1
|
Han LKM, Dehestani N, Suo C, Daglas-Georgiou R, Hasty M, Kader L, Murphy BP, Pantelis C, Yücel M, Berk M, Schmaal L. Longitudinal brain age in first-episode mania youth treated with lithium or quetiapine. Eur Neuropsychopharmacol 2025; 95:40-48. [PMID: 40222151 DOI: 10.1016/j.euroneuro.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
It is unclear if lithium and quetiapine have neuroprotective effects, especially in early stages of bipolar and schizoaffective disorders. Here, an age-related multivariate brain structural measure (i.e., brain-PAD) at baseline and changes in response to treatment after a first-episode mania (FEM) were examined. FEM participants were randomized to lithium (n=21) or quetiapine (n=18) monotherapy. T1-weighted scans were acquired at baseline, 3-months (FEM participants only) and 12-months. Brain age predictions for healthy controls (n=29) and young people with bipolar or schizoaffective disorder (15-25 years) were derived using a deep learning model trained on one of the largest datasets (N=53,542) to date. Notably, a higher brain-PAD value (predicted brain age - age) signifies an older-appearing brain. Baseline brain-PAD was higher in young people with FEM compared to controls (+1.70 year, p=0.04; Cohen's d=0.53 [SE=0.25], CI 95% [0.04 to 1.01]). However, no significant effects of time or treatment group, nor an interaction between the two, were observed throughout the course of the study. Baseline brain-PAD did not predict any change in symptomatic, quality of life or functional outcome scores over 12 months. In young individuals with FEM, baseline findings show their brains appeared older than controls. However, brain-PAD remained stable over time across treatment groups and neither baseline values nor treatment predicted 12-month outcomes. A longer follow-up with a larger sample is warranted to determine if treatment effects emerge later in bipolar and schizoaffective disorders. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry - ACTRN12607000639426.
Collapse
Affiliation(s)
- Laura K M Han
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia.
| | - Niousha Dehestani
- Deakin University, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Science and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Rothanthi Daglas-Georgiou
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia
| | | | - Linda Kader
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia
| | - Brendan P Murphy
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Murat Yücel
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, P.O. Box 281, Geelong, 3220, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia
| |
Collapse
|
2
|
Chen C, Liu Y, Sun Y, Jiang W, Yuan Y, Qing Z. Abnormal structural covariance network in major depressive disorder: Evidence from the REST-meta-MDD project. Neuroimage Clin 2025; 46:103794. [PMID: 40328096 DOI: 10.1016/j.nicl.2025.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common mental illness associated with brain morphological abnormalities. Although extensive studies have examined gray matter volume (GMV) changes in MDD, inconsistencies persist in reported findings. In the current study, we employed source-based morphometry (SBM) and structural covariance network (SCN) analyses to a large multi-center sample from the REST-meta-MDD database, aiming to characterize robust results of structural abnormalities in MDD. METHODS We analyzed 798 MDD patients and 974 healthy controls (HCs) from the REST-meta-MDD consortium. Voxel-based morphometry was applied to generate GMV maps. SBM was used to adaptively parcellate brain into different components, and SCN was constructed based on SBM components. Volume scores in each component and SCNs between the components were both compared between MDD and HC groups, as well as between first-episode drug-naive (FEDN) and recurrent MDD subgroups. RESULTS SBM identified 20 stable components. Three components encompassing the middle temporal gyrus, middle orbitofrontal gyrus and superior frontal gyrus exhibited volumetric differences between the MDD and HC groups. Volume differences were observed in the cingulate cortex and medial frontal gyrus between the FEDN and recurrent groups. SCN analysis revealed 9 aberrant pairs in MDD vs. HCs, and 7 pairs in FEDN vs. recurrent groups. All aberrant component pairs in the SCN implicated the prefrontal cortex. CONCLUSIONS These findings demonstrated brain structural deficits in MDD, and highlighted the prefrontal cortex as a central hub of SCN alterations. Our findings advance the understanding of MDD's neural mechanisms and suggest directions for diagnostic research.
Collapse
Affiliation(s)
- Changmin Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuhan Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Joint Research Center for Biomedical Engineering, Southeast University-University of Birmingham, Nanjing 210096, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing 210009, China
| | - Zhao Qing
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Shing-Tung Yau Center, Southeast University, Nanjing 210096, China; Joint Research Center for Biomedical Engineering, Southeast University-University of Birmingham, Nanjing 210096, China.
| |
Collapse
|
3
|
Tan Y, Wang H, Du H, Zhou Y, Li M, He L. Altered cerebellar subregion functional connectivity and structure in patients with pediatric bipolar depression. Brain Imaging Behav 2025:10.1007/s11682-025-00997-9. [PMID: 40117108 DOI: 10.1007/s11682-025-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
To explore the structural and functional changes of Cerebellar Subregion in patients with pediatric bipolar disorder (PBD) patients and its clinical significance by using multimodal magnetic resonance imaging, so as to further explore the specific role of the cerebellum in PBD. This study included 48 pediatric patients with bipolar disorder (PBD) in the depressive phase from the outpatient clinic of the Department of Psychosomatic Medicine of the First Affiliated Hospital of Nanchang University. 22 healthy controls (HCs) matched for gender, age, handedness and education level were chosen from the community as the control group. All subjects underwent 3.0T resting-state functional magnetic resonance imaging (rs-fMRI) scans and completed clinical scales, including the Hamilton Depression Scale (HAMD) and Young Mania Rating Scale (YMRS). The cerebellum was categorized into 34 distinct subregions (R17, L17) based on SUIT and designated as seed points to perform whole-brain functional connectivity (FC). Group differences in categorical variables were assessed using the chi-square test, while continuous variables were compared employing the two-sample t-test. Correlations between FC and clinical parameters were analyzed for differential brain intervals. Compared with HCs, PBD patients in the depressive phase showed reduced FC between the left cerebellar lobules I-IV and the occipital inferior lobe (Occipital_Inf_L), cerebellar vermis VIIIa, and VIIIb; decreased FC between cerebellar cerebellar vermis VI and the frontal inferior orbital gyrus (Frontal_Inf_Orb_L), as well as the right cerebellar Crus 1; reduced FC between the left cerebellar Crus I and the dentate nucleus; decreased FC between cerebellar vermis VIIIa and the left superior frontal gyrus; reduced FC between the right cerebellar lobule IX and the right lingual gyrus; lowered FC between the left dentate and the dorsolateral prefrontal cortex, and the left lingual gyrus; FC between the left fastigial nucleus and the right cerebellar X decreased. Depressive phase of PBD patients exhibit altered functional connectivity within various subregions of the cerebellum, suggesting that the cerebellum is involved in central neural reorganization in PBD, which may be instructive for the understanding of central mechanisms and its future diagnostic and therapeutic target development.
Collapse
Affiliation(s)
- Yongming Tan
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging of Jiangxi Province, Nanchang, 330006, China
| | - Hao Wang
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging of Jiangxi Province, Nanchang, 330006, China
| | - Huifang Du
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging of Jiangxi Province, Nanchang, 330006, China
| | - Yongjie Zhou
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, 330006, China
| | - Mengqian Li
- Department of Psychiatry, First Affiliated Hospital, Jiangxi Medical College, Nanchang, 330006, China
| | - Laichang He
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Clinical Research Center for Medical Imaging of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
4
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Sun K, Chen G, Liu C, Chu Z, Huang L, Li Z, Zhong S, Ye X, Zhang Y, Jia Y, Pan J, Zhou G, Liu Z, Yu C, Wang Y. A novel MSN-II feature extracted from T1-weighted MRI for discriminating between BD patients and MDD patients. J Affect Disord 2025; 371:36-44. [PMID: 39557301 DOI: 10.1016/j.jad.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Differentiating between patients with bipolar disorder (BD) and major depressive disorder (MDD) is clinically challenging. This study aimed to explore the potential of radiomic textural features for discriminating BD and MDD. METHODS A total 253 subjects (114 patients with BD, 139 patients with MDD) with T1-weighted MRI data were recruited. Radiomics features and gray matter volume (GMV) features were extracted from each brain region. A novel high-level MSN_II feature method based on radiomic features was proposed. And a total of 21 MSN features (5 MSN_I and 16 MSN_II) based on different combinations of the 5 types of radiomic textural feature were calculated. Classification models were constructed using various combinations of MSNs or GMV, and their performance and stability was evaluated through 2000 repeated experiments. RESULTS The model built with combined features (GMV and GMV + MSN_II_GLCM_GLSZM_NGTDM) showed the best classification performance (AUC = 0.896±0.058, ACC = 0.831±0.064) in the validation cohort. After MANOVA analysis and FDR correlation, the MSN_II_GLCM_GLSZM_NGTDM values in 4 regions (right rectus gyrus, right temporal pole: middle temporal gyrus, Vermis3 and Vermis10) showed significant difference between BD and MDD. LIMITATION The main limitation of this study is that the data is derived from a single center without an external independent test set. CONCLUSIONS Incorporating the high-level MSN_II based on radiomics features can improve the classification performance compared to models solely relying on GMV features alone. This result implied the potential application of the proposed high level MSN method and radiomics textural features on the MDD and BD clinical studies.
Collapse
Affiliation(s)
- Kai Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunchen Liu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihan Chu
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhou Li
- College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoying Ye
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingli Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guifei Zhou
- School of Information Science and Technology, Yunnan Normal University, Kunming, China.
| | - Zhenyu Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China.
| | - Changbin Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Wu B, Zhang X, Xie H, Zhang B, Ling Y, Gan R, Qiu L, Roberts N, Jia Z, Gong Q. Research Review: Shared and distinct structural and functional brain alterations in adolescents with major depressive disorder' - a multimodal meta-analysis. J Child Psychol Psychiatry 2024. [PMID: 39727198 DOI: 10.1111/jcpp.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Neuroimaging studies have identified brain structural and functional alterations in adolescents with major depressive disorder (MDD); however, the results are inconsistent, and whether patients exhibit spatially convergent structural and functional brain abnormalities remains unclear. METHODS We conducted voxel-wise meta-analysis of voxel-based morphometry (VBM) and resting-state functional studies, respectively, to identify regional gray matter volume (GMV) and brain activity alterations in adolescent MDD patients. Multimodal analysis was performed to examine the overlap of regional GMV and brain activity alterations. Meta-regression analysis was conducted to evaluate the potential effects of clinical variables. RESULTS Ten whole-brain VBM studies (403 patients and 319 controls) and 14 resting-state functional studies (510 patients and 474 controls) were included. Adolescent MDD patients showed conjoint structural and functional alterations in the left medial/dorsolateral prefrontal cortex, lateral temporal cortex and sensorimotor regions, and left insula. Adolescent MDD patients showed structural-specific abnormalities in the subcortical and prefrontal-limbic regions and functional-specific abnormalities in the right insula, right superior occipital gyrus, left inferior frontal gyrus and left precuneus. Meta-regression analyses revealed that the mean age of adolescents with MDD was positively associated with GMV in the right superior temporal gyrus and negatively associated with brain activity in the right insula, and the symptom severity of adolescents with MDD was positively associated with brain activity in the right superior occipital gyrus. CONCLUSIONS This meta-analysis identified complicated patterns of conjoint and dissociated brain alterations in adolescent MDD patients, which may advance our understanding of the neurobiology of adolescent MDD.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongsheng Xie
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Baoshuai Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yanxin Ling
- Medical Imaging Center, The Second People's Hospital of Yibin, Yibin, China
| | - Ruoqiu Gan
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Medical Imaging Center, The Second People's Hospital of Yibin, Yibin, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| |
Collapse
|
7
|
Yu ZH, Yu RQ, Wang XY, Ren WY, Zhang XQ, Wu W, Li X, Dai LQ, Lv YL. Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents. World J Psychiatry 2024; 14:1696-1707. [PMID: 39564181 PMCID: PMC11572682 DOI: 10.5498/wjp.v14.i11.1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder (MDD). However, few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity (FC). AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents. METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study. Using resting-state functional magnetic resonance imaging, the FC was compared between the adolescents with MDD and the healthy controls, with the bilateral amygdala serving as the seed point, followed by statistical analysis of the results. The support vector machine (SVM) method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD. RESULTS Compared to the controls and using the bilateral amygdala as the region of interest, patients with MDD showed significantly lower FC values in the left inferior temporal gyrus, bilateral calcarine, right lingual gyrus, and left superior occipital gyrus. However, there was an increase in the FC value in Vermis-10. The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls, achieving a diagnostic accuracy of 83.91%, sensitivity of 79.55%, specificity of 88.37%, and an area under the curve of 67.65%. CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.
Collapse
Affiliation(s)
- Zhi-Hui Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ren-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xing-Yu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yu Ren
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao-Qin Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin-Qi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ya-Lan Lv
- School of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Gao W, Chen Y, Cui D, Zhu C, Jiao Q, Su L, Lu S, Yang R. Alterations of subcortical structure volume in pediatric bipolar disorder patients with manic or depressive first-episode. BMC Psychiatry 2024; 24:762. [PMID: 39487398 PMCID: PMC11531125 DOI: 10.1186/s12888-024-06208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Bipolar disorder may begin as depression or mania, which can affect the treatment and prognosis. The physiological and pathological differences among pediatric bipolar disorder (PBD) patients with different onset symptoms are not clear. The aims of the present study were to investigate subcortical structural alterations in PBD patients with first-episode depressive (PBD-FED) and first-episode manic (PBD-FEM). METHODS A total of 59 individuals including 28 PBD-FED, 13 PBD-FEM, and 18 healthy controls (HCs) underwent high-resolution structural magnetic resonance scans. FreeSurfer 7.2 was used to detect changes in subcortical volumes. Simultaneously, thalamic, hippocampal, and amygdala subregion volumes were compared between the three groups. RESULTS Analysis of covariance controlling for age, sex, education, and estimated intracranial volume shows third and fourth ventricle enlargement in patients with PBD. Compared with the PBD-FED and HCs, the PBD-FEM group had reduced gray matter volume in the left thalamus, bilateral hippocampus, and right amygdala. Subsequent subregion analyses showed right cortico-amygdaloid transient, bilateral accessory-basal nucleus, left hippocampal tail, right hippocampal head, and body volume reduction in the PBD-FEM group. CONCLUSIONS The present findings provided evidence of decreased subcortical structure in PBD-FEM patients, which might present its trait feature.
Collapse
Affiliation(s)
- Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China
| | - Yue Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Ce Zhu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Psychiatry, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Linyan Su
- Mental Health Institute, Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital of Central South University, National Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
9
|
Zhang C, Xu C, Yan H, Liang J, Li X, Tang C, Yu Y, Xie G, Guo W. Correlations between alterations in global brain functional connectivity in patients with major depressive disorder and their genetic characteristics. World J Biol Psychiatry 2024; 25:560-570. [PMID: 39412289 DOI: 10.1080/15622975.2024.2412651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
This study aims to elucidate the neuroimaging changes associated with major depressive disorder (MDD) and their relationship with genetic characteristics. We conducted a global-brain functional connectivity (GFC) and genetic-neuroimaging correlation analysis on 42 MDD patients and 42 healthy controls (HCs), exploring the correlation between GFC abnormalities and clinical variables. Results showed that compared to HCs, MDD patients had significantly decreased GFC values in the bilateral posterior cingulate cortex/precuneus and increased GFC values in the left and right cerebellum Crus I/II. Additionally, a negative correlation was observed between the GFC values of the left cerebellum Crus I/II and subjective support scores, as well as social support revalued scale total scores. We identified genes associated with GFC changes in MDD, which are enriched in biological processes such as synaptic transmission and ion transport. Our findings indicate the presence of abnormal GFC values in severe depression, complementing the pathological research on the condition. Furthermore, this study provides preliminary evidence for the correlation between social support levels and brain functional connectivity, offering insights into the potential association between GFC changes and gene expression in MDD patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Yang Yu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Koyama Y, Tiemeier H, Huang P, Chan SY, Sudo M, Kyeong Y, Meaney M, Setoh P, Tan AP. Harsh parenting, amygdala functional connectivity changes across childhood, and behavioral problems. Psychol Med 2024; 54:1-12. [PMID: 39479759 PMCID: PMC11578908 DOI: 10.1017/s003329172400196x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Harsh parenting in early childhood is related to offspring's adverse behavioral outcomes. Due to the scarcity of longitudinal neuroimaging data, few studies have explored the neurobiological underpinnings of this association, focusing on within-person variability. This study examined the temporal associations among harsh parenting, later behavioral problems, and the developmental trajectories of amygdala volume and amygdala resting-state functional connectivity (RSFC) profiles, using longitudinal neuroimaging data. METHODS The study was embedded in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort. T1-weighted (296 children, 642 scans) and resting-state functional scans (256 children, 509 scans) were collected at ages 4.5, 6, 7.5, and 10.5 years. Amygdala volume and RSFC between the amygdala and six brain regions that have leading roles in emotional regulation were extracted. Harsh parenting at 4.5 years and child behavioral problems at 10.5 years were assessed via parent-report questionnaires. Linear regression and linear mixed models were applied. RESULTS Harsh parenting was associated with more severe externalizing problems in girls (β = 0.24, 95% CI 0.08-0.40) but not boys (pint = 0.07). In the overall sample, harsh parenting was associated with the developmental trajectories of amygdala-ACC, amygdala-OFC, and amygdala-DLPFC RSFC. In addition, the developmental trajectory of amygdala-ACC RSFC mediated the harsh parenting-externalizing problems association in girls (indirect effect = 0.06, 95% CI 0.01-0.14). CONCLUSIONS Harsh parenting in early childhood was associated with amygdala neurocircuitry development and behavioral problems. The developmental trajectory of amygdala-ACC RSFC is a potential neural mechanism linking harsh parenting and externalizing problems in girls.
Collapse
Affiliation(s)
- Yuna Koyama
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
- Department of Diagnostic Imaging, National University Hospital Singapore, Singapore, Singapore
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, MA, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, MA, USA
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pei Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mioko Sudo
- Hitotsubashi Institute for Advanced Study, Hitotsubashi University, Tokyo, Japan
| | - Yena Kyeong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Michael Meaney
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Psychiatry, Douglas Mental Health University Institute of McGill University, Montreal, Canada
| | - Peipei Setoh
- Psychology Division, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Hospital Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Chen H, Liu P, Chen X, Liu J, Tang H, Tian Y, Wang X, Lu F, Zhou J. The mediation role of gray matter volume in the relationship between childhood maltreatment and psychological resilience in adolescents with first-episode major depressive disorder. Transl Psychiatry 2024; 14:452. [PMID: 39448606 PMCID: PMC11502710 DOI: 10.1038/s41398-024-03169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Previous studies have revealed morphologic alterations in patients with major depressive disorder (MDD) with experiences of childhood trauma. However, the underlying neural mechanisms remain largely unknown. This study aims to explore the brain structural changes and their possible mediation role in the relationship between childhood maltreatment and psychological resilience in drug-naïve adolescents with first-episode MDD. A total of 57 adolescents with first-episode MDD and 36 healthy controls (HCs) completed the T1-weighted magnetic resonance imaging scan. The adverse childhood experiences and current psychological resilience were assessed using the Childhood Trauma Questionnaire-Short Form and the Connor Davidson Resilience Scale, respectively. The voxel-based morphometry approach was applied to examine changes in the gray matter volume (GMV). Compared with the HCs, adolescents with MDD had significantly reduced GMV volumes in the left fusiform gyrus, right orbitofrontal gyrus, right superior temporal gyrus, right calcarine cortex, right middle frontal gyrus, left angular gyrus, right precuneus, right posterior cingulate gyrus, and right posterior central gyrus, as well as significantly increased GMV volumes in the left lenticular putamen and right lenticular pallidum. The GMV of the right calcarine cortex was found to be negatively correlated with the severity of emotional abuse and positively correlated with the level of psychological resilience. Moreover, the GMV of the right calcarine cortex might partially mediate the relationship between childhood maltreatment and psychological resilience. The present study provided further evidence for structural impairments in adolescents with MDD. Our findings also confirmed the important role of depression-related GMV changes in childhood growth experiences and psychological resilience characteristics during adolescent brain maturation.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Xu Y, Cheng X, Li Y, Shen H, Wan Y, Ping L, Yu H, Cheng Y, Xu X, Cui J, Zhou C. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2024; 23:170. [PMID: 39344242 DOI: 10.31083/j.jin2309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Identifying white matter (WM) microstructural similarities and differences between major depressive disorder (MDD) and bipolar disorder (BD) is an important way to understand the potential neuropathological mechanism in emotional disorders. Numerous diffusion tensor imaging (DTI) studies over recent decades have confirmed the presence of WM anomalies in these two affective disorders, but the results were inconsistent. This study aimed to determine the statistical consistency of DTI findings for BD and MDD by using the coordinate-based meta-analysis (CBMA) approach. METHODS We performed a systematic search of tract-based spatial statistics (TBSS) studies comparing MDD or BD with healthy controls (HC) as of June 30, 2024. The seed-based d-mapping (SDM) was applied to investigate fractional anisotropy (FA) changes. Meta-regression was then used to analyze the potential correlations between demographics and neuroimaging alterations. RESULTS Regional FA reductions in the body of the corpus callosum (CC) were identified in both of these two diseases. Besides, MDD patients also exhibited decreased FA in the genu and splenium of the CC, as well as the left anterior thalamic projections (ATP), while BD patients showed FA reduction in the left median network, and cingulum in addition to the CC. CONCLUSIONS The results highlighted that altered integrity in the body of CC served as the shared basis of MDD and BD, and distinct microstructural WM abnormalities also existed, which might induce the various clinical manifestations of these two affective disorders. The study was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42022301929.
Collapse
Affiliation(s)
- Yinghong Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Ying Li
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, 361012 Xiamen, Fujian, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
13
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
14
|
Hu X, Cheng B, Tang Y, Long T, Huang Y, Li P, Song Y, Song X, Li K, Yin Y, Chen X. Gray matter volume and corresponding covariance connectivity are biomarkers for major depressive disorder. Brain Res 2024; 1837:148986. [PMID: 38714227 DOI: 10.1016/j.brainres.2024.148986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
The major depressive disorder (MDD) is a common and severe mental disorder. To identify a reliable biomarker for MDD is important for early diagnosis and prevention. Given easy access and high reproducibility, the structural magnetic resonance imaging (sMRI) is an ideal method to identify the biomarker for depression. In this study, sMRI data of first episode, treatment-naïve 66 MDD patients and 54 sex-, age-, and education-matched healthy controls (HC) were used to identify the differences in gray matter volume (GMV), group-level, individual-level covariance connections. Finally, the abnormal GMV and individual covariance connections were applied to classify MDD from HC. MDD patients showed higher GMV in middle occipital gyrus (MOG) and precuneus (PCun), and higher structural covariance connections between MOG and PCun. In addition, the Allen Human Brain Atlas (AHBA) was applied and revealed the genetic basis for the changes of gray matter volume. Importantly, we reported that GMV in MOG, PCun and structural covariance connectivity between MOG and PCun are able to discriminate MDD from HC. Our results revealed structural underpinnings for MDD, which may contribute towards early discriminating for depression.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuying Tang
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Long
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Song
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiyang Song
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yijie Yin
- School of Sociality and Psychology, Southwest Minzu University, Chengdu 610041, China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Wu B, Zhang X, Xie H, Wang X, Gong Q, Jia Z. Disrupted Structural Brain Networks and Structural-Functional Decoupling in First-Episode Drug-Naïve Adolescent Major Depressive Disorder. J Adolesc Health 2024; 74:941-949. [PMID: 38416102 DOI: 10.1016/j.jadohealth.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Major depressive disorder (MDD) tends to emerge during adolescence, but the neurobiology of adolescent MDD is still poorly understood. This study aimed to explore the topological organization of white matter structural networks and the relationship between structural and functional connectivity in adolescent MDD. METHODS Structural and functional magnetic resonance imaging data were acquired from 94 first-episode drug-naïve adolescent MDD patients and 78 healthy adolescents. Whole brain structural and functional brain networks were constructed for each subject. Then, the topological organization of structural brain networks and the coupling strength between structural and functional connectivity were analyzed. RESULTS Compared with controls, adolescent MDD patients showed disrupted small-world, rich-club, and modular organizations. Nodal centralities in the medial part of bilateral superior frontal gyrus, bilateral hippocampus, right superior occipital gyrus, right angular gyrus, bilateral precuneus, left caudate nucleus, bilateral putamen, right superior temporal gyrus, and right temporal pole part of superior temporal gyrus were significantly lower in adolescent MDD patients compared with controls. The coupling strength between structural and functional connectivity was significantly lower in adolescent MDD patients compared with controls. DISCUSSION Our findings suggest widespread disruption of structural brain networks and structural-functional decoupling in adolescent MDD, potentially leading to reduced network communication capacity.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongsheng Xie
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiuli Wang
- Department of Clinical Psychology, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Departmentof Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Singh MK, Gorelik AJ, Stave C, Gotlib IH. Genetics, epigenetics, and neurobiology of childhood-onset depression: an umbrella review. Mol Psychiatry 2024; 29:553-565. [PMID: 38102485 DOI: 10.1038/s41380-023-02347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Depression is a serious and persistent psychiatric disorder that commonly first manifests during childhood. Depression that starts in childhood is increasing in frequency, likely due both to evolutionary trends and to increased recognition of the disorder. In this umbrella review, we systematically searched the extant literature for genetic, epigenetic, and neurobiological factors that contribute to a childhood onset of depression. We searched PubMed, EMBASE, OVID/PsychInfo, and Google Scholar with the following inclusion criteria: (1) systematic review or meta-analysis from a peer-reviewed journal; (2) inclusion of a measure assessing early age of onset of depression; and (3) assessment of neurobiological, genetic, environmental, and epigenetic predictors of early onset depression. Findings from 89 systematic reviews of moderate to high quality suggest that childhood-onset depressive disorders have neurobiological, genetic, environmental, and epigenetic roots consistent with a diathesis-stress theory of depression. This review identified key putative markers that may be targeted for personalized clinical decision-making and provide important insights concerning candidate mechanisms that might underpin the early onset of depression.
Collapse
|
17
|
Huang Y, Zhang J, He K, Mo X, Yu R, Min J, Zhu T, Ma Y, He X, Lv F, Lei D, Liu M. Innovative Neuroimaging Biomarker Distinction of Major Depressive Disorder and Bipolar Disorder through Structural Connectome Analysis and Machine Learning Models. Diagnostics (Basel) 2024; 14:389. [PMID: 38396428 PMCID: PMC10888009 DOI: 10.3390/diagnostics14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) share clinical features, which complicates their differentiation in clinical settings. This study proposes an innovative approach that integrates structural connectome analysis with machine learning models to discern individuals with MDD from individuals with BD. High-resolution MRI images were obtained from individuals diagnosed with MDD or BD and from HCs. Structural connectomes were constructed to represent the complex interplay of brain regions using advanced graph theory techniques. Machine learning models were employed to discern unique connectivity patterns associated with MDD and BD. At the global level, both BD and MDD patients exhibited increased small-worldness compared to the HC group. At the nodal level, patients with BD and MDD showed common differences in nodal parameters primarily in the right amygdala and the right parahippocampal gyrus when compared with HCs. Distinctive differences were found mainly in prefrontal regions for BD, whereas MDD was characterized by abnormalities in the left thalamus and default mode network. Additionally, the BD group demonstrated altered nodal parameters predominantly in the fronto-limbic network when compared with the MDD group. Moreover, the application of machine learning models utilizing structural brain parameters demonstrated an impressive 90.3% accuracy in distinguishing individuals with BD from individuals with MDD. These findings demonstrate that combined structural connectome and machine learning enhance diagnostic accuracy and may contribute valuable insights to the understanding of the distinctive neurobiological signatures of these psychiatric disorders.
Collapse
Affiliation(s)
- Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingbo Zhang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Kewei He
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Xue Mo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Min
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Tong Zhu
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Yunfeng Ma
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Xiangqian He
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China (J.M.)
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Fu YJ, Liu X, Wang XY, Li X, Dai LQ, Ren WY, Zeng YM, Li ZL, Yu RQ. Abnormal volumetric brain morphometry and cerebral blood flow in adolescents with depression. World J Psychiatry 2023; 13:386-396. [PMID: 37383288 PMCID: PMC10294138 DOI: 10.5498/wjp.v13.i6.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations. However, preliminary studies have documented the pathophysiological changes in certain brain regions, such as the cerebellum, highlighting a need for further research to support the current understanding of this disease. AIM To study brain changes in depressed adolescents. METHODS This study enrolled 34 adolescents with depression and 34 age-, sex-, and education-level-matched healthy control (HC) individuals. Structural and functional alterations were identified when comparing the brains of these two participant groups through voxel-based morphometry and cerebral blood flow (CBF) analysis, respectively. Associations between identified brain alterations and the severity of depressive symptoms were explored through Pearson correlation analyses. RESULTS The cerebellum, superior frontal gyrus, cingulate gyrus, pallidum, middle frontal gyrus, angular gyrus, thalamus, precentral gyrus, inferior temporal gyrus, superior temporal gyrus, inferior frontal gyrus, and supplementary motor areas of adolescents with depression showed an increase in brain volume compared to HC individuals. These patients with depression further presented with a pronounced drop in CBF in the left pallidum (group = 98, and peak t = - 4.4324), together with increased CBF in the right percental gyrus (PerCG) (group = 90, and peak t = 4.5382). In addition, 17-item Hamilton Depression Rating Scale scores were significantly correlated with the increased volume in the opercular portion of the left inferior frontal gyrus (r = - 0.5231, P < 0.01). CONCLUSION The right PerCG showed structural and CBF changes, indicating that research on this part of the brain could offer insight into the pathophysiological causes of impaired cognition.
Collapse
Affiliation(s)
- Yu-Jia Fu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xing-Yu Wang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin-Qi Dai
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-yu Ren
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong-Ming Zeng
- Department of Radiology, Chongqing HongRen Yi Hospital, Chongqing 408400, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Ren-Qiang Yu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Fan JW, Gu YW, Wang DB, Liu XF, Zhao SW, Li X, Li B, Yin H, Wu WJ, Cui LB. Transcriptomics and magnetic resonance imaging in major psychiatric disorders. Front Psychiatry 2023; 14:1185471. [PMID: 37383618 PMCID: PMC10296768 DOI: 10.3389/fpsyt.2023.1185471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Major psychiatric disorders create a significant public health burden, and mental disorders such as major depressive disorder, bipolar disorder, and schizophrenia are major contributors to the national disease burden. The search for biomarkers has been a leading endeavor in the field of biological psychiatry in recent decades. And the application of cross-scale and multi-omics approaches combining genes and imaging in major psychiatric studies has facilitated the elucidation of gene-related pathogenesis and the exploration of potential biomarkers. In this article, we summarize the results of using combined transcriptomics and magnetic resonance imaging to understand structural and functional brain changes associated with major psychiatric disorders in the last decade, demonstrating the neurobiological mechanisms of genetically related structural and functional brain alterations in multiple directions, and providing new avenues for the development of quantifiable objective biomarkers, as well as clinical diagnostic and prognostic indicators.
Collapse
Affiliation(s)
- Jing-Wen Fan
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue-Wen Gu
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong-Bao Wang
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
| | - Xiao-Fan Liu
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Shu-Wan Zhao
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi’an, China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|