1
|
Zhang S, Tong C, Cao N, Tian D, Du L, Xu Y, Wang W, Chen Z, Zhai S. Hippocampal Transcriptome Analysis in a Mouse Model of Chronic Unpredictable Stress Insomnia. Biomedicines 2025; 13:1205. [PMID: 40427032 PMCID: PMC12108738 DOI: 10.3390/biomedicines13051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study aimed to develop a model for understanding stress-induced sleep disturbances and to explore the potential interactions between sleep disturbances and mood disturbances. Methods: The chronic unpredictable mild stress (CUMS) group was established using the CUMS method, while the CUMS+Noise group was subjected to an additional 8-h exposure to noise in conjunction with the CUMS protocol. Each group was tested for anxiety and depressive-like behavior using the open-field, elevated plus maze, tail suspension, and forced swimming tests in male C57BL/6J mice. Subsequently, we assessed sleep status using sleep recordings and a standardized scoring system alongside the pentobarbital sodium-induced sleep test. Results: The mice in both model groups exhibited anxiety-like behavior. Sleep disturbances observed in the CUMS+Noise group were characterized by disruptions in sleep duration and circadian rhythm. This observation was supported by a marked reduction in multiple sleep time intervals and single sleep duration, as well as a significant increase in sleep duration at the final time interval of ZT23-24. To further investigate the potential mechanisms of interaction, we conducted an analysis of hub genes present in the hippocampal sequencing data utilizing weighted gene co-expression network analysis (WGCNA). Pearson correlation analysis revealed a significant association between the hub genes Alb, P2rx1, and Npsr1 and key phenotypic traits. However, PCR experiments indicated that only Alb showed a significant difference, which aligns with the sequencing results. Conclusions: Albumin is a crucial transporter protein for thyroid hormones and plays a vital role in their metabolism. The interaction between sleep disorders and anxiety-like behavior may be closely linked to the dysfunctional transportation of thyroid hormones by albumin.
Collapse
Affiliation(s)
- Shuo Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100013, China;
| | - Changqing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Na Cao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Dong Tian
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Linshan Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Ya Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Weiguang Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Zijie Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| | - Shuangqing Zhai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (C.T.); (N.C.); (D.T.); (L.D.); (Y.X.); (W.W.)
| |
Collapse
|
2
|
Han H, Yao J, Wu J, Mao S, Pan H, Qv L, Zhu G, Ren J, Yu Y, Xuan F, Zeng L, Ma Y, Yang Z, Zhu Z, Zhu F, Li MD. Implications of neurogenesis in depression through BDNF: rodent models, regulatory pathways, gut microbiota, and potential therapy. Mol Psychiatry 2025:10.1038/s41380-025-03044-7. [PMID: 40341897 DOI: 10.1038/s41380-025-03044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Major Depressive Disorder (MDD) is a prevalent psychiatric disorder with a profound impact on global health, necessitating a deeper understanding of its pathophysiology. This review synthesizes current evidence linking neurogenesis, particularly in the hippocampal region, with MDD. Accumulating data showed a significant reduction of neurogenesis in the hippocampal region of both MDD patients and various MDD rodent models. We highlight the role of brain-derived neurotrophic factor (BDNF) and its associated signaling pathways in regulating neurogenesis and depressive symptoms. Additionally, the influence of gut microbiota on the neurogenesis in depression is presented, offering a novel perspective on environmental modulation of neurogenesis. This review also underscores the potential antidepressant interventions targeting neurogenesis and BDNF's regulation, such as therapeutic benefits of environmental enrichment, physical activity, and pharmacological agents in enhancing neurogenesis and alleviating depressive symptoms. Together, this systemic review provides a foundation for future research aiming at developing personalized treatments by targeting neurogenesis in MDD, potentially leading to novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Haijun Han
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jinhan Wu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shiqi Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Hongyi Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lingling Qv
- Central Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanqi Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Juntian Ren
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yaning Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feiyang Xuan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijing Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Li X, Liu Y, Liu N, Wu H, Cong K, Duan L, Chen T, Zhang J. Health benefits of medicinal plant natural products via microbiota-mediated different gut axes. Pharmacol Res 2025; 215:107730. [PMID: 40216049 DOI: 10.1016/j.phrs.2025.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
This review examines the multifaceted roles of medicinal plant natural products in influencing gut microbiota and their subsequent impact on various organ systems through established gut axes, including the gut-brain, gut-liver, gut-heart, gut-lung, and gut-kidney axes. Medicinal plant natural products have exhibited diverse pharmacological activities, including modulation of microbiota composition, enhancement of metabolic processes, and alleviation of inflammation and oxidative stress. Evidence suggests that these components can ameliorate conditions such as neurological disorders, metabolic syndrome, and chronic kidney disease by restoring microbial balance and improving gut barrier integrity. Furthermore, the review highlights the potential of medicinal plant natural products to foster beneficial microbial communities and improve gut health, which may lead to reduced disease severity and inflammation. By comprehensively analyzing current literature, this review provides a foundation for future research aim at exploring the therapeutic applications of medicinal plant natural products in disease prevention and treatment. The findings underscore the need for further studies to elucidate the underlying mechanisms of action and validate the clinical efficacy of medicinal plant natural products in managing chronic conditions through gut microbiota modulation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yufan Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ning Liu
- Department of The Second Section Office of Breast Tumor, Jilin Cancer Hospital, Changchun 130000, China
| | - Hanning Wu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kexin Cong
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linnan Duan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tianli Chen
- Changchun University of Chinese Medicine, Changchun 130000, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Dai H, Yang H, Wang R, Wang X, Zhang X. Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer-Depression Comorbidity Management. Nutrients 2025; 17:1505. [PMID: 40362814 PMCID: PMC12073834 DOI: 10.3390/nu17091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host's metabolism and immune function. Changes in gut microbiota and their metabolites may represent key factors in preventing cancer-depression comorbidity. METHODS English publications were searched in databases including the Web of Science, Scopus, and PubMed using a series of keywords: "cancer", "depression", "gut microbiota", "dietary components", and related terms, individually or in combination. The search focused on preclinical and clinical studies describing the regulatory effects of dietary component interventions. RESULTS This narrative review summarizes the associations among gut microbiota, cancer, and depression, and synthesizes current evidence on the modulatory effects and mechanisms of specific dietary component interventions, including dietary patterns, probiotics, prebiotics, and diet-derived phytochemicals, on gut microbiota. On the one hand, these interventions inhibit abnormal proliferation signals in the tumor microenvironment and enhance anticancer immune responses; on the other hand, they modulate neurotransmitter homeostasis, suppress neuroinflammation, and improve mood behaviors through the gut-brain axis interactions mediated by microbial metabolites. CONCLUSIONS The complex associations among cancer, depression, and gut microbiota require further clarification. Modulating gut microbiota composition through dietary components represents a novel therapeutic strategy for improving cancer-depression comorbidity. Regulated gut microbiota enhance immune homeostasis and intestinal barrier function, while their metabolites bidirectionally modulate one another via systemic circulation and the gut-brain axis, thereby improving both the tumor microenvironment and depressive-like behaviors in cancer patients while reducing the adverse effects of cancer.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Haiyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuanpeng Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Zhao Y, Zhao W, Chai X, Sun P, Huang J, Guo X, Zhang L, Ren D, Yi C, Zhu X, Zhao S. Reshaping the gut microbiota: A novel oppinion of Eucommiae cortex polysaccharide alleviate learning and memory impairments in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00269-3. [PMID: 40252828 DOI: 10.1016/j.jare.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), which is a chronic neurodegenerative disorder, is marked by the progressive deteriorations in learning and memory capabilities. The microbiota-gut-brain axis has come to be regarded as a crucial element in relation to the pathogenesis as well as the treatment of AD. Eucommiae cortex polysaccharides (EPs), being among the most plentiful substances present in the Eucommiae cortex, show the potential to exert immunomodulatory and neuroprotective function. However, whether EPs are protective against AD and their mechanism of action remain to be investigated OBJECTIVES: We hypothesize that EPs can regulate brain glutamine metabolism through gut microbiota and the butyric acid metabolized by them, improve oxidative stress and autophagy in the brain, and thus alleviate AD. METHODS In the present study, we used EPs (0.25 % w/w in food) and fecal microbiota transplantation, as well as butyrate supplementation (0.1 M in water), to intervene in AD mice. Multi-omics were used to determine the mechanism by which EPs improve AD-related learning and memory impairments. RESULTS Our results suggest that EPs, functioning as a prebiotic, alleviated learning and memory impairments in AD mice. Mechanistically, EPs are able to reshape the gut microbiota, promote the growth of gut microbiota involved in short-chain fatty acid metabolism, particularly butyrate-producing microbes. The butyrate produced by these microbes improves the brain microenvironment by modulating oxidative stress and autophagy mediated by brain glutamate metabolism, improving learning and memory impairments in AD mice, and inhibiting the formation and deposition of beta-amyloid proteins. Fecal microbiota transplantation (FMT) and butyrate supplementation further confirm this conclusion. CONCLUSIONS Our results highlighted that EPs can alleviate learning and memory impairments in AD with a gut microbiota-dependent manner and that butyric acid metabolized by butyric acid-metabolizing bacteria in the gut plays a central role in regulating brain glutamine metabolism to improve brain microenvironmental homeostasis. Meanwhile, the present study provides new insights into the treatment of AD with natural products.
Collapse
Affiliation(s)
- Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Wenxing Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, 710000 Xi'an, China.
| | - Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Junlang Huang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Xinrui Guo
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Lulu Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Duoduo Ren
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, 528000 Shenzhen, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
6
|
Lv G, Qin R, Zhao X, Li G, Zhao D, Li P. Network structure and temporal stability of symptoms during perioperative period among gastrointestinal cancer patients. J Cancer Surviv 2025:10.1007/s11764-025-01773-w. [PMID: 40163221 DOI: 10.1007/s11764-025-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE Symptom networks can provide empirical evidence for developing personalized and precise symptom management strategies. However, the network structure and temporal stability of perioperative symptoms among gastrointestinal cancer patients remain unknown. This study aims to explore the dynamic connections between symptoms and accurately identify core symptoms to support clinical decision-making. METHODS The measurement points included T0 (2 days before surgery), T1 (2 days after surgery), T2 (6 days after surgery), T3 (10 days after surgery), and T4 (14 days after surgery). Measurement tools included M.D. Anderson Symptoms Inventory-Gastrointestinal Cancer Module (MDASI-GI). A Multilevel Vector Autoregressive Model (mlVAR) was used to build the temporal and contemporaneous networks. RESULTS A total of 241 gastrointestinal cancer participants were recruited, primarily with colorectal cancer type. In the temporal network, sadness had the strongest predictive effect on appetite change, with a value of -0.231. Additionally, dry mouth was identified as the core symptom with the highest outward strength centrality (1.234) and positively predicted pain, sadness, difficulty swallowing, distress, and fatigue (EW = 0.157 ~ 0.230, Ps < 0.001). In the contemporaneous network, depression was a core symptom with the highest strength centrality (1.001). The strongest correlation was found between distress and sadness (EW = 0.645, Ps < 0.05), followed by dry mouth and difficulty swallowing (EW = 0.363, Ps < 0.05). At five time points, the core symptoms within the perioperative symptom network encompassed appetite loss (at T0, with a value of 0.943), distress (at T1, with a value of 1.225; at T2, with a value of 1.057; and at T3, with a value of 0.858), and sadness (at T4, with a value of 1.238). CONCLUSION There exist a prevalent occurrence of positive predictive and associative effects among symptoms. Moreover, emotional and gastrointestinal symptoms, particularly depression and dry mouth, hold significant positions in the perioperative symptom network and should be prioritized in symptom management strategies. IMPLICATIONS FOR CANCER SURVIVORS This study uncovers the underlying patterns of widespread positive predictive and associative effects among symptoms, and provides targeted clinical guidance for managing core symptoms such as dry mouth in perioperative care for cancer patients.
Collapse
Affiliation(s)
- Gaorong Lv
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China
- School of Software, Shandong University, 1500 Shunhua Road, Jinan, Shandong, 250101, People's Republic of China
| | - Rui Qin
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiangyu Zhao
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China
| | - Guopeng Li
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China
| | - Di Zhao
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ping Li
- School of Nursing and Rehabilitation, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
7
|
Chen M, Zhang Y, Hou L, Zhao Z, Tang P, Sun Q, Zhao J, Wang Q. SVHRSP protects against rotenone-induced neurodegeneration in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation via gut microbiota. NPJ Parkinsons Dis 2025; 11:43. [PMID: 40050294 PMCID: PMC11885645 DOI: 10.1038/s41531-025-00892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Strong evidence indicates that remodeling gut microbiota may be an effective approach to combat Parkinson's disease (PD). Scorpion Venom Heat-Resistant Synthesized Peptide (SVHRSP), a synthesized peptide discovered from scorpion venom, displays potent neuroprotection in multiple PD models. However, the potential mechanisms remain unclear. In this study, we demonstrated that SVHRSP effectively attenuated gastrointestinal function impairments and reinstated the microbiota composition in rotenone-induced PD mouse model. Microbiota depletion and FMT verified that the restored gut microbiota was necessary for SVHRSP-mediated neuroprotection against dopaminergic neurodegeneration in rotenone PD mice. Furthermore, SVHRSP gut microbiota-dependently attenuated BBB impairment, microglial activation, and gene expression of pro-inflammatory factors in rotenone-treated mice. Mechanistically, SVHRSP decreased the concentrations of LPS and HMGB1 in both serum and brain tissue, thereby inhibiting the TLR4/NF-κB signaling pathway in the brain of rotenone-treated mice. Together, our findings provided fresh perspectives on the mechanisms underlying SVHRSP-induced neuroprotection in PD.
Collapse
Affiliation(s)
- Mengdi Chen
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yu Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Peiyan Tang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
- School of Public Health, Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Pan J, Chai X, Li C, Wu Y, Ma Y, Wang S, Xue Y, Zhao Y, Chen S, Zhu X, Zhao S. Eucommia ulmoides Oliv. Bark Extracts Alleviate MCAO/Reperfusion-Induced Neurological Dysfunction by Suppressing Microglial Inflammation in the Gray Matter. Int J Mol Sci 2025; 26:1572. [PMID: 40004043 PMCID: PMC11855810 DOI: 10.3390/ijms26041572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Ischemic stroke ranks as the second leading cause of global mortality. The limited time for effective thrombolytic treatment has prompted the exploration of alternative prevention approaches. Eucommia ulmoides (E. ulmoides) Oliv. bark has shown multiple pharmacological effects, including neuroprotection, anti-inflammation and autophagy modulation. This study aims to elucidate the neuroprotective effects of water extract of E. ulmoides (WEU) supplementation in a middle cerebral artery occlusion (MCAO) mouse model and to further explore the underlying molecular mechanisms. Seven bioactive compounds in WEU-aucubin, chlorogenic acid, geniposidic acid, quercetin, protocatechuic acid, betulin and pinoresinol diglucoside-were identified using HPLC-MS. Our results showed that WEU supplementation significantly decreased infarct volume and ameliorated neurological dysfunction in mice following MCAO/reperfusion (MCAO/R) injury. Furthermore, the administration of WEU significantly attenuated microglia activation induced by cortical ischemia in mice and inhibited the production of pro-inflammatory mediators, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Importantly, in contrast with the vehicle group, the protein expression levels of Toll-like receptor 4 (TLR4), phospho-p38 (p-p38) and nuclear factor kappa B (NF-κB) were reduced in the WEU group. Therefore, this present study provides evidence that E. ulmoides improves neurological behaviors by suppressing neuroinflammation and inhibiting the activation of the TLR4/ p38 MAPK and NF-κB pathways in mice after ischemia, which indicates that E.ulmoides is a promising candidate for alleviating gray matter ischemic change.
Collapse
Affiliation(s)
- Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Xuejun Chai
- College of Basic Medicine, Xi’an Medical University, Xi’an 710021, China;
| | - Cixia Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China;
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Yuhuan Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (J.P.); (Y.W.); (Y.M.); (S.W.); (Y.X.); (Y.Z.); (S.C.)
| |
Collapse
|
9
|
Gong X, Cai W, Yang D, Wang W, Che H, Li H. Effect of the arabinogalactan from Ixeris chinensis (Thunb.) Nakai. attenuates DSS-induced colitis and accompanying depression-like behavior. Int J Biol Macromol 2025; 286:138525. [PMID: 39647733 DOI: 10.1016/j.ijbiomac.2024.138525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
An arabinogalactan (ICPA) was extracted from the medicinal and edible plant Ixeris chinensis (Thunb.) Nakai., and ICPA exhibited excellent immunomodulatory activity. In this research, the impact of ICPA on DSS-induced ulcerative colitis was investigated. The results indicated that ICPA ameliorated the symptoms of colitis mice including loss of body weight, decrease of disease activity index, shortness of colon length and reduction of spleen index that caused by DSS. After treatment with ICPA, inflammatory cell infiltration and crypt loss were alleviated, and the number of goblet epithelial cells was enriched. ICPA inhibited the overproduction of TNF-α, IL-1β, and NLRP3, and promoted the secretion of IL-10 in colon tissues. Meanwhile, the intestinal barrier integrity was restored through increasing the expression of ZO-1 and occludin. ICPA could also regulate the structure of gut microbiota through elevating the abundance of Turicibacter and Bifidobacterium, and decreasing the ratio of Bacteroidetes/Firmicutes. In addition, ICPA improved the depression-like behavior of UC mice, and reduced the expression of proteins NLRP3, GFAP, and Iba-1 in brain tissues. These results suggested ICPA had an alleviative effect on UC and accompanied depression-like behavior, and could be developed as a dietary supplement for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Xinwei Gong
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanshuang Cai
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dezhao Yang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Wang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
10
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
11
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
12
|
Zhang J, Xin H, Wang W, Li Y, Wu R, Wei L, Su S, Wang X, Wang X, Wang X, Li L, Hu R. Investigating the modulatory effects of lactoferrin on depressed rats through 16S rDNA gene sequencing and LC-MS metabolomics analysis. Sci Rep 2024; 14:22111. [PMID: 39333605 PMCID: PMC11437287 DOI: 10.1038/s41598-024-72793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Lactoferrin is a natural multifunctional glycoprotein with potential antidepressant-like effects. However, the mechanism of its antidepressant effect has not been explored from the perspective of gut flora metabolism. Therefore, we employed both 16S rDNA gene sequencing and LC-MS metabolomics analysis to investigate the regulatory effects and mechanisms of lactoferrin in a rat model of depression. After one week of acclimatization, twenty-four 7-week-old male Sprague-Dawley rats were randomly and equally assigned into three groups: the control group, the model group, and the lactoferrin intervention group. The control group rats were housed under standard conditions, while the rats in the model and lactoferrin intervention groups were individually housed and exposed to chronic unpredictable mild stress for 44 days simultaneously. The lactoferrin intervention group was provided with water containing 2% lactoferrin (2 g/100 ml). Behavioural tests were conducted at week 7. Upon completion of the behavioral tests, the rats were anesthetized with isoflurane, humanely euthanized using a rat guillotine, and tissue samples were collected for further experiments. The results indicated that lactoferrin intervention led to an increase in sucrose solution consumption, horizontal movement distance, number of cross platforms, and residence time in the target quadrant. Additionally, it resulted in an increase in jejunal tight junction protein ZO-1 expression and a suppression of serum expression of inflammatory factors, Lipopolysaccharide and Diamine oxidase. In summary, lactoferrin can regulate the metabolic disorder of intestinal flora, reduce intestinal permeability, and further regulate the metabolic balance of hippocampal tissues through the microbiota-gut-brain axis. This process ultimately alleviates the depression-like behavior in rats.
Collapse
Affiliation(s)
- Jing Zhang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Hongmei Xin
- College of Humanities Education , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Wuji Wang
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yanyi Li
- School of Nursing,Inner Mongolia Medical University, Hohhot, 010110, China
| | - Riga Wu
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Lisi Wei
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Si Su
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiaohong Wang
- Laboratory Animal Center, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiujuan Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiaojuan Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Li Li
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - Rilebagen Hu
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
13
|
White AG, Elias E, Orozco A, Robinson SA, Manners MT. Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. Int J Mol Sci 2024; 25:5085. [PMID: 38791125 PMCID: PMC11121038 DOI: 10.3390/ijms25105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The brain is the central organ of adaptation to stress because it perceives and determines threats that induce behavioral, physiological, and molecular responses. In humans, chronic stress manifests as an enduring consistent feeling of pressure and being overwhelmed for an extended duration. This can result in a persistent proinflammatory response in the peripheral and central nervous system (CNS), resulting in cellular, physiological, and behavioral effects. Compounding stressors may increase the risk of chronic-stress-induced inflammation, which can yield serious health consequences, including mental health disorders. This review summarizes the current knowledge surrounding the neuroinflammatory response in rodent models of chronic stress-a relationship that is continually being defined. Many studies investigating the effects of chronic stress on neuroinflammation in rodent models have identified significant changes in inflammatory modulators, including nuclear factor-κB (NF-κB) and toll-like receptors (TLRs), and cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6. This suggests that these are key inflammatory factors in the chronic stress response, which may contribute to the establishment of anxiety and depression-like symptoms. The behavioral and neurological effects of modulating inflammatory factors through gene knockdown (KD) and knockout (KO), and conventional and alternative medicine approaches, are discussed.
Collapse
Affiliation(s)
- Abigail G. White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Andrea Orozco
- Department of Psychology, Williams College, Williamstown, MA 01267, USA
| | | | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
14
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
15
|
Zhang J, Song Z, Huo Y, Li G, Lu L, Wei C, Zhang S, Gao X, Jiang X, Xu Y. Engeletin alleviates depressive-like behaviours by modulating microglial polarization via the LCN2/CXCL10 signalling pathway. J Cell Mol Med 2024; 28:e18285. [PMID: 38597406 PMCID: PMC11005460 DOI: 10.1111/jcmm.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1β, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Zheng Song
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yanchao Huo
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Guangqiang Li
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Liming Lu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Chuanmei Wei
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Shuping Zhang
- College of Basic MedicineBinzhou Medical UniversityYantaiShandongP.R. China
| | - Xinfu Gao
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Xingyue Jiang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yangyang Xu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| |
Collapse
|
16
|
Jiao X, Liu B, Dong X, Wang S, Cai X, Zhang H, Qin Z. Exploring PLGA-OH-CATH30 Microspheres for Oral Therapy of Escherichia coli-Induced Enteritis. Biomolecules 2024; 14:86. [PMID: 38254686 PMCID: PMC10813405 DOI: 10.3390/biom14010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antibiotic therapy effectively addresses Escherichia coli-induced enteric diseases, but its excessive utilization results in microbial imbalance and heightened resistance. This study evaluates the therapeutic efficacy of orally administered poly (lactic-co-glycolic acid) (PLGA)-loaded antimicrobial peptide OH-CATH30 microspheres in murine bacterial enteritis. Mice were categorized into the healthy control group (CG), untreated model group (MG), OH-CATH30 treatment group (OC), PLGA-OH-CATH30 treatment group (POC), and gentamicin sulfate treatment group (GS). Except for the control group, all other experimental groups underwent Escherichia coli-induced enteritis, followed by a 5-day treatment period. The evaluation encompassed clinical symptoms, intestinal morphology, blood parameters, inflammatory response, and gut microbiota. PLGA-OH-CATH30 microspheres significantly alleviated weight loss and intestinal damage while also reducing the infection-induced increase in spleen index. Furthermore, these microspheres normalized white blood cell count and neutrophil ratio, suppressed inflammatory factors (IL-1β, IL-6, and TNF-α), and elevated the anti-inflammatory factor IL-10. Analysis of 16S rRNA sequencing results demonstrated that microsphere treatment increased the abundance of beneficial bacteria, including Phocaeicola vulgatus, in the intestinal tract while concurrently decreasing the abundance of pathogenic bacteria, such as Escherichia. In conclusion, PLGA-OH-CATH30 microspheres have the potential to ameliorate intestinal damage and modulate the intestinal microbiota, making them a promising alternative to antibiotics for treating enteric diseases induced by Escherichia coli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.J.); (B.L.); (X.D.); (S.W.); (X.C.); (H.Z.)
| |
Collapse
|
17
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|