1
|
Elias GJB, Iskin SA, Beyn ME, Omere U, Rizvi SJ, Ceniti AK, Boutet A, Voineskos D, Kennedy SH, Lozano AM, Germann J. FDG-PET as a pre-operative biomarker for predicting and optimizing response to subcallosal cingulate area deep brain stimulation. Biol Psychiatry 2025:S0006-3223(25)01193-X. [PMID: 40403825 DOI: 10.1016/j.biopsych.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Deep brain stimulation targeting the subcallosal cingulate area (SCC-DBS) has emerged as a promising therapy for treatment-resistant depression (TRD). However, only half to two thirds of patients experience meaningful clinical response, highlighting the need for biomarkers that could help to optimize SCC-DBS outcomes. Our group previously showed that a support vector machine (SVM) incorporating pre-operative FDG-PET glucose metabolism values from frontal pole, anterior cingulate cortex, and temporal pole could retrospectively classify treatment response in 21 TRD patients with 81.0% accuracy. Here, we assessed the out-of-sample performance and wider applicability of this putative biomarker. METHODS Baseline FDG-PET data were preprocessed and fed into an SVM classifier. This model, which employed the three aforementioned regional inputs, was trained and tuned using the familiar 21-patient cohort and tested on an unseen TRD validation set (n=35). Within the combined cohort, we also explored glucose metabolism's potential influence on previously demonstrated relationships between white matter tract stimulation and clinical outcome. RESULTS Our model classified out-of-sample response status with 77.1% accuracy (80.0% precision; 87.0% recall; 0.83 F1 score).This performance proved statistically significant in permutation testing (ppermute=0.008) and exceeded that of an alternative, clinically informed SVM. In addition, we found that patients with lower temporal pole metabolism showed stronger coupling between uncinate fasciculus engagement (approximated using electrode localization and activation modelling) and clinical outcome (p=0.027). CONCLUSIONS These results corroborate the validity of FDG-PET models as a tool for predicting SCC-DBS outcomes and underscore their value in refining patient selection and further personalizing DBS treatment.
Collapse
Affiliation(s)
- Gavin J B Elias
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada
| | - Sarah A Iskin
- Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada
| | - Uyiosa Omere
- Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada
| | - Sakina J Rizvi
- Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada
| | - Amanda K Ceniti
- Master of Arts Program in the Social Sciences (MAPSS), University of Chicago, Chicago, USA
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada
| | - Daphne Voineskos
- Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada; Krembil Brain Institute, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada; Krembil Brain Institute, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto & University Hospital Network, Toronto, Canada; Krembil Brain Institute, Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Dong J, Dai M, Guo Z, Xu T, Li F, Li J. The Targets of Deep Brain Stimulation in the Treatment of Treatment-Resistant Depression: A Review. Brain Behav 2025; 15:e70505. [PMID: 40321033 PMCID: PMC12050660 DOI: 10.1002/brb3.70505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
PURPOSE The purpose of this review is to evaluate the current state and potential future directions of deep brain stimulation (DBS) therapy for treatment-resistant depression (TRD), a condition that significantly impacts patients' quality of life and for which conventional treatments are often ineffective. METHOD This review synthesizes evidence from clinical trials and preclinical studies published in five years, identified through PubMed searches using keywords ("Deep Brain Stimulation" OR DBS) AND ("Treatment-Resistant Depression" OR TRD). Included studies encompassed clinical research (randomized/non-randomized trials, cohort studies) and mechanistic preclinical studies, excluding non-English publications and nonhuman experiments. Screening prioritized neuroanatomical targets (e.g., SCG, NAcc) and stimulation parameter optimization data. Examining the therapeutic mechanisms of DBS, the neuroanatomical targets utilized, and the clinical outcomes observed. It also discusses the challenges faced in DBS application and proposes potential technological advancements, such as closed-loop therapy and fiber tracking technology. FINDING Preliminary evidence exists regarding the efficacy and safety of DBS in the treatment of TRD in the subcortical cingulate gyrus (SCG), nucleus accumbens (NAcc), ventral capsule/ventral striatum (VC/VS), anterior limb of the internal capsule (ALIC), and so forth. Nevertheless, the optimal stimulation target remains undetermined. The review highlights the complexity of TRD and the need for personalized treatment strategies, noting that genetic, epigenetic, and neurophysiological changes are implicated in DBS's therapeutic effects. CONCLUSION In conclusion, while DBS for TRD remains an experimental therapy, it offers a unique and potentially effective treatment option for patients unresponsive to traditional treatments. The review emphasizes the need for further research to refine DBS targets and parameters, improve patient selection, and develop personalized treatment plans to enhance efficacy and safety in TRD management.
Collapse
Affiliation(s)
- Jianyang Dong
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Mengying Dai
- Department of RehabilitationShenzhen Children's HospitalShenzhenChina
| | - Zinan Guo
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Ting Xu
- Department of Neurology, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Fangming Li
- Department of NeurologyShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Jianjun Li
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| |
Collapse
|
3
|
Chu CS, Lin YY, Chia-Yu Huang C, Chung YA, Youngju Park S, Chang WC, Chang CC, Chang HA. Altered electroencephalography-based source functional connectivity in patients with generalized anxiety disorder. Clin Neurophysiol 2025; 175:2010736. [PMID: 40318258 DOI: 10.1016/j.clinph.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/02/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE To explore the neurophysiological markers of generalized anxiety disorder (GAD), we performed electroencephalography (EEG) in patients with GAD and assessed lagged phase synchronization (LPS), a measure of brain functional connectivity (FC). METHODS Cortical EEG sources were modelled by exact low resolution brain electromagnetic tomography (eLORETA). Graph theory analyses were applied to undirected and weighted networks obtained by LPS to explore the FC differences between patients with GAD and controls. The association between the abnormal parameters and disease symptomatology was examined. RESULTS Compared to controls (n = 89), the GAD group (n = 104) showed higher brain connectivity in beta-2 (18.5-21 Hz) between the left cingulate gyrus and the right postcentral gyrus (PcG) and in beta-3 (21.5-30 Hz) between the brain hemispheres in several regions, particularly the left PcG. Patients with GAD showed higher global network efficiency in beta-3. Finally, a positive correlation was observed between a longer duration of illness and greater FC in beta-2 between brain regions. CONCLUSIONS The present findings suggest that EEG-sourced measures are useful tools for understanding altered brain connectivity in GAD. SIGNIFICANCE EEG could be a valuable biomarker in differentiating patients with GAD from controls and could be a potential predictive tool in future studies.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sonya Youngju Park
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chia Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsin-An Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Reddy S, Kabotyanski KE, Hirani S, Liu T, Naqvi Z, Giridharan N, Hasen M, Provenza NR, Banks GP, Mathew SJ, Goodman WK, Sheth SA. Efficacy of Deep Brain Stimulation for Treatment-Resistant Depression: Systematic Review and Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1239-1248. [PMID: 39197490 DOI: 10.1016/j.bpsc.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Treatment-resistant depression affects about 30% of individuals with major depressive disorder. Deep brain stimulation is an investigational intervention for treatment-resistant depression with varied results. We undertook this meta-analysis to synthesize outcome data across trial designs, anatomical targets, and institutions to better establish efficacy and side-effect profiles. METHODS We conducted a systematic PubMed review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven randomized controlled trials (n = 198) and 8 open-label trials (n = 77) were included spanning 2009 to 2020. Outcome measures included Hamilton Depression Rating Scale or Montgomery-Åsberg Depression Rating Scale scores, as well as response and remission rates over time. Outcomes were tracked at the last follow-up and quantified as a time course using model-based network meta-analysis. Linear mixed models were fit to individual patient data to identify covariates. RESULTS Deep brain stimulation achieved 47% improvement in long-term depression scale scores, with an estimated time to reach 50% improvement of around 23 months. There were no significant subgroup effects of stimulation target, time of last follow-up, sex, age of disease onset, or duration of disease, but open-label trials showed significantly greater treatment effects than randomized controlled trials. Long-term (12-60 month) response and remission rates were 48% and 35%, respectively. The time course of improvement with active stimulation could not be adequately distinguished from that with sham stimulation, when available. CONCLUSIONS Deep brain stimulation produces significant chronic improvement in symptoms of treatment-resistant depression. However, the limited sham-controlled data do not demonstrate significant improvement over placebo. Future advancements in stimulation optimization and careful blinding and placebo schemes are important next steps for this therapy.
Collapse
Affiliation(s)
- Sandesh Reddy
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Tommy Liu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Zain Naqvi
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Mohammed Hasen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
5
|
Keat A, Li K, Hau T, Soga T. Comparative Side-Effects of Neurosurgical Treatment of Treatment-Resistant Depression. CNS Neurosci Ther 2024; 30:e70090. [PMID: 39467827 PMCID: PMC11518690 DOI: 10.1111/cns.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Treatment-resistant depression (TRD) is a condition in which patients suffering from depression no longer respond to common methods of treatment, such as anti-depressant medication. Neurosurgical procedures such as ablative surgery, deep brain stimulation, and vagus nerve stimulation have been used in efforts to overcome TRD. OBJECTIVES This review aims to provide an overview of the side effects of neurosurgery performed in clinical studies related to depression. METHODS A literature search was conducted through PubMed, MEDLINE, EMBASE, Ovid, and ClinicalTrials.gov databases. RESULTS This review selected 10 studies for ablative surgery, 12 for deep brain stimulation, and 10 for vagus nerve stimulation, analyzing their side effect profiles of neurosurgery for TRD. The major side effects of each type of neurosurgery were identified, such as incontinence and confusion for ablative surgery, headaches and increased suicide ideation for deep brain stimulation, and voice hoarseness and dyspnea for vagus nerve stimulation. CONCLUSION The review discusses the merits and demerits of neurosurgery as a treatment option for TRD. It also suggests new insights into decreasing the burden of these neurosurgical side effects so that they can be a viable, high-efficacy treatment method for TRD.
Collapse
Affiliation(s)
- Alexandre Lim Eng Keat
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Keith Tan Jian Li
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Teo Chuin Hau
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
6
|
Lapa JDS, Duarte JFS, Campos ACP, Davidson B, Nestor SM, Rabin JS, Giacobbe P, Lipsman N, Hamani C. Adverse Effects of Deep Brain Stimulation for Treatment-Resistant Depression: A Scoping Review. Neurosurgery 2024; 95:509-516. [PMID: 38511957 DOI: 10.1227/neu.0000000000002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.
Collapse
Affiliation(s)
- Jorge D S Lapa
- Department of Medicine, Federal University of Sergipe, Aracaju , Sergipe , Brazil
- Department Neurosurgery, Hospital de Cirurgia, Aracaju , Sergipe , Brazil
| | - Joel F S Duarte
- Department Neurosurgery, Neurological Institute of Curitiba, Curitiba , Brazil
| | | | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto , Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| |
Collapse
|
7
|
Zhou Z, Xu Z, Lai W, Chen X, Zeng L, Qian L, Liu X, Jiang W, Zhang Y, Hou G. Reduced myelin content in bipolar disorder: A study of inhomogeneous magnetization transfer. J Affect Disord 2024; 356:363-370. [PMID: 38615848 DOI: 10.1016/j.jad.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS This study is based on cross-sectional data and the sample size is limited. CONCLUSION These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Lai
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Xiaoqiao Chen
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Lin Zeng
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Xia Liu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Jiang
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| |
Collapse
|
8
|
Kabotyanski KE, Najera RA, Banks GP, Sharma H, Provenza NR, Hayden BY, Mathew SJ, Sheth SA. Cost-effectiveness and threshold analysis of deep brain stimulation vs. treatment-as-usual for treatment-resistant depression. Transl Psychiatry 2024; 14:243. [PMID: 38849334 PMCID: PMC11161481 DOI: 10.1038/s41398-024-02951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Treatment-resistant depression (TRD) affects approximately 2.8 million people in the U.S. with estimated annual healthcare costs of $43.8 billion. Deep brain stimulation (DBS) is currently an investigational intervention for TRD. We used a decision-analytic model to compare cost-effectiveness of DBS to treatment-as-usual (TAU) for TRD. Because this therapy is not FDA approved or in common use, our goal was to establish an effectiveness threshold that trials would need to demonstrate for this therapy to be cost-effective. Remission and complication rates were determined from review of relevant studies. We used published utility scores to reflect quality of life after treatment. Medicare reimbursement rates and health economics data were used to approximate costs. We performed Monte Carlo (MC) simulations and probabilistic sensitivity analyses to estimate incremental cost-effectiveness ratios (ICER; USD/quality-adjusted life year [QALY]) at a 5-year time horizon. Cost-effectiveness was defined using willingness-to-pay (WTP) thresholds of $100,000/QALY and $50,000/QALY for moderate and definitive cost-effectiveness, respectively. We included 274 patients across 16 studies from 2009-2021 who underwent DBS for TRD and had ≥12 months follow-up in our model inputs. From a healthcare sector perspective, DBS using non-rechargeable devices (DBS-pc) would require 55% and 85% remission, while DBS using rechargeable devices (DBS-rc) would require 11% and 19% remission for moderate and definitive cost-effectiveness, respectively. From a societal perspective, DBS-pc would require 35% and 46% remission, while DBS-rc would require 8% and 10% remission for moderate and definitive cost-effectiveness, respectively. DBS-pc will unlikely be cost-effective at any time horizon without transformative improvements in battery longevity. If remission rates ≥8-19% are achieved, DBS-rc will likely be more cost-effective than TAU for TRD, with further increasing cost-effectiveness beyond 5 years.
Collapse
Affiliation(s)
| | - Ricardo A Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Zhong X, Chen X, Liu Y, Gui S, Pu J, Wang D, Tao W, Chen Y, Chen X, Chen W, Chen X, Qiao R, Tao X, Li Z, Xie P. Integrated analysis of transcriptional changes in major depressive disorder: Insights from blood and anterior cingulate cortex. Heliyon 2024; 10:e28960. [PMID: 38628773 PMCID: PMC11019182 DOI: 10.1016/j.heliyon.2024.e28960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Background Major depressive disorder (MDD) was involved in widely transcriptional changes in central and peripheral tissues. While, previous studies focused on single tissues, making it difficult to represent systemic molecular changes throughout the body. Thus, there is an urgent need to explore the central and peripheral biomarkers with intrinsic correlation. Methods We systematically retrieved gene expression profiles of blood and anterior cingulate cortex (ACC). 3 blood datatsets (84 MDD and 88 controls) and 6 ACC datasets (100 MDD and 100 controls) were obtained. Differential expression analysis, RobustRankAggreg (RRA) analysis, functional enrichment analysis, immune associated analysis and protein-protein interaction networks (PPI) were integrated. Furthermore, the key genes were validated in an independent ACC dataset (12 MDD and 15 controls) and a cohort with 120 MDD and 117 controls. Results Differential expression analysis identified 2211 and 2021 differential expressed genes (DEGs) in blood and ACC, respectively. RRA identified 45 and 25 robust DEGs in blood and ACC based on DEGs, and all of them were closely associated with immune cells. Functional enrichment results showed both the robust DEGs in blood and ACC were enriched in humoral immune response. Furthermore, PPI identified 8 hub DEGs (CD79A, CD79B, CD19, MS4A1, PLP1, CLDN11, MOG, MAG) in blood and ACC. Independent ACC dataset showed the area under the curve (AUC) based on these hub DEGs was 0.77. Meanwhile, these hub DEGs were validated in the serum of MDD patients, and also showed a promising diagnostic power. Conclusions The biomarker panel based on hub DEGs yield a promising diagnostic efficacy, and all of these hub DEGs were strongly correlated with immunity. Humoral immune response may be the key link between the brain and blood in MDD, and our results may provide further understanding for MDD.
Collapse
Affiliation(s)
- Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangkun Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuocan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
10
|
Johnson KA, Okun MS, Scangos KW, Mayberg HS, de Hemptinne C. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry 2024; 29:1075-1087. [PMID: 38287101 PMCID: PMC11348289 DOI: 10.1038/s41380-023-02394-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
12
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
13
|
Liu F, Huang S, Guo D, Li X, Han Y. Deep brain stimulation of ventromedial prefrontal cortex reverses depressive-like behaviors via BDNF/TrkB signaling pathway in rats. Life Sci 2023; 334:122222. [PMID: 38084673 DOI: 10.1016/j.lfs.2023.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
AIM Deep brain stimulation (DBS) is currently under investigation as a potential therapeutic approach for managing major depressive disorder (MDD) and ventromedial prefrontal cortex (vmPFC) is recognized as a promising target region. Therefore, the present study aimed to investigate a preclinical paradigm of bilateral vmPFC DBS and examine the molecular mechanisms underlying its antidepressant-like effects using chronic unpredictable stress (CUS) model in rats. MAIN METHODS Male rats were subjected to stereotaxic surgery and deep brain stimulation paradigm in non-stressed and CUS rats respectively, and the therapeutic effect of DBS were assessed by a series of behavioral tests including sucrose preference test, open field test, elevated plus maze test, and forced swim test. The potential involvement of the BDNF/TrkB signaling pathway and its downstream effects in this process were also investigated using western blot. KEY FINDINGS We identified that a stimulation protocol consisting of 130 Hz, 200 μA, 90 μs pulses administered for 5 h per day over a period of 7 days effectively mitigated CUS-induced depressive-like and anxiety-like behaviors in rats. These therapeutic effects were associated with the enhancement of the BDNF/TrkB signaling pathway and its downstream ERK1/2 activity. SIGNIFICANCE These findings provide valuable insights into the potential clinical utility of vmPFC DBS as an approach of improving the symptoms experienced by individuals with MDD. This evidence contributes to our understanding of the neurobiological basis of depression and offers promise for the development of more effective treatments.
Collapse
Affiliation(s)
- Fanglin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dan Guo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
14
|
Scherer M, Harmsen IE, Samuel N, Elias GJB, Germann J, Boutet A, MacLeod CE, Giacobbe P, Rowland NC, Lozano AM, Milosevic L. Oscillatory network markers of subcallosal cingulate deep brain stimulation for depression. Brain Stimul 2023; 16:1764-1775. [PMID: 38061548 PMCID: PMC10947774 DOI: 10.1016/j.brs.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Identifying functional biomarkers related to treatment success can aid in expediting therapy optimization, as well as contribute to a better understanding of the neural mechanisms of the treatment-resistant depression (TRD) and subcallosal cingulate deep brain stimulation (SCC-DBS). Magnetoencephalography data were obtained from 16 individuals with SCC-DBS for TRD and 25 healthy subjects. The first objective of the study was to identify region-specific oscillatory modulations that both (i) discriminate individuals with TRD (with SCC-DBS OFF) from healthy controls, and (ii) discriminate TRD treatment responders from non-responders (with SCC-DBS ON). The second objective of this work was to further explore the effects of stimulation intensity and frequency on oscillatory activity in the identified brain regions of interest. Oscillatory power analyses led to the identification of brain regions that differentiated responders from non-responders based on modulations of increased alpha (8-12 Hz) and decreased gamma (32-116 Hz) power within nodes of the default mode, central executive, and somatomotor networks, Broca's area, and lingual gyrus. Within these nodes, it was also found that low stimulation frequency had stronger effects on oscillatory modulation than increased stimulation intensity. The identified functional network biomarkers implicate modulation of TRD-related activity in brain regions involved in emotional control/processing, motor control, and the interaction between speech, vision, and memory, which have all been implicated in depression. These electrophysiological biomarkers have the potential to be used as functional proxies for therapy optimization. Additional stimulation parameter analyses revealed that oscillatory modulations can be strengthened by increasing stimulation intensity or reducing frequency, which may represent potential avenues of direction in non-responders.
Collapse
Affiliation(s)
- M Scherer
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - I E Harmsen
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Mitchell Goldhar MEG Unit, University Health Network, Toronto, Canada
| | - N Samuel
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - G J B Elias
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Germann
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - A Boutet
- Krembil Brain Institute, University Health Network, Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Canada
| | - C E MacLeod
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - P Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - N C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA; Murray Center for Research on Parkinson's Disease and Related Disorders, Medical University of South Carolina, Charleston, SC, USA
| | - A M Lozano
- Krembil Brain Institute, University Health Network, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| | - L Milosevic
- Krembil Brain Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; KITE Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
15
|
Akhoondian M, Rashtiani S, Khakpour-Taleghani B, Rostampour M, Jafari A, Rohampour K. Lateral habenula deep brain stimulation alleviates depression-like behaviors and reverses the oscillatory pattern in the nucleus accumbens in an animal model of depression. Brain Res Bull 2023; 202:110745. [PMID: 37598800 DOI: 10.1016/j.brainresbull.2023.110745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Depression is a series of symptoms that influence mood, thinking, and behavior and create unpleasant emotions like hopelessness and apathy. Treatment-resistant depression (TRD) affects 30 % of depression patients despite the availability of several non-invasive therapies. Deep brain stimulation (DBS) is a novel therapy for TRD. The aim of the current study was to evaluate the effect of LHb-DBS by recording local field potentials (LFP) and conducting behavioral experiments. Thirty-two mature male Wistar rats were randomly divided into four groups: control, chronic mild stress (CMS), CMS+DBS, and DBS. After surgery and electrode placement in the lateral habenula (LHb), nucleus accumbens (NAc), and prelimbic cortex (PrL), the CMS protocol was applied for 3 weeks to create depression-like models. The open field test (OFT), sucrose preference test (SPT), and forced swim test (FST) were also performed. In the DBS groups, the LHb area was stimulated for four consecutive days. Finally, on the 22nd day, LFP was recorded from the NAc and PrL and analyzed using MATLAB software. Analyzing the findings using ANOVA and P-values ≤ 0.05 was considered. LHb-DBS alleviated depression-like behaviors in chronic moderate stress model rats (P ≤ 0.05). Three weeks of CMS enhanced almost all band powers in the NAc, while LHb-DBS decreased the power of the theta, alpha, beta, and gamma bands in the NAc (P ≤ 0.05), and the low-gamma band in the PrL. CMS also boosted the NAc-PrL coherence in low-frequency bands, while LHb-DBS increased beta and low gamma band coherence (P ≤ 0.05). In sum, the results of the present study showed that depression enhances low-frequency coherence between NAc and PrL cortex. Depression also potentiates many brain oscillations in the NAc, which can be mainly reversed by LHb-DBS.
Collapse
Affiliation(s)
- Mohammad Akhoondian
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samira Rashtiani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour-Taleghani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
16
|
Merk T, Köhler R, Peterson V, Lyra L, Vanhoecke J, Chikermane M, Binns T, Li N, Walton A, Bush A, Sisterson N, Busch J, Lofredi R, Habets J, Huebl J, Zhu G, Yin Z, Zhao B, Merkl A, Bajbouj M, Krause P, Faust K, Schneider GH, Horn A, Zhang J, Kühn A, Richardson RM, Neumann WJ. Invasive neurophysiology and whole brain connectomics for neural decoding in patients with brain implants. RESEARCH SQUARE 2023:rs.3.rs-3212709. [PMID: 37790428 PMCID: PMC10543023 DOI: 10.21203/rs.3.rs-3212709/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Brain computer interfaces (BCI) provide unprecedented spatiotemporal precision that will enable significant expansion in how numerous brain disorders are treated. Decoding dynamic patient states from brain signals with machine learning is required to leverage this precision, but a standardized framework for identifying and advancing novel clinical BCI approaches does not exist. Here, we developed a platform that integrates brain signal decoding with connectomics and demonstrate its utility across 123 hours of invasively recorded brain data from 73 neurosurgical patients treated for movement disorders, depression and epilepsy. First, we introduce connectomics-informed movement decoders that generalize across cohorts with Parkinson's disease and epilepsy from the US, Europe and China. Next, we reveal network targets for emotion decoding in left prefrontal and cingulate circuits in DBS patients with major depression. Finally, we showcase opportunities to improve seizure detection in responsive neurostimulation for epilepsy. Our platform provides rapid, high-accuracy decoding for precision medicine approaches that can dynamically adapt neuromodulation therapies in response to the individual needs of patients.
Collapse
|
17
|
Elias GJB, Germann J, Boutet A, Beyn ME, Giacobbe P, Song HN, Choi KS, Mayberg HS, Kennedy SH, Lozano AM. Local neuroanatomical and tract-based proxies of optimal subcallosal cingulate deep brain stimulation. Brain Stimul 2023; 16:1259-1272. [PMID: 37611657 DOI: 10.1016/j.brs.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the subcallosal cingulate area (SCC-DBS) is a promising neuromodulatory therapy for treatment-resistant depression (TRD). Biomarkers of optimal target engagement are needed to guide surgical targeting and stimulation parameter selection and to reduce variance in clinical outcome. OBJECTIVE/HYPOTHESIS We aimed to characterize the relationship between stimulation location, white matter tract engagement, and clinical outcome in a large (n = 60) TRD cohort treated with SCC-DBS. A smaller cohort (n = 22) of SCC-DBS patients with differing primary indications (bipolar disorder/anorexia nervosa) was utilized as an out-of-sample validation cohort. METHODS Volumes of tissue activated (VTAs) were constructed in standard space using high-resolution structural MRI and individual stimulation parameters. VTA-based probabilistic stimulation maps (PSMs) were generated to elucidate voxelwise spatial patterns of efficacious stimulation. A whole-brain tractogram derived from Human Connectome Project diffusion-weighted MRI data was seeded with VTA pairs, and white matter streamlines whose overlap with VTAs related to outcome ('discriminative' streamlines; Puncorrected < 0.05) were identified using t-tests. Linear modelling was used to interrogate the potential clinical relevance of VTA overlap with specific structures. RESULTS PSMs varied by hemisphere: high-value left-sided voxels were located more anterosuperiorly and squarely in the lateral white matter, while the equivalent right-sided voxels fell more posteroinferiorly and involved a greater proportion of grey matter. Positive discriminative streamlines localized to the bilateral (but primarily left) cingulum bundle, forceps minor/rostrum of corpus callosum, and bilateral uncinate fasciculus. Conversely, negative discriminative streamlines mostly belonged to the right cingulum bundle and bilateral uncinate fasciculus. The best performing linear model, which utilized information about VTA volume overlap with each of the positive discriminative streamline bundles as well as the negative discriminative elements of the right cingulum bundle, explained significant variance in clinical improvement in the primary TRD cohort (R = 0.46, P < 0.001) and survived repeated 10-fold cross-validation (R = 0.50, P = 0.040). This model was also able to predict outcome in the out-of-sample validation cohort (R = 0.43, P = 0.047). CONCLUSION(S) These findings reinforce prior indications of the importance of white matter engagement to SCC-DBS treatment success while providing new insights that could inform surgical targeting and stimulation parameter selection decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - Ha Neul Song
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA; Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada; ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada; Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.
| |
Collapse
|
18
|
Li SJ, Lo YC, Tseng HY, Lin SH, Kuo CH, Chen TC, Chang CW, Liang YW, Lin YC, Wang CY, Cho TY, Wang MH, Chen CT, Chen YY. Nucleus accumbens deep brain stimulation improves depressive-like behaviors through BDNF-mediated alterations in brain functional connectivity of dopaminergic pathway. Neurobiol Stress 2023; 26:100566. [PMID: 37664874 PMCID: PMC10474237 DOI: 10.1016/j.ynstr.2023.100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway. To determine whether NAc-DBS alters glucose metabolism via mitochondrial alteration and neurogenesis and whether these changes increase neural plasticity that improves behavioral functions in a chronic social defeat stress (CSDS) mouse model. The Lab-designed MR-compatible neural probes were implanted in the bilateral NAc of C57BL/6 mice with and without CSDS, followed by DBS or sham stimulation. All animals underwent open-field and sucrose preference testing, and brain resting-state functional MRI analysis. Meanwhile, we checked the placement of neural probes in each mouse by T2 images. By confirming the placement location, mice with incorrect probe placement (the negative control group) showed no significant therapeutic effects in behavioral performance and functional connectivity (FC) after receiving electrical stimulation and were excluded from further analysis. Western blotting, seahorse metabolic analysis, and electron microscopy were further applied for the investigation of NAc-DBS. We found NAc-DBS restored emotional deficits in CSDS-subjected mice. Concurrent with behavioral amelioration, the CSDS DBS-on group exhibited enhanced FC in the dopaminergic pathway with increased expression of BDNF- and NeuN-positive cells increased dopamine D1 receptor, dopamine D2 receptors, and TH in the medial prefrontal cortex, NAc, ventral hippocampus, ventral tegmental area, and amygdala. Increased pAMPK/total AMPK and PGC-1α levels, functions of oxidative phosphorylation, and mitochondrial biogenesis were also observed after NAc-DBS treatment. Our findings demonstrate that NAc-DBS can promote BDNF expression, which alters FC and metabolic profile in the dopaminergic pathway, suggesting a potential strategy for ameliorating emotional processes in individuals with MDD.
Collapse
Affiliation(s)
- Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan, ROC
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97002, Taiwan, ROC
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan, ROC
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei, 11217, Taiwan, ROC
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 115024, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Chih-Yu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Tsai-Yu Cho
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Mu-Hua Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Te Chen
- Abbott Medical Taiwan Co, 5/F No. 407, Ruei-Guang Rd., Taipei, 11492, Taiwan, ROC
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| |
Collapse
|
19
|
Hitti FL, Widge AS, Riva-Posse P, Malone DA, Okun MS, Shanechi MM, Foote KD, Lisanby SH, Ankudowich E, Chivukula S, Chang EF, Gunduz A, Hamani C, Feinsinger A, Kubu CS, Chiong W, Chandler JA, Carbunaru R, Cheeran B, Raike RS, Davis RA, Halpern CH, Vanegas-Arroyave N, Markovic D, Bick SK, McIntyre CC, Richardson RM, Dougherty DD, Kopell BH, Sweet JA, Goodman WK, Sheth SA, Pouratian N. Future directions in psychiatric neurosurgery: Proceedings of the 2022 American Society for Stereotactic and Functional Neurosurgery meeting on surgical neuromodulation for psychiatric disorders. Brain Stimul 2023; 16:867-878. [PMID: 37217075 PMCID: PMC11189296 DOI: 10.1016/j.brs.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVE Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward. A follow-up meeting in 2022 aimed to review the current state of the field and to identify critical barriers and milestones for progress. DESIGN The ASSFN convened a meeting on June 3, 2022 in Atlanta, Georgia and included leaders from the fields of neurology, neurosurgery, and psychiatry along with colleagues from industry, government, ethics, and law. The goal was to review the current state of the field, assess for advances or setbacks in the interim six years, and suggest a future path forward. The participants focused on five areas of interest: interdisciplinary engagement, regulatory pathways and trial design, disease biomarkers, ethics of psychiatric surgery, and resource allocation/prioritization. The proceedings are summarized here. CONCLUSION The field of surgical psychiatry has made significant progress since our last expert meeting. Although weakness and threats to the development of novel surgical therapies exist, the identified strengths and opportunities promise to move the field through methodically rigorous and biologically-based approaches. The experts agree that ethics, law, patient engagement, and multidisciplinary teams will be critical to any potential growth in this area.
Collapse
Affiliation(s)
- Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald A Malone
- Department of Psychiatry, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | - Maryam M Shanechi
- Departments of Electrical and Computer Engineering and Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
| | - Sarah H Lisanby
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Ankudowich
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA
| | - Srinivas Chivukula
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering and Fixel Institute for Neurological Disorders, University of Florida, Gainesville, FL, USA
| | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Ashley Feinsinger
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia S Kubu
- Department of Neurology, Cleveland Clinic and Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Winston Chiong
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer A Chandler
- Faculty of Law, University of Ottawa, Ottawa, ON, USA; Affiliate Investigator, Bruyère Research Institute, Ottawa, ON, USA
| | | | | | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Rachel A Davis
- Departments of Psychiatry and Neurosurgery, University of Colorado Anschutz, Aurora, CO, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Cpl Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | | | - Dejan Markovic
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cameron C McIntyre
- Departments of Biomedical Engineering and Neurosurgery, Duke University, Durham, NC, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Brian H Kopell
- Department of Neurosurgery, Center for Neuromodulation, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A Sweet
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wayne K Goodman
- Department of Psychiatry and Behavior Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Gao H, Xia Q, Zhang X, Chen Y, Yan J, Gao J, Zhang L, Zhang J, Wang K, Li C, Ju P, Zhu C. Intermediary roles of prospective memory and retrospective memory in the comorbidity of depression and pain. Gen Psychiatr 2023; 36:e100895. [PMID: 36844966 PMCID: PMC9950883 DOI: 10.1136/gpsych-2022-100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
Background Patients who suffer comorbidity of major depressive disorder (MDD) and chronic pain (CP) maintain a complex interplay between maladaptive prospective memory (PM) and retrospective memory (RM) with physical pain, and their complications are still unknown. Aims We aimed to focus on the full cognitive performance and memory complaints in patients with MDD and CP, patients with depression without CP, and control subjects, considering the possible influence of depressed affect and chronic pain severity. Methods According to the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders and the criteria given by the International Association of Pain, a total of 124 participants were included in this cross-sectional cohort study. Among them, 82 depressed inpatients and outpatients from Anhui Mental Health centre were divided into two groups: a comorbidity group(patients with MDD and CP) (n=40) and a depression group (patients with depression without CP) (n=42). Meanwhile, 42 healthy controls were screened from the hospital's physical examination centre from January 2019 to January 2022. The Hamilton Depression Rating Scale-24 (HAMD-24) and Beck Depression Inventory-II (BDI-II) were used to evaluate the severity of depression. The Pain Intensity Numerical Rating Scale (PI-NRS), Short-Form McGill Pain Questionnaire-2 Chinese version (SF-MPQ-2-CN), Montreal Cognitive Assessment-Basic Section (MoCA-BC), and Prospective and Retrospective Memory Questionnaire (PRMQ) were used to assess pain-related features and the global cognitive functioning of study participants. Results The impairments in PM and RM differed remarkably among the three groups (F=7.221, p<0.001; F=7.408, p<0.001) and were severe in the comorbidity group. Spearman correlation analysis revealed the PM and RM were positively correlated with continuous pain and neuropathic pain (r=0.431, p<0.001; r=0.253, p=0.022 and r=0.415, p<0.001; r=0.247, p=0.025), respectively. Regression analysis indicated a significant positive relationship between affective descriptors and total BDI-II score (β=0.594, t=6.600, p<0.001). Examining the mediator pathways revealed the indirect role of PM and RM in patients with comorbid MDD and CP. Conclusions Patients with comorbid MDD and CP presented more PM and RM impairments than patients with MDD without CP. PM and RM are possibly mediating factors that affect the aetiology of comorbid MDD and CP. Trial registration number chiCTR2000029917.
Collapse
Affiliation(s)
- Hua Gao
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Qingrong Xia
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Xulai Zhang
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Yuanyuan Chen
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Junwei Yan
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Jianliang Gao
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Loufeng Zhang
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Jie Zhang
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Keming Wang
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Chao Li
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| | - Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuizhen Zhu
- Anhui Clinical Research Center for Mental Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, China,Common Psychiatry Department, Hefei Fourth People’s Hospital, Hefei, Anhui, China
| |
Collapse
|
21
|
Tik M, Woletz M, Schuler AL, Vasileiadi M, Cash RFH, Zalesky A, Lamm C, Windischberger C. Acute TMS/fMRI response explains offline TMS network effects - An interleaved TMS-fMRI study. Neuroimage 2023; 267:119833. [PMID: 36572133 DOI: 10.1016/j.neuroimage.2022.119833] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an FDA-approved therapeutic option for treatment resistant depression. However, exact mechanisms-of-action are not fully understood and individual responses are variable. Moreover, although previously suggested, the exact network effects underlying TMS' efficacy are poorly understood as of today. Although, it is supposed that DLPFC stimulation indirectly modulates the sgACC, recent evidence is sparse. METHODS Here, we used concurrent interleaved TMS/fMRI and state-of-the-science purpose-designed MRI head coils to delineate networks and downstream regions activated by DLPFC-TMS. RESULTS We show that regions of increased acute BOLD signal activation during TMS resemble a resting-state brain network previously shown to be modulated by offline TMS. There was a topographical overlap in wide spread cortical and sub-cortical areas within this specific RSN#17 derived from the 1000 functional connectomes project. CONCLUSION These data imply a causal relation between DLPFC-TMS and activation of the ACC and a broader network that has been implicated in MDD. In the broader context of our recent work, these data imply a direct relation between initial changes in BOLD activity mediated by connectivity to the DLPFC target site, and later consolidation of connectivity between these regions. These insights advance our understanding of the mechanistic targets of DLPFC-TMS and may provide novel opportunities to characterize and optimize TMS therapy in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- M Tik
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - M Woletz
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - A-L Schuler
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - M Vasileiadi
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - R F H Cash
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - C Lamm
- Social Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| | - C Windischberger
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.
| |
Collapse
|
22
|
Adkinson JA, Tsolaki E, Sheth SA, Metzger BA, Robinson ME, Oswalt D, McIntyre CC, Mathura RK, Waters AC, Allawala AB, Noecker AM, Malekmohammadi M, Chiu K, Mustakos R, Goodman W, Borton D, Pouratian N, Bijanki KR. Imaging versus electrographic connectivity in human mood-related fronto-temporal networks. Brain Stimul 2022; 15:554-565. [PMID: 35292403 PMCID: PMC9232982 DOI: 10.1016/j.brs.2022.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The efficacy of psychiatric DBS is thought to be driven by the connectivity of stimulation targets with mood-relevant fronto-temporal networks, which is typically evaluated using diffusion-weighted tractography. OBJECTIVE Leverage intracranial electrophysiology recordings to better predict the circuit-wide effects of neuromodulation to white matter targets. We hypothesize strong convergence between tractography-predicted structural connectivity and stimulation-induced electrophysiological responses. METHODS Evoked potentials were elicited by single-pulse stimulation to two common DBS targets for treatment-resistant depression - the subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VCVS) - in two patients undergoing DBS with stereo-electroencephalographic (sEEG) monitoring. Evoked potentials were compared with predicted structural connectivity between DBS leads and sEEG contacts using probabilistic, patient-specific diffusion-weighted tractography. RESULTS Evoked potentials and tractography showed strong convergence in both patients in orbitofrontal, ventromedial prefrontal, and lateral prefrontal cortices for both SCC and VCVS stimulation targets. Low convergence was found in anterior cingulate (ACC), where tractography predicted structural connectivity from SCC targets but produced no evoked potentials during SCC stimulation. Further, tractography predicted no connectivity to ACC from VCVS targets, but VCVS stimulation produced robust evoked potentials. CONCLUSION The two connectivity methods showed significant convergence, but important differences emerged with respect to the ability of tractography to predict electrophysiological connectivity between SCC and VCVS to regions of the mood-related network. This multimodal approach raises intriguing implications for the use of tractography in surgical targeting and provides new data to enhance our understanding of the network-wide effects of neuromodulation.
Collapse
Affiliation(s)
- Joshua A Adkinson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, 300 Stein Plaza Suite 562, Los Angeles, CA, 90095, USA.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Brian A Metzger
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Meghan E Robinson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Allison C Waters
- Department of Psychiatry, Mount Sinai School of Medicine, 1000 10th Ave., New York, NY, 10019, USA.
| | - Anusha B Allawala
- School of Engineering, Brown University, 182 Hope St., Providence, RI, 02912, USA.
| | - Angela M Noecker
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | - Mahsa Malekmohammadi
- Boston Scientific Neuromodulation, 25155 Rye Canyon Loop, Valencia, CA, 91355, USA.
| | - Kevin Chiu
- Brainlab, Inc., 5 Westbrook Corporate Center, Suite 1000, Westchester IL, 60154, USA.
| | - Richard Mustakos
- Boston Scientific Neuromodulation, 25155 Rye Canyon Loop, Valencia, CA, 91355, USA.
| | - Wayne Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Blvd., Houston, TX, 77030, USA.
| | - David Borton
- School of Engineering, Brown University, 182 Hope St., Providence, RI, 02912, USA; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs, Providence, RI, 02912, USA.
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 8353 Harry Hines Blvd MC8855, Dallas, TX, 75239, USA.
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Yu Q, Guo X, Zhu Z, Feng C, Jiang H, Zheng Z, Zhang J, Zhu J, Wu H. White Matter Tracts Associated With Deep Brain Stimulation Targets in Major Depressive Disorder: A Systematic Review. Front Psychiatry 2022; 13:806916. [PMID: 35573379 PMCID: PMC9095936 DOI: 10.3389/fpsyt.2022.806916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as a last-resort treatment for major depressive disorder (MDD) and has shown potential antidepressant effects in multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and suboptimal, with 30-70% responder rates. The currently used DBS targets for MDD are not individualized, which may account for suboptimal effect. Objective We aim to review and summarize currently used DBS targets for MDD and relevant diffusion tensor imaging (DTI) studies. Methods A literature search of the currently used DBS targets for MDD, including clinical trials, case reports and anatomy, was performed. We also performed a literature search on DTI studies in MDD. Results A total of 95 studies are eligible for our review, including 51 DBS studies, and 44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter tracts with microstructural abnormalities reported in MDD. These DBS targets modulate different brain regions implicated in distinguished dysfunctional brain circuits, consistent with DTI findings in MDD. Conclusions In this review, we propose a taxonomy of DBS targets for MDD. These results imply that clinical characteristics and white matter tracts abnormalities may serve as valuable supplements in future personalized DBS for MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Sobstyl M, Kupryjaniuk A, Prokopienko M, Rylski M. Subcallosal Cingulate Cortex Deep Brain Stimulation for Treatment-Resistant Depression: A Systematic Review. Front Neurol 2022; 13:780481. [PMID: 35432155 PMCID: PMC9012165 DOI: 10.3389/fneur.2022.780481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Deep brain stimulation (DBS) is considered a relatively new and still experimental therapeutic modality for treatment-resistant depression (TRD). There is clinical evidence to suggest that stimulation of the subcallosal cingulate cortex (SCC) involved in the pathogenesis of TRD may exert an antidepressant effect. Aims To conduct a systematic review of current studies, such as randomized clinical trials (RCTs), open-label trials, and placebo-controlled trials, examining SCC DBS for TRD in human participants. Method A formal review of the academic literature was performed using the Medical Literature, Analysis, and Retrieval System Online (MEDLINE) and Cochrane Central Register of Controlled Trials (CENTRAL) databases. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Suitable studies were screened and assessed based on patient characteristics, clinical outcomes, adverse events related to DBS, and the stereotactic technique used to guide the implantation of DBS electrodes. Results The literature search identified 14 clinical studies that enrolled a total of 230 patients with TRD who underwent SCC DBS. The average duration of follow-up was 14 months (range 6–24 months). The response and remission rates at the last available follow-up visit ranged between 23–92% and 27–66.7%, respectively. Conclusion The current results of SCC DBS are limited by the relatively small number of patients treated worldwide. Nevertheless, studies to date suggest that SCC can be a promising and efficacious target for DBS, considering the high response and remission rates among patients with TRD. The adverse events of SCC DBS are usually transient and stimulation-induced.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kupryjaniuk
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
- *Correspondence: Anna Kupryjaniuk
| | - Marek Prokopienko
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
25
|
Wang Z, Luo L, Fan T, Zhang Y, Yi M, Liu N, Hu C. Effects of lateral habenula and ventral medial prefrontal cortex deep brain stimulation in rats. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.26599/jnr.2022.9040006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Heiden P, Pieczewski J, Andrade P. Women in Neuromodulation: Innovative Contributions to Stereotactic and Functional Neurosurgery. Front Hum Neurosci 2022; 15:756039. [PMID: 35126071 PMCID: PMC8811476 DOI: 10.3389/fnhum.2021.756039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Stereotactic neurosurgery emerged in the mid-20th century following the development of a stereotactic frame by Spiegel and Wycis. Historically women were underrepresented in clinical and academic neurosurgery. There is still a significant deficit of female scientists in this field. This article aims to demonstrate the career and scientific work of some of the most important women who contributed to the development of stereotactic and functional neurosurgery. Exceptional women from all over the world, represented in this review, assisted the evolution of modern stereotactic and functional neurosurgery as neurosurgeons, neuropathologists, neurologists, neurophysiologists and occupational therapists. Fortunately, we could conclude that in the last two decades the number of female researchers has increased significantly.
Collapse
Affiliation(s)
- Petra Heiden
- Department of Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
- *Correspondence: Petra Heiden
| | - Julia Pieczewski
- Department of Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
He W, Shao L, Wang H, Huang H, Zhang S, Li C, Zhang C, Yi W. Bilateral Anterior Capsulotomy for the Treatment of Refractory Somatic Symptom Disorder: A Case Report. Front Integr Neurosci 2022; 15:721833. [PMID: 35115912 PMCID: PMC8805728 DOI: 10.3389/fnint.2021.721833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Somatic symptom disorder (SSD) is a form of mental illness that causes one or more distressing somatic symptoms leading to a significant disruption to everyday life, characterized by excessive thoughts, feelings, or behaviors related to these symptoms. While SSD is characterized by significant discomfort in some parts of the body, these symptoms are not related to any known medical condition and therefore it cannot be diagnosed using any medical instrument examination. Currently available treatments for SSD, including drug therapy and psychotherapy (such as cognitive behavioral therapy), usually improve psychiatric symptoms, but the results are often disappointing. Furthermore, SSD is often comorbid with anxiety and depression (75.1 and 65.7%, respectively). Importantly, interventions targeting the anterior limb of the internal capsule (ALIC; e.g., deep brain stimulation and thermal ablation) can effectively treat various mental disorders, such as refractory obsessive-compulsive disorder, depression, and eating disorders, suggesting that it may also be effective for treating the depressive symptoms associated with SSD comorbidity. In this report, a 65-year-old woman diagnosed with SSD accompanied with depression and anxiety underwent bilateral anterior capsulotomy. The patient complained of nausea and vomiting, swelling of the hilum of the liver for 14 years, weakness of the limbs for 13 years, and burning pain in the esophagus for 1 year. Psychiatric and neuropsychological assessments were conducted to record the severity of the patients' symptoms and the progression of postoperative symptoms. The patient's somatization, depression, and anxiety symptoms as well as quality of life improved significantly and steadily; thus, anti-depressive and anti-anxiety medication were stopped. However, the patient developed new somatization symptoms, including dizziness, headache, and sternal pain, 10 months after the operation. Therefore, the patient resumed taking flupentixol and melitracen in order to control the new symptoms. This study shows that bilateral anterior capsulotomy appears to be a complementary treatment for refractory SSD with depressive and anxiety symptoms. Furthermore, postoperative use of anxiolytic and antidepressant medications may be useful for controlling future somatization symptoms.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenhui Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
- *Correspondence: Wei Yi
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Chencheng Zhang
| |
Collapse
|
29
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Elias GJB, Germann J, Loh A, Boutet A, Pancholi A, Beyn ME, Bhat V, Woodside DB, Giacobbe P, Kennedy SH, Lozano AM. Habenular Involvement in Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Front Psychiatry 2022; 13:810777. [PMID: 35185654 PMCID: PMC8854862 DOI: 10.3389/fpsyt.2022.810777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The habenula (Hb) is a small, evolutionarily conserved epithalamic structure implicated in functions such as reward and mood regulation. Prior imaging work suggests that Hb's structural and functional properties may relate to treatment response in depression and other mood disorders. We used multimodal MRI techniques to investigate the potential involvement of Hb in response to subcallosal cingulate area deep brain stimulation (SCC-DBS) for treatment-resistant mood disorders. Using an automated segmentation technique, we compared Hb volume at baseline and at a subsequent post-operative timepoint (4.4 ± 3.0 years after surgery) in a cohort of 32 patients who received SCC-DBS. Clinical response to treatment (≥50% decrease in HAMD-17 from baseline to 12 months post-operation) was significantly associated with longitudinal Hb volume change: responders tended to have increased Hb volume over time, while non-responders showed decreased Hb volume (t = 2.4, p = 0.021). We additionally used functional MRI (fMRI) in a subcohort of SCC-DBS patients (n = 12) to investigate immediate within-patient changes in Hb functional connectivity associated with SCC-DBS stimulation. Active DBS was significantly associated with increased Hb connectivity to several prefrontal and corticolimbic regions (TFCE-adjusted p Bonferroni < 0.0001), many of which have been previously implicated in the neurocircuitry of depression. Taken together, our results suggest that Hb may play an important role in the antidepressant effect of SCC-DBS.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Centre for Mental Health and Krembil Research Centre, University Health Network, Toronto, ON, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Elias GJB, Germann J, Boutet A, Loh A, Li B, Pancholi A, Beyn ME, Naheed A, Bennett N, Pinto J, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. 3 T MRI of rapid brain activity changes driven by subcallosal cingulate deep brain stimulation. Brain 2021; 145:2214-2226. [PMID: 34919630 DOI: 10.1093/brain/awab447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation targeting the subcallosal cingulate area (SCC-DBS), a hub with multiple axonal projections, has shown therapeutic potential for treatment-resistant mood disorders. While SCC-DBS drives long-term metabolic changes in corticolimbic circuits, the brain areas that are directly modulated by electrical stimulation of this region are not known. We used 3.0 Tesla functional MRI to map the topography of acute brain changes produced by stimulation in an initial cohort of twelve patients with fully implanted SCC-DBS devices. Four additional SCC-DBS patients were also scanned and employed as a validation cohort. Participants underwent resting state scans (n=78 acquisitions overall) during i) inactive DBS; ii) clinically optimal active DBS; iii) suboptimal active DBS. All scans were acquired within a single MRI session, each separated by a 5-minute washout period. Analysis of the amplitude of low frequency fluctuations (ALFF) in each sequence indicated that clinically optimal SCC-DBS reduced spontaneous brain activity in several areas, including bilateral dorsal anterior cingulate cortex (dACC), posterior cingulate cortex (PCC), precuneus, and left inferior parietal lobule (pBonferroni<0.0001). Stimulation-induced dACC signal reduction correlated with immediate within-session mood fluctuations, was greater at optimal versus suboptimal settings, and related to local cingulum bundle engagement. Moreover, linear modelling showed that immediate changes in dACC, PCC, and precuneus activity could predict individual long-term antidepressant improvement. A model derived from the primary cohort that incorporated ALFF changes in these three areas (along with pre-operative symptom severity) explained 55% of the variance in clinical improvement in that cohort. The same model also explained 93% of the variance in the out-of-sample validation cohort. Additionally all three brain areas exhibited significant changes in functional connectivity between active and inactive DBS states (pBonferroni<0.01). These results provide insight into the network-level mechanisms of SCC-DBS and point towards potential acute biomarkers of clinical response that could help to optimize and personalize this therapy.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Bryan Li
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Asma Naheed
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Nicole Bennett
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jessica Pinto
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Venkat Bhat
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - D Blake Woodside
- Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Krembil Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation. Transl Psychiatry 2021; 11:551. [PMID: 34728599 PMCID: PMC8563808 DOI: 10.1038/s41398-021-01669-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is a promising intervention for treatment-resistant depression (TRD). Despite the failure of a clinical trial, multiple case series have described encouraging results, especially with the introduction of improved surgical protocols. Recent evidence further suggests that tractography targeting and intraoperative exposure to stimulation enhances early antidepressant effects that further evolve with ongoing chronic DBS. Accelerating treatment gains is critical to the care of this at-risk population, and identification of intraoperative electrophysiological biomarkers of early antidepressant effects will help guide future treatment protocols. Eight patients underwent intraoperative electrophysiological recording when bilateral DBS leads were implanted in the SCC using a connectomic approach at the site previously shown to optimize 6-month treatment outcomes. A machine learning classification method was used to discriminate between intracranial local field potentials (LFPs) recorded at baseline (stimulation-naïve) and after the first exposure to SCC DBS during surgical procedures. Spectral inputs (theta, 4-8 Hz; alpha, 9-12 Hz; beta, 13-30 Hz) to the model were then evaluated for importance to classifier success and tested as predictors of the antidepressant response. A decline in depression scores by 45.6% was observed after 1 week and this early antidepressant response correlated with a decrease in SCC LFP beta power, which most contributed to classifier success. Intraoperative exposure to therapeutic stimulation may result in an acute decrease in symptoms of depression following SCC DBS surgery. The correlation of symptom improvement with an intraoperative reduction in SCC beta power suggests this electrophysiological finding as a biomarker for treatment optimization.
Collapse
|
33
|
Dandekar MP, Diaz AP, Rahman Z, Silva RH, Nahas Z, Aaronson S, Selvaraj S, Fenoy AJ, Sanches M, Soares JC, Riva-Posse P, Quevedo J. A narrative review on invasive brain stimulation for treatment-resistant depression. ACTA ACUST UNITED AC 2021; 44:317-330. [PMID: 34468549 PMCID: PMC9169472 DOI: 10.1590/1516-4446-2021-1874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
While most patients with depression respond to pharmacotherapy and psychotherapy, about one-third will present treatment resistance to these interventions. For patients with treatment-resistant depression (TRD), invasive neurostimulation therapies such as vagus nerve stimulation, deep brain stimulation, and epidural cortical stimulation may be considered. We performed a narrative review of the published literature to identify papers discussing clinical studies with invasive neurostimulation therapies for TRD. After a database search and title and abstract screening, relevant English-language articles were analyzed. Vagus nerve stimulation, approved by the U.S. Food and Drug Administration as a TRD treatment, may take several months to show therapeutic benefits, and the average response rate varies from 15.2-83%. Deep brain stimulation studies have shown encouraging results, including rapid response rates (> 30%), despite conflicting findings from randomized controlled trials. Several brain regions, such as the subcallosal-cingulate gyrus, nucleus accumbens, ventral capsule/ventral striatum, anterior limb of the internal capsule, medial-forebrain bundle, lateral habenula, inferior-thalamic peduncle, and the bed-nucleus of the stria terminalis have been identified as key targets for TRD management. Epidural cortical stimulation, an invasive intervention with few reported cases, showed positive results (40-60% response), although more extensive trials are needed to confirm its potential in patients with TRD.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ritele H Silva
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott Aaronson
- Clinical Research Programs, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Sudhakar Selvaraj
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Albert J Fenoy
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Deep Brain Stimulation Program, Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
34
|
Polosan M, Figee M. Electrical deep neuromodulation in psychiatry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:89-110. [PMID: 34446252 DOI: 10.1016/bs.irn.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Addressing treatment refractoriness in psychiatric diseases is an essential public health objective. The last two decades have seen an increasing interest for deep brain stimulation (DBS) of several brain targets. In this chapter, we have reviewed the main DBS clinical trials in psychiatric diseases, mainly obsessive compulsive disorders (OCD) and depression, but also emerging research in other psychiatric disorders. While its efficacy and safety are confirmed, DBS is still not considered as standard therapy in psychiatry. However, advances in neuroimaging research combined to behavioral and electrophysiological data uniquely provided by DBS studies improve knowledge on physiopathology in these brain diseases. This will help define the optimal brain targets according to specific phenotype dimensions. Revealing the mechanisms of action and effects of DBS will support that its impact goes beyond a loco-regional brain stimulation and confirms that electrical neuromodulation influences brain networks. Added to the progress in neuromodulation technology, these insights will hopefully facilitate a more widespread application of this promising treatment. Future development of a personalized multimodal assessment of underlying dysfunctional brain networks will open new circuit-specific treatment perspectives that may facilitate better patient outcomes.
Collapse
Affiliation(s)
- Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.
| | - Martijn Figee
- Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
35
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
36
|
Ashkan K, Mirza AB, Tambirajoo K, Furlanetti L. Deep brain stimulation in the management of paediatric neuropsychiatric conditions: Current evidence and future directions. Eur J Paediatr Neurol 2021; 33:146-158. [PMID: 33092983 DOI: 10.1016/j.ejpn.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Neurosurgery has provided an alternative option for patients with refractory psychiatric indications. Lesion procedures were the initial techniques used, but deep brain stimulation (DBS) has the advantage of relative reversibility and adjustability. This review sets out to delineate the current evidence for DBS use in psychiatric conditions, with an emphasis on the paediatric population, highlighting pitfalls and opportunities. METHODS A systematic review of the literature was conducted on studies reporting the use of DBS in the management of psychiatric disorders. The PRISMA guidelines were employed to structure the review of the literature. Data was discussed focusing on the indications for DBS management of psychiatric conditions in the paediatric age group. RESULTS A total of seventy-three full-text papers reported the use of DBS surgery for the management of psychiatric conditions matching the inclusion criteria. The main indications were Tourette Syndrome (GTS) (15 studies), Obsessive Compulsive Disorder (OCD) (20), Treatment Resistant Depression (TRD) (27), Eating Disorders (ED) (7) and Aggressive Behaviour and self-harm (AB) (4). Out of these, only 11 studies included patients in the paediatric age group (≤18 years-old). Among the paediatric patients, the indications for surgery included GTS, AB and ED. CONCLUSIONS The application of deep brain stimulation for psychiatric indications has progressed at a steady pace in the adult population and at a much slower pace in the paediatric population. Future studies in children should be done in a trial setting with strict and robust criteria. A move towards personalising DBS therapy with new stimulation paradigms will provide new frontiers and possibilities in this growing field.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| |
Collapse
|
37
|
Zhang H, Wang N, Yu L, Zhao M. Efficacy and feasibility of deep brain stimulation for patients with depression: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26044. [PMID: 34011116 PMCID: PMC8137027 DOI: 10.1097/md.0000000000026044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous meta-analyses have examined the clinical efficacy and acceptability of deep brain stimulation (DBS) compared with sham therapy or paired active therapy. However, the absence of head-to-head clinical trials with some treatment comparisons creates uncertainty for decision makers. Thus, to provide new evidence-based medical evidence for clinical treatment, we undertook a meta-analysis to assess the efficacy and safety of DBS in patients with depression based on high-quality randomized controlled studies. METHODS The protocol was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement guidelines. PubMed/Medline and EMBASE will be searched before May 2021 for all studies, using various combinations of the following free text and key terms: deep brain stimulation; depression; random. No language restrictions will be applied. The method of data extraction will follow the approach outlined by the Cochrane Handbook for Systematic Reviews of Interventions. Review Manager software 5.3 is used for the meta-analysis. The quality of randomized trials will be assessed by Cochrane risk of bias tool for randomized controlled trials. RESULTS The results of our review will be reported strictly following the PRISMA criteria and the review will add to the existing literature by showing compelling evidence and improved guidance in clinic settings. OSF REGISTRATION NUMBER 10.17605/OSF.IO/Q5B3S.
Collapse
Affiliation(s)
- Hongli Zhang
- Institute of Psychology
- Institute of Management, Weifang Medical University, Shandong, China
| | - Na Wang
- Institute of Psychology
- Institute of Management, Weifang Medical University, Shandong, China
| | - Liping Yu
- Institute of Psychology
- Institute of Management, Weifang Medical University, Shandong, China
| | | |
Collapse
|
38
|
Li H, Cui L, Li J, Liu Y, Chen Y. Comparative efficacy and acceptability of neuromodulation procedures in the treatment of treatment-resistant depression: a network meta-analysis of randomized controlled trials. J Affect Disord 2021; 287:115-124. [PMID: 33780827 DOI: 10.1016/j.jad.2021.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nearly half of the patients with depression experience suboptimal benefits from antidepressants. Neuromodulation therapies, a kind of technology that can regulate neuronal firing activity by electrical or magnetic stimulation, were introduced to improve this situation. However, the results from clinical trials have been inconsistent. METHODS We followed the extension of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to perform this network meta-analysis (NMA). The results were evaluated by relative risk (RR) for the response, remission, and discontinuation rates. RESULTS In total, 49 trials with 2,941 patients were included in this study. Bilateral theta burst stimulation (TBS, RR 5.00, 95% CI 1.11-22.44), priming transcranial magnetic stimulation (pTMS, RR 2.97, 95% CI 1.20-7.39), low-frequency right repetitive transcranial magnetic stimulation (TMS) (LFR-rTMS, RR 2.62, 95% CI 1.56-4.39), high-frequency left repetitive TMS (HFL-rTMS, RR 2.18, 95% CI 1.52-3.13), and bilateral repetitive TMS (BL-rTMS, RR 3.08, 95% CI 1.78-5.31) were demonstrated to have higher response rates than sham control. BL-rTMS (RR 3.12, 95% CI 1.06-9.09) was found to have a higher response rate than deep brain stimulation in this NMA. All measures had the non-inferiority acceptability than the sham-control. BL-rTMS was more acceptable than bitemporal ECT (BT-ECT, RR 0.18, 95% CI 0.03-0.89), while pTMS was more acceptable than BT-ECT (RR 0.08, 95% CI 0.01-0.55), HFL-rTMS (RR 0.34, 95% CI 0.12-0.93), and deep TMS (RR 0.15, 95% CI 0.02-0.96). CONCLUSION Besides electroconvulsive therapy (ECT), rTMS, priming TMS, and bilateral TBS proved effective for patients with treatment-resistant depression (TRD). BL-rTMS showed high efficacy and acceptability, and bilateral TBS had the potential to be the most efficacious neuromodulation measures.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Jinbiao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yueheng Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Yue Chen
- The eighth Hospital Affiliated, Sun Yat-sen University, Shenzhen, 518101, Guangdong, China
| |
Collapse
|
39
|
Schläpfer TE, Meyer-Lindenberg A, Synofzik M, Visser-Vandewalle V, Voges J, Coenen VA. Invasive Brain Stimulation in the Treatment of Psychiatric Illness. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:31-36. [PMID: 33759753 DOI: 10.3238/arztebl.m2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/02/2019] [Accepted: 09/14/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Drugs, psychotherapy, and other treatment modalities are effective for many patients with mental illness. Nonetheless, many patients do not achieve a total remission with the currently available interventions, and the recurrence rates are high. As part of the ongoing search for further treatment options for refractory disorders, there is renewed interest in focal neuromodulatory techniques, including invasive ones, and deep brain stimulation (DBS) in particular. METHODS In this review article, a group consisting of neurosurgeons, psychiatrists, and one practicing ethicist/neurologist summarizes the main aspects of the use of DBS to treat mental illness and offers recommendations on its indications and practical implementation. RESULTS The efficacy of DBS against mental illness has not been confirmed in the randomized, controlled trials (RCTs) that have been published to date. This may be because the follow-up times were too short. In contrast to the negative RCTs, case series have indeed shown a positive effect of DBS on severe depression, but this effect can only be seen several months after the operation. CONCLUSION DBS may be a therapeutic option for selected patients with otherwise intractable mental illness. Patients should only be treated in the setting of clinical trials. RCTs with longer follow-up times must be conducted in order to substantiate, if possible, the promising evidence that has been found in case series.
Collapse
Affiliation(s)
- Thomas E Schläpfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Freiburg; Division of Experimental Psychiatric Stimulation Techniques of the German Association for Psychiatry, Psychotherapy and Psychosomatics (DGPPN), Psychosomatik und Nervenheilkunde e. V. Berlin; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim Medical Faculty; Center of Neurology, The Hertie Institute for Clinical Brain Research, Clinic of Neurology at the University Hospital Tübingen; German Center of Neurodegenerative Diseases (DZNE), Tübingen; Clinic for Stereotaxy and Functional Neurosurgery, University Hospital Cologne; University Department of Stereotactic Neurosurgery, Universitätsklinikum Magdeburg; Medical Center-University of Freiburg, Department of Stereotactic and Functional Neurosurgery, Department of Neurosurgery
| | | | | | | | | | | |
Collapse
|
40
|
Ramasubbu R, Golding S, Williams K, Mackie A, MacQueen G, Kiss ZHT. Recruitment Challenges for Studies of Deep Brain Stimulation for Treatment-Resistant Depression. Neuropsychiatr Dis Treat 2021; 17:765-775. [PMID: 33731996 PMCID: PMC7956889 DOI: 10.2147/ndt.s299913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is currently an investigational treatment for treatment-resistant depression (TRD). There is a need for more DBS trials to strengthen existing evidence of its efficacy for both regulatory and clinical reasons. Recruitment for DBS trials remains challenging due to unproven efficacy in sham-controlled DBS trials, invasive nature of the intervention and stringent eligibility criteria in patient selection. Here, we examined the referral patterns and reasons for exclusion of subjects in our DBS trial. METHODS Data were collected from all patients who expressed interest in participating in a DBS study involving subcallosal cingulate region from 2014 to 2016. Referral sources were categorized as either self-referral or professional referral. Evaluation for eligibility was performed in three stages; initial contact, brief telephone assessment, and in-person psychiatric evaluation. The reasons for exclusion were documented. Descriptive and inferential statistics were used for analysis. RESULTS Of the 225 patients who contacted us initially, 22 (9.2%) underwent DBS surgery. Self-referral was higher than the referral from professionals (72% versus 28%, P<0.0001). However, the acceptance rate for surgery was higher among the professional referrals than from self-referrals (40% versus 15%, P=0.03). The common reasons for exclusion were self-withdrawal (38.4%), residing out of province or country (26.1%) and psychiatric/medical comorbidity (21.7%). CONCLUSION These findings provide insight into DBS candidacy for future TRD trials. It suggests a need for comprehensive recruitment strategies including active engagement of patients and professionals throughout trials, and effective referral communication with education to optimize recruitment for future DBS trials.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sandra Golding
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Kimberly Williams
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Aaron Mackie
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Zhang J, Zhou H, Yang J, Jia J, Niu L, Sun Z, Shi D, Meng L, Qiu W, Wang X, Zheng H, Wang G. Low-intensity pulsed ultrasound ameliorates depression-like behaviors in a rat model of chronic unpredictable stress. CNS Neurosci Ther 2020; 27:233-243. [PMID: 33112507 PMCID: PMC7816209 DOI: 10.1111/cns.13463] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction There is an unmet need for better nonpharmaceutical treatments for depression. Low‐intensity pulsed ultrasound (LIPUS) is a novel type of neuromodulation that could be helpful for depressed patients. Objective The goal of this study was to investigate the feasibility and potential mechanisms of LIPUS in the treatment of depression. Methods Chronic unpredictable stress (CUS) was used to generate rats with depression‐like features that were treated with four weeks of LIPUS stimulation of the ventromedial prefrontal cortex. Depression‐like behaviors were assessed with the sucrose preference, forced swim, and open field tests. BDNF/mTORC1 signaling was examined by Western blot to investigate this potential molecular mechanism. The safety of LIPUS was evaluated using hematoxylin‐eosin and Nissl staining. Results Four weeks of LIPUS stimulation significantly increased sucrose preference and reduced forced swim immobility time in CUS rats. LIPUS also partially reversed the molecular effects of CUS that included decreased levels of BDNF, phosphorylated tyrosine receptor kinase B (TrkB), extracellular signal‐regulated kinase (ERK), mammalian target of rapamycin complex 1 (mTORC1), and S6 kinase (S6K). Moreover, histological staining revealed no gross tissue damage. Conclusions Chronic LIPUS stimulation can effectively and safely improve depression‐like behaviors in CUS rats. The underlying mechanisms may be related to enhancement of BDNF/ERK/mTORC1 signaling pathways in the prefrontal cortex (PFC). LIPUS is a promising noninvasive neuromodulation tool that merits further study as a potential treatment for depression.
Collapse
Affiliation(s)
- Jinniu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Department of Physiology, Capital Medical University, Beijing, China
| | - Jun Jia
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaomin Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Department of Physiology, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Khairuddin S, Ngo FY, Lim WL, Aquili L, Khan NA, Fung ML, Chan YS, Temel Y, Lim LW. A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. J Clin Med 2020; 9:jcm9103260. [PMID: 33053848 PMCID: PMC7601903 DOI: 10.3390/jcm9103260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depression contributes significantly to the global disability burden. Since the first clinical study of deep brain stimulation (DBS), over 446 patients with depression have now undergone this neuromodulation therapy, and 29 animal studies have investigated the efficacy of subgenual cingulate DBS for depression. In this review, we aim to provide a comprehensive overview of the progress of DBS of the subcallosal cingulate in humans and the medial prefrontal cortex, its rodent homolog. For preclinical animal studies, we discuss the various antidepressant-like behaviors induced by medial prefrontal cortex DBS and examine the possible mechanisms including neuroplasticity-dependent/independent cellular and molecular changes. Interestingly, the response rate of subcallosal cingulate Deep brain stimulation marks a milestone in the treatment of depression. DBS achieved response and remission rates of 64–76% and 37–63%, respectively, from clinical studies monitoring patients from 6–24 months. Although some studies showed its stimulation efficacy was limited, it still holds great promise as a therapy for patients with treatment-resistant depression. Overall, further research is still needed, including more credible clinical research, preclinical mechanistic studies, precise selection of patients, and customized electrical stimulation paradigms.
Collapse
Affiliation(s)
- Sharafuddin Khairuddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Fung Yin Ngo
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Wei Ling Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Luca Aquili
- School of Psychological and Clinical Sciences, Charles Darwin University, NT0815 Darwin, Australia;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, UAE;
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, 6229ER Maastricht, The Netherlands;
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
43
|
Hitti FL, Yang AI, Cristancho MA, Baltuch GH. Deep Brain Stimulation Is Effective for Treatment-Resistant Depression: A Meta-Analysis and Meta-Regression. J Clin Med 2020; 9:jcm9092796. [PMID: 32872572 PMCID: PMC7564277 DOI: 10.3390/jcm9092796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability and a significant cause of mortality worldwide. Approximately 30–40% of patients fail to achieve clinical remission with available pharmacological treatments, a clinical course termed treatment-resistant depression (TRD). Numerous studies have investigated deep brain stimulation (DBS) as a therapy for TRD. We performed a meta-analysis to determine efficacy and a meta-regression to compare stimulation targets. We identified and screened 1397 studies. We included 125 citations in the qualitative review and considered 26 for quantitative analysis. Only blinded studies that compared active DBS to sham stimulation (k = 12) were included in the meta-analysis. The random-effects model supported the efficacy of DBS for TRD (standardized mean difference = −0.75, <0 favors active stimulation; p = 0.0001). The meta-regression did not demonstrate a statistically significant difference between stimulation targets (p = 0.45). While enthusiasm for DBS treatment of TRD has been tempered by recent randomized trials, this meta-analysis reveals a significant effect of DBS for the treatment of TRD. Additionally, the majority of trials have demonstrated the safety and efficacy of DBS for this indication. Further trials are required to determine the optimal stimulation parameters and patient populations for which DBS would be effective. Particular attention to factors including electrode placement technique, patient selection, and long-term follow-up is essential for future trial design.
Collapse
Affiliation(s)
- Frederick L. Hitti
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
- Correspondence: ; Tel.: +1-215-834-0444
| | - Andrew I. Yang
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
| | - Mario A. Cristancho
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA;
| | - Gordon H. Baltuch
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania, 800 Spruce St, Philadelphia, PA 19107, USA; (A.I.Y.); (G.H.B.)
| |
Collapse
|
44
|
Deep Brain Stimulation for Treatment-Resistant Depression: Towards a More Personalized Treatment Approach. J Clin Med 2020; 9:jcm9092729. [PMID: 32846987 PMCID: PMC7565181 DOI: 10.3390/jcm9092729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) affects approximately 4.4% of the world’s population. One third of MDD patients do not respond to routine psychotherapeutic and pharmacotherapeutic treatment and are said to suffer from treatment-resistant depression (TRD). Deep brain stimulation (DBS) is increasingly being investigated as a treatment modality for TRD. Although early case studies showed promising results of DBS, open-label trials and placebo-controlled studies have reported inconsistent outcomes. This has raised discussion about the correct interpretation of trial results as well as the criteria for patient selection, the choice of stimulation target, and the optimal stimulation parameters. In this narrative review, we summarize recent studies of the effectiveness of DBS in TRD and address the relation between the targeted brain structures and clinical outcomes. Elaborating upon that, we hypothesize that the effectiveness of DBS in TRD can be increased by a more personalized and symptom-based approach. This may be achieved by using resting-state connectivity mapping for neurophysiological subtyping of TRD, by using individualized tractography to help decisions about stimulation target and electrode placement, and by using a more detailed registration of symptomatic improvements during DBS, for instance by using ‘experience sampling’ methods.
Collapse
|
45
|
Deep Brain Stimulation for Major Depression and Obsessive-Compulsive Disorder—Discontinuation of Ongoing Stimulation. PSYCH 2020. [DOI: 10.3390/psych2030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) is currently under research for the treatment of psychiatric disorders, e.g., obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Since the application of DBS in psychiatry has been in use for about 20 years, it is necessary to evaluate its long-term use now. A main issue in the long-term treatment of DBS concerns the effects of a discontinuation of stimulation due to intended as well as unintended reasons. In this contribution, the literature describing discontinuation effects following DBS in OCD and TRD is reviewed. Furthermore, a patient is reported in depth who experienced an unintended discontinuation of supero-lateral medial forebrain bundle (slMFB) DBS for TRD. In this case, the battery was fully depleted without the patient noticing. DBS had led to a sustained response for seven years before discontinuation of stimulation for just several weeks caused a progressive worsening of depression. Altogether, the rapid occurrence of symptom worsening, the absence of a notification about the stimulation status and the difficulties to recapture antidepressant response represent important safety aspects. For a further understanding of the described effects, time courses until worsening of depression as well as biological mechanisms need to be investigated in double-blind controlled trials.
Collapse
|
46
|
Miocinovic S, Ostrem JL, Okun MS, Bullinger KL, Riva-Posse P, Gross RE, Buetefisch CM. Recommendations for Deep Brain Stimulation Device Management During a Pandemic. JOURNAL OF PARKINSONS DISEASE 2020; 10:903-910. [PMID: 32333552 PMCID: PMC7458514 DOI: 10.3233/jpd-202072] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most medical centers are postponing elective procedures and deferring non-urgent clinic visits to conserve hospital resources and prevent spread of COVID-19. The pandemic crisis presents some unique challenges for patients currently being treated with deep brain stimulation (DBS). Movement disorder (Parkinson’s disease, essential tremor, dystonia), neuropsychiatric disorder (obsessive compulsive disorder, Tourette syndrome, depression), and epilepsy patients can develop varying degrees of symptom worsening from interruption of therapy due to neurostimulator battery reaching end of life, device malfunction or infection. Urgent intervention to maintain or restore stimulation may be required for patients with Parkinson’s disease who can develop a rare but potentially life-threatening complication known as DBS-withdrawal syndrome. Similarly, patients with generalized dystonia can develop status dystonicus, patients with obsessive compulsive disorder can become suicidal, and epilepsy patients can experience potentially life-threatening worsening of seizures as a result of therapy cessation. DBS system infection can require urgent, and rarely emergent surgery. Elective interventions including new implantations and initial programming should be postponed. For patients with existing DBS systems, the battery status and electrical integrity interrogation can now be performed using patient programmers, and employed through telemedicine visits or by phone consultations. The decision for replacement of the implantable pulse generator to prevent interruption of DBS therapy should be made on a case-by-case basis taking into consideration battery status and a patient’s tolerance to potential therapy disruption. Scheduling of the procedures, however, depends heavily on the hospital system regulations and on triage procedures with respect to safety and resource utilization during the health crisis.
Collapse
Affiliation(s)
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gaineseville, FL, USA
| | | | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, Atlanta, GA, USA.,Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
47
|
La Torre D, Della Torre A, Chirchiglia D, Volpentesta G, Guzzi G, Lavano A. Deep brain stimulation for treatment-resistant depression: a safe and effective option. Expert Rev Neurother 2020; 20:449-457. [PMID: 32223454 DOI: 10.1080/14737175.2020.1749049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Major depressive disorder (MDD) is the leading cause of years lost to disability worldwide. Pharmacotherapy and psychotherapy are effective treatments in most depressive episodes; but, about 30% of MDD patients remain symptomatic, and relapse is a common event. Recently, deep brain stimulation (DBS) has emerged as a valid therapeutic option in treatment-resistant depression (TRD) patients.Areas covered: In this paper, the authors summarize the findings of studies focused on these pathophysiologic phenomena and specifically on the role of DBS as a therapeutic option in TRD patients. The authors simply reviewed RCTs, open-label studies, neurophysiological mechanisms of DBS in MDD, and the possible role of different targets. Finally, we suggest possible future options.Expert opinion: Depression is a systems-level disorder, involving several brain structures. Neuroimaging studies demonstrate multiple interconnected regions that modulate different neural networks. DBS can modulate different targets, and others are under investigation. Among these subcallosal cingulate gyrus (SCG), ventral capsule and ventral striatum (VC/VS) seems to be the most relevant targets. We believe that, in the next future, DBS for TRD might become a first-line of treatment, especially using directional leads, that may help us to improve therapeutic effects.
Collapse
Affiliation(s)
- Domenico La Torre
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| | - Attilio Della Torre
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| | - Domenico Chirchiglia
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| | - Giorgio Volpentesta
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| | - Giusy Guzzi
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| | - Angelo Lavano
- AOU "Mater Domini", Università degli Studi "Magna Greacia" di Catanzaro, Catanzaro, Italy
| |
Collapse
|
48
|
van der Wal JM, Bergfeld IO, Lok A, Mantione M, Figee M, Notten P, Beute G, Horst F, van den Munckhof P, Schuurman PR, Denys D. Long-term deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression. J Neurol Neurosurg Psychiatry 2020; 91:189-195. [PMID: 31801845 PMCID: PMC6996094 DOI: 10.1136/jnnp-2019-321758] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) reduces depressive symptoms in approximately 40%-60% of patients with treatment-resistant depression (TRD), but data on long-term efficacy and safety are scarce. Our objective was to assess the efficacy and safety of DBS targeted at the ventral anterior limb of the internal capsule (vALIC) in 25 patients with TRD during a 1-year, open-label, maintenance period, which followed a 1-year optimisation period. METHODS Depression severity was measured using the 17-item Hamilton Depression Rating Scale (HAM-D-17), Montgomery-Asberg Depression Rating Scale (MADRS) and self-reported Inventory of Depressive Symptomatology (IDS-SR). Primary outcomes were response rate (≥50% HAM-D-17 score reduction) after the maintenance phase, approximately 2 years after DBS surgery, and changes in depression scores and occurrence of adverse events during the maintenance phase. RESULTS Of 25 operated patients, 21 entered and 18 completed the maintenance phase. After the maintenance phase, eight patients were classified as responder (observed response rate: 44.4%; intention-to-treat: 32.0%). During the maintenance phase, HAM-D-17 and MADRS scores did not change, but the mean IDS-SR score decreased from 38.8 (95% CI 31.2 to 46.5) to 35.0 (95% CI 26.1 to 43.8) (p=0.008). Non-responders after optimisation did not improve during the maintenance phase. Four non-DBS-related serious adverse events occurred, including one suicide attempt. CONCLUSIONS vALIC DBS for TRD showed continued efficacy 2 years after surgery, with symptoms remaining stable after optimisation as rated by clinicians and with patient ratings improving. This supports DBS as a viable treatment option for patients with TRD. TRIAL REGISTRATION NUMBER NTR2118.
Collapse
Affiliation(s)
- Junus M van der Wal
- Psychiatry, Amsterdam UMC - Locatie AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Isidoor O Bergfeld
- Psychiatry, Amsterdam UMC - Locatie AMC, Amsterdam, Noord-Holland, The Netherlands .,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Anja Lok
- Psychiatry, Amsterdam UMC - Locatie AMC, Amsterdam, Noord-Holland, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Mariska Mantione
- Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Figee
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Notten
- Psychiatry, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, The Netherlands
| | - Guus Beute
- Neurosurgery, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, The Netherlands
| | - Ferdinand Horst
- Psychiatry, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, The Netherlands
| | | | - P Rick Schuurman
- Neurosurgery, Amsterdam UMC - Locatie AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Damiaan Denys
- Psychiatry, Amsterdam UMC - Locatie AMC, Amsterdam, Noord-Holland, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
49
|
Tao Q, Yang Y, Yu H, Fan L, Luan S, Zhang L, Zhao H, Lv L, Jiang T, Song X. Anatomical Connectivity-Based Strategy for Targeting Transcranial Magnetic Stimulation as Antidepressant Therapy. Front Psychiatry 2020; 11:236. [PMID: 32308632 PMCID: PMC7145890 DOI: 10.3389/fpsyt.2020.00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Abnormal activity of the subgenual anterior cingulate cortex (sACC) is implicated in depression, suggesting the sACC as a potentially effective target for therapeutic modulation in cases resistant to conventional treatments (treatment-resistant depression, TRD). We hypothesized that areas in the prefrontal cortex (PFC) with direct fiber connections to the sACC may be particularly effective sites for treatment using transcranial magnetic stimulation (TMS). The aim of this study was to identify PFC sites most strongly connected to the sACC. METHODS Two neuroimaging data sets were used to construct anatomic and functional connectivity maps using sACC as the seed region. Data set 1 included magnetic resonance (MR) images from 20 healthy controls and Data set 2 included MR images from 15 TRD patients and 15 additional healthy controls. PFC voxels with maximum values in the mean anatomic connection probability maps were identified as optimal sites for TMS. RESULTS Both right and left PFC contained sites strongly connected to the sACC, but the coordinates (in Montreal Neurological Institute space) of peak anatomic connectivity differed slightly between hemispheres. The left PFC site connected directly to the sACC both anatomically and functionally, while the right PFC site was functionally connected to the posterior cingulate cortex (PCC). CONCLUSIONS Both left and right PFC are functionally connected to regions implicated in depression, the sACC and PCC, respectively. These bilateral PFC sites may be effective TMS targets to treat TRD.
Collapse
Affiliation(s)
- Qi Tao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.,Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyan Yu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuxin Luan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Jilin, China.,Department of Psychiatry, The First Bethune Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Jilin, China.,Department of Psychiatry, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Jilin, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
|