provided additional evidence that elevated TNF-α, IL-6 and IL-18 pathway activities may be involved in the psychopathology of BD. Due to the lack of controlling important confounding factors, such as BMI, smoking status and alcohol use, further studies are required to confirm the roles of TNF-α, IL-6 and IL-18.
Collapse
Affiliation(s)
- Yayan Luo
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Hongbo He
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xini Huang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
31
|
Carvalho AF, Köhler CA, Brunoni AR, Miskowiak KW, Herrmann N, Lanctôt KL, Hyphantis TN, Quevedo J, Fernandes BS, Berk M. Bias in Peripheral Depression Biomarkers. PSYCHOTHERAPY AND PSYCHOSOMATICS 2016; 85:81-90. [PMID: 26808272 DOI: 10.1159/000441457] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND To aid in the differentiation of individuals with major depressive disorder (MDD) from healthy controls, numerous peripheral biomarkers have been proposed. To date, no comprehensive evaluation of the existence of bias favoring the publication of significant results or inflating effect sizes has been conducted. METHODS Here, we performed a comprehensive review of meta-analyses of peripheral nongenetic biomarkers that could discriminate individuals with MDD from nondepressed controls. PubMed/MEDLINE, EMBASE, and PsycINFO databases were searched through April 10, 2015. RESULTS From 15 references, we obtained 31 eligible meta-analyses evaluating biomarkers in MDD (21,201 cases and 78,363 controls). Twenty meta-analyses reported statistically significant effect size estimates. Heterogeneity was high (I2 ≥ 50%) in 29 meta-analyses. We plausibly assumed that the true effect size for a meta-analysis would equal the one of its largest study. A significant summary effect size estimate was observed for 20 biomarkers. We observed an excess of statistically significant studies in 21 meta-analyses. The summary effect size of the meta-analysis was higher than the effect of its largest study in 25 meta-analyses, while 11 meta-analyses had evidence of small-study effects. CONCLUSIONS Our findings suggest that there is an excess of studies with statistically significant results in the literature of peripheral biomarkers for MDD. The selective publication of 'positive studies' and the selective reporting of outcomes are possible mechanisms. Effect size estimates of meta-analyses may be inflated in this literature.
Collapse
Affiliation(s)
- André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Cearx00E1;, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
da Costa SC, Passos IC, Lowri C, Soares JC, Kapczinski F. Refractory bipolar disorder and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:103-10. [PMID: 26368941 DOI: 10.1016/j.pnpbp.2015.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
Immune activation and failure of physiologic compensatory mechanisms over time have been implicated in the pathophysiology of illness progression in bipolar disorder. Recent evidence suggests that such changes are important contributors to neuroprogression and may mediate the cross-sensitization of episode recurrence, trauma exposure and substance use. The present review aims to discuss the potential factors related to bipolar disorder refractoriness and neuroprogression. In addition, we will discuss the possible impacts of early therapeutic interventions as well as the alternative approaches in late stages of the disorder.
Collapse
Affiliation(s)
- Sabrina C da Costa
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Ives C Passos
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Lowri
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Flavio Kapczinski
- UT Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Schümberg K, Polyakova M, Steiner J, Schroeter ML. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia-A Meta-Regression Analysis. Front Cell Neurosci 2016; 10:46. [PMID: 26941608 PMCID: PMC4766293 DOI: 10.3389/fncel.2016.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings.
Collapse
Affiliation(s)
- Katharina Schümberg
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Maryna Polyakova
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Matthias L Schroeter
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Clinic for Cognitive Neurology, University of LeipzigLeipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of LeipzigLeipzig, Germany; German Consortium for Frontotemporal Lobar DegenerationUlm, Germany
| |
Collapse
|
34
|
Fang Y, Xiao SF, Zhang SY, Qiu Q, Wang T, Li X. Increased Plasma S100β Level in Patients with Major Depressive Disorder. CNS Neurosci Ther 2016; 22:248-50. [PMID: 26848720 DOI: 10.1111/cns.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 01/21/2023] Open
Affiliation(s)
- Yuan Fang
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Fu Xiao
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Yu Zhang
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Poletti S, Vai B, Smeraldi E, Cavallaro R, Colombo C, Benedetti F. Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes. J Affect Disord 2016; 189:290-7. [PMID: 26454335 DOI: 10.1016/j.jad.2015.09.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adverse childhood experiences (ACE) can lead to several negative consequences in adult life, are highly prevalent in psychiatric disorders where they associate with clinical and brain morphological features. Grey matter volume loss is a central characteristic of bipolar disorder (BD) and schizophrenia (SCZ). The aim of this study is to measure the effect of diagnosis and ACE on GM volume in a sample of patients with BD or SCZ compared with healthy controls (HC). METHODS We studied 206 depressed BD patients, 96 SCZ patients and 136 healthy subjects. GM volumes were estimated with 3.0 Tesla MRI and analyzed with VBM technique. The effect of diagnosis was investigated in the whole sample and separately exposed to high and low ACE subjects. RESULTS An effect of diagnosis was observed in orbitofrontal cortex encompassing BA 47 and insula, and in the thalamus. HC had the highest volume and SCZ patients the lowest with BD patients showing an intermediate volume. This pattern persisted only in subjects with high ACE. No differences were observed for low ACE subjects. LIMITATIONS The three diagnostic groups differ for age and education, previous and current medications, and treatment periods. CONCLUSIONS Our results underline the importance of ACE on the neural underpinnings of psychiatric psychopathology and suggest a major role of exposure to ACE for the GM deficits to reveal in clinical populations. Exposure to early stress is a crucial factor that must be taken in to account when searching for biomarkers of BD and SCZ.
Collapse
Affiliation(s)
- Sara Poletti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Benedetta Vai
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
36
|
Polyakova M, Sander C, Arelin K, Lampe L, Luck T, Luppa M, Kratzsch J, Hoffmann KT, Riedel-Heller S, Villringer A, Schoenknecht P, Schroeter ML. First evidence for glial pathology in late life minor depression: S100B is increased in males with minor depression. Front Cell Neurosci 2015; 9:406. [PMID: 26500502 PMCID: PMC4598479 DOI: 10.3389/fncel.2015.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 01/05/2023] Open
Abstract
Minor depression is diagnosed when a patient suffers from 2 to 4 depressive symptoms for at least 2 weeks. Though minor depression is a widespread phenomenon, its pathophysiology has hardly been studied. To get a first insight into the pathophysiological mechanisms underlying this disorder we assessed serum levels of biomarkers for plasticity, glial and neuronal function: brain-derived neurotrophic factor (BDNF), S100B and neuron specific enolase (NSE). 27 subjects with minor depressive episode and 82 healthy subjects over 60 years of age were selected from the database of the Leipzig population-based study of civilization diseases (LIFE). Serum levels of BDNF, S100B and NSE were compared between groups, and correlated with age, body-mass index (BMI), and degree of white matter hyperintensities (score on Fazekas scale). S100B was significantly increased in males with minor depression in comparison to healthy males, whereas other biomarkers did not differ between groups (p = 0.10–0.66). NSE correlated with Fazekas score in patients with minor depression (rs = 0.436, p = 0.048) and in the whole sample (rs = 0.252, p = 0.019). S100B correlated with BMI (rs = 0.246, p = 0.031) and with age in healthy subjects (rs = 0.345, p = 0.002). Increased S100B in males with minor depression, without alterations in BDNF and NSE, supports the glial hypothesis of depression. Correlation between white matter hyperintensities and NSE underscores the vascular hypothesis of late life depression.
Collapse
Affiliation(s)
- Maryna Polyakova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Christian Sander
- University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Katrin Arelin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Leonie Lampe
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Tobias Luck
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Melanie Luppa
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Jürgen Kratzsch
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Leipzig, Germany
| | | | - Steffi Riedel-Heller
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Clinic for Cognitive Neurology, University of Leipzig Leipzig, Germany
| | - Peter Schoenknecht
- University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Clinic for Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
37
|
Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300:141-54. [PMID: 25981208 DOI: 10.1016/j.neuroscience.2015.05.018] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia, affect a significant percentage of the world population. These disorders are associated with educational difficulties, decreased productivity and reduced quality of life, but their underlying pathophysiological mechanisms are not fully elucidated. Recently, studies have suggested that psychiatric disorders could be considered as inflammatory disorders, even though the exact mechanisms underlying this association are not known. An increase in inflammatory response and oxidative stress may lead to inflammation, which in turn can stimulate microglia in the brain. Microglial activation is roused by the M1 phenotype, which is associated with an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). On the contrary, M2 phenotype is associated with a release of anti-inflammatory cytokines. Thus, it is possible that the inflammatory response from microglial activation can contribute to brain pathology, as well as influence treatment responses. This review will highlight the role of inflammation in the pathophysiology of psychiatric disorders, such as MDD, BD, schizophrenia, and autism. More specifically, the role of microglial activation and associated molecular cascades will also be discussed as a means by which these neuroinflammatory mechanisms take place, when appropriate.
Collapse
Affiliation(s)
- G Z Réus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - G R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L Stertz
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M Badawy
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - I C Passos
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - T Barichello
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - F Kapczinski
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - J Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
38
|
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord 2015; 174:432-40. [PMID: 25553404 DOI: 10.1016/j.jad.2014.11.044] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/20/2014] [Accepted: 11/23/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Peripheral brain-derived neurotrophic factor (BDNF) is decreased in acute major depressive disorder (MDD) and bipolar disorder (BD) and recovered after treatment. Here we validated on a meta-analytical level whether BDNF restores differentially according to treatment response and whose measurements could be used as a biomarker, plasma or serum. METHODS Using strict inclusion criteria, we compared BDNF in healthy controls and patients with MDD (38 studies, n=6619), and BD (17 studies, n=1447). Pre- and post-treatment BDNF levels were meta-analyzed according to treatment response in patients from 21 MDD studies (n=735) and 7 BD studies (n=88). Serum and plasma subgroups were analyzed, publication bias was assessed and heterogeneity was investigated. RESULTS Serum and plasma BDNF were decreased in acute MDD and BD, and did not differ in euthymia in comparison with control subjects. Antidepressive treatment increased serum BDNF levels in MDD in responders (Cohen׳s d (d)=1.27, p=4.4E-07) and remitters (d=0.89, p=0.01), significantly more than in non-responders (d=0.11, p=0.69). For plasma BDNF in MDD and for BD, the evidence was insufficient for a meta-analysis. Although no significant difference was found between serum and plasma ES, variance of plasma ES was higher. LIMITATIONS Between-study heterogeneity was explained only partially; signs of publication bias in serum studies. CONCLUSION Serum BDNF might be regarded as a biomarker for the successful treatment of MDD. Serum measurements seem more reliable than plasma ones. Further research should focus on defining optimal time points for BDNF measurements and increase evidence for the usage of BDNF as a predictive biomarker in BD.
Collapse
Affiliation(s)
- Maryna Polyakova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Katharina Stuke
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katharina Schuemberg
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schoenknecht
- Clinic for Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| |
Collapse
|
39
|
Falcone T, Janigro D, Lovell R, Simon B, Brown CA, Herrera M, Myint AM, Anand A. S100B blood levels and childhood trauma in adolescent inpatients. J Psychiatr Res 2015; 62:14-22. [PMID: 25669696 PMCID: PMC4413930 DOI: 10.1016/j.jpsychires.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum levels of the astrocytic protein S100B have been reported to indicate disruption of the blood-brain barrier. In this study, we investigated the relationship between S100B levels and childhood trauma in a child psychiatric inpatient unit. METHOD Levels of S100B were measured in a group of youth with mood disorders or psychosis with and without history of childhood trauma as well as in healthy controls. Study participants were 93 inpatient adolescents admitted with a diagnosis of psychosis (N = 67), or mood disorder (N = 26) and 22 healthy adolescents with no history of trauma or psychiatric illness. Childhood trauma was documented using the Life Events Checklist (LEC) and Adverse Child Experiences (ACE). RESULTS In a multivariate regression model, suicidality scores and trauma were the only two variables which were independently related to serum S100B levels. Patients with greater levels of childhood trauma had significantly higher S100B levels even after controlling for intensity of suicidal ideation. Patients with psychotic diagnoses and mood disorders did not significantly differ in their levels of S100B. Patients exposed to childhood trauma were significantly more likely to have elevated levels of S100B (p < .001) than patients without trauma, and patients with trauma had significantly higher S100B levels (p < .001) when compared to the control group. LEC (p = 0.046), and BPRS-C suicidality scores (p = 0.001) significantly predicted S100B levels. CONCLUSIONS Childhood trauma can potentially affect the integrity of the blood-brain barrier as indicated by associated increased S100B levels.
Collapse
Affiliation(s)
- Tatiana Falcone
- Cleveland Clinic, Neurologic Institute, Department of Neurology, 9500 Euclid Avenue, S60, Cleveland, OH 44195, USA; Cleveland Clinic, Neurologic Institute, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Damir Janigro
- Cleveland Clinic, Lerner College of Medicine, Cerebrovascular Research NB-20 LRI, 9600 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Rachel Lovell
- Begun Center for Violence Prevention Research and Education, Case Western Reserve University, 11402 Bellflower Road, Cleveland, OH 44106-7167, USA.
| | - Barry Simon
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Charles A. Brown
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA
| | - Mariela Herrera
- Cleveland Clinic, Department of Psychiatry, 9500 Euclid Avenue, P57, Cleveland, OH 44195, USA.
| | - Aye Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital Ludwig-Maximilian University, Nussbaumstrasse, 780336 Munich, Germany.
| | - Amit Anand
- Cleveland Clinic, Department of Psychiatry, Center for Behavioral Health, 9500 Euclid Avenue P57, Cleveland, OH 44195, USA.
| |
Collapse
|
40
|
Schmidt FM, Mergl R, Stach B, Jahn I, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry 2015; 16:106-13. [PMID: 25264292 DOI: 10.3109/15622975.2014.952776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Alterations in neuronal and glial integrity are considered to be of pathogenic impact on major depressive disorder (MDD). For MDD, data on cerebrospinal fluid (CSF) levels of neuron-specific enolase (NSE) are lacking and scarce for glial protein S100B. METHODS We measured CSF levels of NSE and S100B in 31 patients with MDD and 32 mentally healthy controls using electrochemiluminescence immunoassays (ECLIA). RESULTS Adjusted means of NSE were significantly elevated in the MDD patients (11.73 ng/ml (9.95-13.52 95% CI) compared to the controls (6.17 ng/ml (4.55-7.78), F = 9.037, P = 0.004. Effect size for adjusted mean group difference of 5.57 ng/ml was found invariably high (Cohen's d = 1.23). Differentiating MDD from controls, a NSE cut-off of 7.94 ng/ml showed sensitivity of 81% (95% CI 63.7-90.8) and specificity of 75% (95% CI 57.9-86.7). Adjusted levels of S100B did not differ significantly between the two groups (1.12 ng/ml (0.77-1.48) in MDD, 0.97 ng/ml (0.64-1.30) in controls). CONCLUSIONS Our results of elevated CSF-NSE levels support neuronal pathology in MDD and the potential use of CSF-NSE as marker in clinical diagnostics. Missing group differences in S100B do not promote a specific glial pathology in depressive disorders.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig , Leipzig , Germany
| | | | | | | | | |
Collapse
|
41
|
da Graça Cantarelli M, Nardin P, Buffon A, Eidt MC, Antônio Godoy L, Fernandes BS, Gonçalves CA. Serum triglycerides, but not cholesterol or leptin, are decreased in suicide attempters with mood disorders. J Affect Disord 2015; 172:403-9. [PMID: 25451444 DOI: 10.1016/j.jad.2014.10.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many peripheral biomarkers, including low cholesterol and its fractions, have been examined to identify suicidal behavior. Herein, we assessed serum lipid profile and some proteins putatively associated with suicidal behavior in subjects with mood disorder (bipolar disorder or major depressive disorder) with a recent suicide attempt and with no lifetime history of suicide attempts. METHODS Fifty subjects had presented an episode of attempted suicide during the last 15 days, and 36 subjects had no history of any suicide attempt. We measured total cholesterol, HDL, LDL and triglycerides as well as serum leptin, brain-derived neurotrophic factor (BDNF), S100B and C-reactive protein (CRP). RESULTS Individuals that had attempted suicide presented decreased body mass index (BMI) and waist circumference. After adjusting for these confounders, we found that triglycerides were decreased in attempted suicide subjects. We found no differences among total cholesterol, LDL, and HDL or leptin, S100B, CRP and BDNF. LIMITATIONS This is a cross-sectional study, and we cannot therefore assess whether a decrease in triglycerides caused a mood episode with suicidal ideation that led to a suicide attempt or if the presence of a mood episode originated a loss of appetite and consequent loss of weight, therefore decreasing triglyceride levels. CONCLUSIONS These results do not support the hypothesis that lower levels of cholesterol are associated with suicidal behavior in a mood disorder sample. However, our data support the idea that adiposity is differentiated in these patients (reduced BMI, waist circumference and serum triglycerides), which could lead to an altered communication between the adipose tissue and brain.
Collapse
Affiliation(s)
| | - Patrícia Nardin
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Post Graduate Program in Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andréia Buffon
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Brisa S Fernandes
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Post Graduate Program in Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Post Graduate Program in Neuroscience, Federal University of Rio Grande do Sul,Porto Alegre, Brazil; Laboratory of Calcium Binding Proteins in the Central Nervous System, Post Graduate Program in Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
42
|
Munkholm K, Weikop P, Kessing LV, Vinberg M. Elevated levels of IL-6 and IL-18 in manic and hypomanic states in rapid cycling bipolar disorder patients. Brain Behav Immun 2015; 43:205-13. [PMID: 25451609 DOI: 10.1016/j.bbi.2014.09.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023] Open
Abstract
Inflammatory system dysregulation may be involved in the pathophysiology of bipolar disorder with peripheral cytokine levels varying between affective states; however, the evidence is based primarily on case-control studies and limited by methodological issues. The objectives of the present study were to assess alterations of peripheral cytokine levels between affective states in rapid cycling bipolar disorder patients and to compare these with levels in healthy control subjects. In a longitudinal design, repeated measurements of plasma levels of IL-6, IL-10, IL-18, IL-1β and TNF-α were obtained in affective states of varying polarity during 6-12 months in 37 rapid cycling bipolar disorder patients and compared with repeated measurements in 40 age- and gender matched healthy control subjects, using rigorous laboratory-, clinical- and statistical methodology. Adjusting for demographical, clinical- and lifestyle factors, levels of IL-6 (p<0.05) and IL-18 (p<0.005) were significantly elevated in rapid cycling bipolar disorder patients in a manic/hypomanic state, compared with a depressed and a euthymic state. Compared with healthy control subjects, unadjusted levels of IL-6 (p<0.05) and IL-18 (p<0.05) were elevated in manic/hypomanic bipolar disorder patients. Levels of IL-10 and IL-1β were undetectable in the majority of samples; high TNF-α assay variability was found. The results support a role for altered peripheral immune response signaling in rapid cycling bipolar disorder and suggest that IL-6 and IL-18 could be markers of manic episodes.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | - Pia Weikop
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| | - Maj Vinberg
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Schroeter ML, Steiner J, Schönknecht P, Mueller K. Further evidence for a role of S100B in mood disorders: a human gene expression mega-analysis. J Psychiatr Res 2014; 53:84-6. [PMID: 24629352 DOI: 10.1016/j.jpsychires.2014.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany; Day Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Germany
| | | | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
45
|
The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm (Vienna) 2013; 122 Suppl 1:S9-18. [DOI: 10.1007/s00702-013-1134-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
|
46
|
Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 2013; 38:2375-84. [PMID: 24026569 DOI: 10.1007/s11064-013-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial action in the CNS. One example is a lectin with mannose-glucose affinity purified from Canavalia brasiliensis seeds, ConBr, which displays neuroprotective and antidepressant activity. On the other hand, the effects of the galactose-binding lectin isolated from Vatairea macrocarpa seeds (VML) on the CNS are largely unknown. The aim of this study was to verify if VML is able to alter neural function by evaluating signaling enzymes, glial and inflammatory proteins in adult mice hippocampus, as well as behavioral parameters. VML administered by intracerebroventricular (i.c.v) route increased the immobility time in the forced swimming test (FST) 60 min after its injection through a carbohydrate recognition domain-dependent mechanism. Furthermore, under the same conditions, VML caused an enhancement of COX-2, GFAP and S100B levels in mouse hippocampus. However, phosphorylation of Akt, GSK-3β and mitogen-activated protein kinases named ERK1/2, JNK1/2/3 and p38(MAPK), was not changed by VML. The results reported here suggest that VML may trigger neuroinflammatory response in mouse hippocampus and exhibit a depressive-like activity. Taken together, our findings indicate a dual role for galactose binding lectins in the modulation of CNS function.
Collapse
|
47
|
Abstract
Major depression is characterized by low mood, a reduced ability to experience pleasure and frequent cognitive, physiological and high anxiety symptoms. It is also the leading cause of years lost due to disability worldwide in women and men, reflecting a lifelong trajectory of recurring episodes, increasing severity and progressive treatment resistance. Yet, antidepressant drugs at best treat only one out of every two patients and have not fundamentally changed since their discovery by chance >50 yr ago. This status quo may reflect an exaggerated emphasis on a categorical disease classification that was not intended for biological research and on oversimplified gene-to-disease models for complex illnesses. Indeed, genetic, molecular and cellular findings in major depression suggest shared risk and continuous pathological changes with other brain-related disorders. So, an alternative is that pathological findings in major depression reflect changes in vulnerable brain-related biological modules, each with their own aetiological factors, pathogenic mechanisms and biological/environment moderators. In this model, pathological entities have low specificity for major depression and instead co-occur, combine and interact within individual subjects across disorders, contributing to the expression of biological endophenotypes and potentially clinical symptom dimensions. Here, we discuss current limitations in depression research, review concepts of gene-to-disease biological scales and summarize human post-mortem brain findings related to pyramidal neurons, γ-amino butyric acid neurons, astrocytes and oligodendrocytes, as prototypical brain circuit biological modules. Finally we discuss nested aetiological factors and implications for dimensional pathology. Evidence suggests that a focus on local cell circuits may provide an appropriate integration point and a critical link between underlying molecular mechanisms and neural network dysfunction in major depression.
Collapse
|
48
|
Munkholm K, Braüner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 2013; 47:1119-33. [PMID: 23768870 DOI: 10.1016/j.jpsychires.2013.05.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bipolar disorder may be associated with peripheral immune system dysfunction; however, results in individual studies are conflicting. Our aim was to systematically review evidence of peripheral cytokine alterations in bipolar disorder integrating findings from various affective states. METHODS We conducted a meta-analysis of studies comparing peripheral cytokine concentrations in patients with bipolar disorder with healthy control subjects. Results were reported according to the PRISMA statement. RESULTS Eighteen studies with a total of 761 bipolar disorder patients and 919 healthy controls were included. Overall, concentrations of soluble Interleukin (IL)-2 receptor (sIL-2R), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor type 1 (sTNFR1) (p < 0.001 each), sIL-6R (p = 0.01) and IL-4 (p = 0.04) were significantly higher in bipolar patients compared with healthy controls. There were no significant differences between bipolar disorder patients and healthy control subjects for IL-1, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12, IL-1β, IL-1 receptor antagonist (IL-1RA), interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1) and sTNFR2. CONCLUSIONS Employing a global approach, incorporating evidence across affective states, this meta-analysis found some support for peripheral inflammatory alterations in bipolar disorder. Results were limited by heterogeneity between studies, insufficient standardization and lacking control for confounders in individual studies. Further research exploring the role of the peripheral inflammatory system in relation to neuroinflammation is warranted.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
49
|
Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 2013; 126:75-91. [PMID: 23512378 DOI: 10.1007/s00401-013-1102-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Chronic stress is well recognized to decrease the number of GFAP⁺ astrocytes within the prefrontal cortex (PFC). Recent research, however, has suggested that our understanding of how stress alters astrocytes may be incomplete. Specifically, chronic stress has been shown to induce a unique form of microglial remodelling, but it is not yet clear whether astrocytes also undergo similar structural modifications. Such alterations may be significant given the role of astrocytes in modulating synaptic function. Accordingly, in the current study we have examined changes in astrocyte morphology following exposure to chronic stress in adult rats, using three-dimensional digital reconstructions of astrocytes. Our analysis indicated that chronic stress produced profound atrophy of astrocyte process length, branching and volume. We additionally examined changes in astrocyte-specific S100β, which are both a putative astrocyte marker and a protein whose expression is associated with astrocyte distress. While we found that S100β levels were increased by stress, this increase was not correlated with atrophy. We further established that while chronic stress was associated with a decrease in astrocyte numbers when GFAP labelling was used as a marker, we could find no evidence of a decrease in the total number of cells, based on Nissl staining, or in the number of S100β⁺ cells. This finding suggests that chronic stress may not actually reduce astrocyte numbers and may instead selectively decrease GFAP expression. The results of the current study are significant as they indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astrocyte network.
Collapse
|
50
|
Munkholm K, Vinberg M, Vedel Kessing L. Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord 2013; 144:16-27. [PMID: 22749156 DOI: 10.1016/j.jad.2012.06.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according to affective state. METHODS We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS Thirteen studies were included, comprising 556 bipolar disorder patients and 767 healthy controls, evaluating 15 different cytokines-, cytokine receptors- or cytokine antagonists. The levels of tumor necrosis factor-α (TNF-α), the soluble tumor necrosis factor receptor type 1 (sTNF-R1) and the soluble inlerleukin-2 receptor (sIL-2R) were elevated in manic patients compared with healthy control subjects (p<0.01 for each). Levels of sTNF-R1 and TNF-α were elevated in manic patients compared to euthymic patients (p=0.01 and p=0.04, respectively). sTNF-R1 levels were elevated in euthymic patients compared with healthy control subjects (p<0.01). There were no significant findings for other comparisons, including intra-individual alterations of cytokine levels. LIMITATIONS Stratification according to mood state resulted in small study numbers for some cytokines. Findings were limited by heterogeneity, small sample sizes and a lack of control for confounding factors in individual studies. CONCLUSIONS This meta-analysis found some support for immune dysregulation in bipolar disorder. Future research is warranted to elucidate the role of endogenous cytokine alterations in bipolar disorder. Clinical studies examining longitudinal changes within individuals are recommended.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | |
Collapse
|