1
|
Kuprat AP, Feng Y, Corley RA, Darquenne C. Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols. JOURNAL OF AEROSOL SCIENCE 2025; 183:106471. [PMID: 39678160 PMCID: PMC11636312 DOI: 10.1016/j.jaerosci.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Determining the fate of inhaled aerosols in the respiratory system is essential in assessing the potential toxicity of inhaled airborne materials, responses to airborne pathogens, or in improving inhaled drug delivery. The availability of high-resolution clinical lung imaging and advances in the reconstruction of lung airways from CT images have led to the development of subject-specific in-silico 3D models of aerosol dosimetry, often referred to as computational fluid-particle-dynamics (CFPD) models. As CFPD models require extensive computing resources, they are typically confined to the upper and large airways. These models can be combined with lower-dimensional models to form multiscale models that predict the transport and deposition of inhaled aerosols in the entire respiratory tract. Understanding where aerosols deposit is only the first of potentially several key events necessary to predict an outcome, being a detrimental health effect or a therapeutic response. To that end, multiscale approaches that combine CFPD with physiologically-based pharmacokinetics (PBPK) models have been developed to evaluate the absorption, distribution, metabolism, and excretion (ADME) of toxic or medicinal chemicals in one or more compartments of the human body. CFPD models can also be combined with host cell dynamics (HCD) models to assess regional immune system responses. This paper reviews the state of the art of these different multiscale approaches and discusses the potential role of personalized or subject-specific modeling in respiratory health.
Collapse
Affiliation(s)
- A P Kuprat
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Y Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - R A Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID, USA
| | - C Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
2
|
Woodward IR, Yu Y, Fromen CA. Experimental Full-volume Airway Approximation for Assessing Breath-dependent Regional Aerosol Deposition. DEVICE 2024; 2:100514. [PMID: 39734794 PMCID: PMC11671099 DOI: 10.1016/j.device.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Modeling aerosol dynamics in the airways is challenging, and most modern personalized in vitro tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an in vitro modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both in vivo and in silico benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.
Collapse
Affiliation(s)
- Ian R. Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Yinkui Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | | |
Collapse
|
3
|
Xiao H, Liu Y, Sun B, Guo Y, Wang M. Multi-scale modeling of aerosol transport in a mouth-to-truncated bronchial tree system. Comput Biol Med 2024; 183:109292. [PMID: 39426070 DOI: 10.1016/j.compbiomed.2024.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Computational fluid particle dynamics (CFPD) is widely employed to predict aerosol transport in a truncated bronchial tree model on account of its capacity to reveal details of flow field and particle movement. However, setting a physiologically consistent boundary condition in the CFPD for the idealized or image-based truncated bronchial tree model is still a challenge. This paper proposes a multi-scale modeling method, which contains an Extend-Bronchial tree-Network (EBN) boundary condition for a mouth-to-truncated bronchi system. The comparison between EBN boundary condition and a commonly used uniform pressure (UP) boundary condition is conducted. Subsequently, EBN method is used to study the nano-micron (100 nm-10 μm) particles transport in the mouth-to-truncated bronchi model at different inhalation volume rates (15, 60, 90 L/min). Results show that EBN method is more physiologically rational and two methods differ in flow distribution in lobes, vortex structure, and particle transport. The maximum difference in flow rate distribution in lobes between two methods is about 20 %, while the maximum relative disparity of particle penetration fraction from lobes and deposition fraction in the TLB is about 93 % and 30 %, respectively. Meanwhile, this paper reveals the variation of deposition fraction and penetration fraction with the changes in particle diameter and inhalation volume. Deposition efficiency, deposition hotspots and deposition mechanism are also analyzed with inlet Stokes number (Stk) and Reynolds number (Re). This research establishes a foundation for the simulation of aerosol transport in a whole respiratory tract and provides references for inhalation drug delivery and air pollutant management.
Collapse
Affiliation(s)
- Han Xiao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Triantafyllaki M, Chalvatzaki E, Torres-Agullo A, Karanasiou A, Lacorte S, Drossinos Y, Lazaridis M. The fate of airborne microfibers in the human respiratory tract in different microenvironments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176000. [PMID: 39233080 DOI: 10.1016/j.scitotenv.2024.176000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Αirborne microplastics (MPs) are considered an important exposure hazard to humans, especially in the indoor environment. Deposition and clearance of MPs in the human respiratory tract (HRT) was investigated using the ExDoM2 dosimetry model, modified to incorporate the deposition and clearance of MPs fibers. Fiber deposition was calculated via the fiber equivalent aerodynamic diameter determined using their properties such as size, density and dynamic shape factor. Scenario simulations were performed for elongated particles of cylindrical (base) diameters 1 μm and 10 μm and aspect ratios (ratio of fiber length to base diameter) 3, 10 and 100. Modelling results showed that the highest fiber deposition occurred in the extra-thoracic region due to large particles (fiber cylindrical diameter dp > 0.1 μm), whereas particle length (via the aspect ratio) had an influence mainly on smaller base-diameter fibers (dp < 0.1 μm) that deposited predominantly in the alveolar region. The ExDoM2 dosimetry model was also used to calculate fiber deposition in the HRT using experimental data for microplastic fiber and fragment concentrations in different microenvironments. The highest deposited number dose (220 fibers) after a 24-hour exposure was calculated in the microenvironment (bus) that had the highest fiber concentration (17.3 ± 2.4 fibers/m3). After clearance, the majority (66.4 %) of the average deposited fiber mass was transferred from the respiratory tract to the esophagus via mucociliary clearance, 32.6 % was retained in the respiratory tract, 1 % passed into the blood, and a very small amount (0.0004 %) was transferred to the lymph nodes.
Collapse
Affiliation(s)
- M Triantafyllaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - E Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - A Torres-Agullo
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - S Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Y Drossinos
- Thermal Hydraulics & Multiphase Flow Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", 15341 Agia Paraskevi, Greece
| | - M Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
5
|
Shemilt JD, Horsley A, Wild JM, Jensen OE, Thompson AB, Whitfield CA. Non-local impact of distal airway constrictions on patterns of inhaled particle deposition. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241108. [PMID: 39508002 PMCID: PMC11539137 DOI: 10.1098/rsos.241108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Airway constriction and blockage in obstructive lung diseases cause ventilation heterogeneity and create barriers to effective drug deposition. Established computational particle-deposition models have not accounted for these impacts of disease. We present a new particle-deposition model that calculates ventilation based on the resistance of each airway, such that ventilation responds to airway constriction. The model incorporates distal airway constrictions representative of cystic fibrosis, allowing us to investigate the resulting impact on patterns of deposition. Unlike previous models, our model predicts how constrictions affect deposition in airways throughout the lungs, not just in the constricted airways. Deposition is reduced in airways directly distal and proximal to constrictions. When constrictions are clustered together, central-airways deposition can increase significantly in regions away from constrictions, but distal-airways deposition in those regions remains largely unchanged. We use our model to calculate lung clearance index (LCI), a clinical measure of ventilation heterogeneity, after applying constrictions of varying severities in one lobe. We find an increase in LCI coinciding with significantly reduced deposition in the affected lobe. Our results show how the model provides a framework for development of computational tools that capture the impacts of airway disease, which could significantly affect predictions of regional dosing.
Collapse
Affiliation(s)
- James D. Shemilt
- Department of Mathematics, University of Manchester, Manchester, UK
| | - Alex Horsley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jim M. Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Manchester, UK
| | | | - Carl A. Whitfield
- Department of Mathematics, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Darquenne C, Corcoran TE, Lavorini F, Sorano A, Usmani OS. The effects of airway disease on the deposition of inhaled drugs. Expert Opin Drug Deliv 2024; 21:1175-1190. [PMID: 39136493 PMCID: PMC11412782 DOI: 10.1080/17425247.2024.2392790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The deposition of inhaled medications is the first step in the pulmonary pharmacokinetic process to produce a therapeutic response. Not only lung dose but more importantly the distribution of deposited drug in the different regions of the lung determines local bioavailability, efficacy, and clinical safety. Assessing aerosol deposition patterns has been the focus of intense research that combines the fields of physics, radiology, physiology, and biology. AREAS COVERED The review covers the physics of aerosol transport in the lung, experimental, and in-silico modeling approaches to determine lung dose and aerosol deposition patterns, the effect of asthma, chronic obstructive pulmonary disease, and cystic fibrosis on aerosol deposition, and the clinical translation potential of determining aerosol deposition dose. EXPERT OPINION Recent advances in in-silico modeling and lung imaging have enabled the development of realistic subject-specific aerosol deposition models, albeit mainly in health. Accurate modeling of lung disease still requires additional refinements in existing imaging and modeling approaches to better characterize disease heterogeneity in peripheral airways. Nevertheless, recent patient-centric innovation in inhaler device engineering and the incorporation of digital technology have led to more consistent lung deposition and improved targeting of the distal airways, which better serve the clinical needs of patients.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Sorano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
8
|
Boreiko CJ. Modeling of local and systemic exposure to metals and metalloids after inhalation exposure: Recommended update to the USEPA metals framework. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:952-964. [PMID: 38084064 DOI: 10.1002/ieam.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The USEPA issued the "Framework for Metal Risk Assessment" in 2007, recognizing that human and environmental exposure to metals and metalloids (MMEs) poses challenges risk assessment. Inhalation of aerosols containing MMEs is a primary pathway for exposure in the occupational setting, for consumer exposure, and to general population exposure associated with point-source emissions or ambient sources. The impacts of inhalation can be at the point of deposition (local exposure) or may manifest after uptake into the body (systemic exposure). Both local and systemic exposure can vary with factors that determine the regional deposition of MME-containing aerosols. Aerosol characteristics such as particle size combine with species-specific characteristics of airway morphology and lung function to modulate the deposition and clearance of MME particulates. In contrast to oral exposure, often monitored by measuring MME levels in blood or urine, inhalation exposure can produce local pulmonary impacts in the absence of significant systemic distribution. Exposure assessment for nutritionally essential MMEs can be further complicated by homeostatic controls that regulate systemic MME levels. Predictions of local exposure can be facilitated by computer models that estimate regional patterns of aerosol deposition, permitting calculation of exposure intensity in different regions of the respiratory tract. The utility of deposition modeling has been demonstrated in assessments of nutritionally essential MMEs regulated by homeostatic controls and in the comparison of results from inhalation studies in experimental animals. This facilitates extrapolation from animal data to humans and comparisons of exposures possessing mechanistic linkages to pulmonary toxicity and carcinogenesis. Pulmonary deposition models have significantly advanced and have been applied by USEPA in evaluations of particulate matter. However, regional deposition modeling has yet to be incorporated into the general guidance offered by the agency for evaluating inhalation exposure. Integr Environ Assess Manag 2024;20:952-964. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
|
9
|
Oakes JM. The utility of hybrid in silico models of airflow and aerosol dosimetry in the lung. J Biomech 2024; 168:112126. [PMID: 38718595 DOI: 10.1016/j.jbiomech.2024.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
The development and application of multi-scale models of the lung has significantly increased in recent years. These hybrid models merge realistic representations of the larger airways with lower-dimensional descriptions of the bronchioles and respiratory airways. Due to recent advancements, it is possible to calculate airflow and dosimetry throughout the entire lung, enabling model validation with human or animal data. Here, we present a hybrid modeling pipeline and corresponding characteristic airflow and particle deposition hotspots. Next, we discuss the limitations of current hybrid models, including the need to update lower-dimensional deposition function descriptions to better represent realistic airway geometries. Future directions should include modeling diseased lungs and use of machine learning to predict whole lung dosimetry maps for a wider population.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA 02115.
| |
Collapse
|
10
|
Motta G, Gualtieri M, Bengalli R, Saibene M, Belosi F, Nicosia A, Cabellos J, Mantecca P. An integrated new approach methodology for inhalation risk assessment of safe and sustainable by design nanomaterials. ENVIRONMENT INTERNATIONAL 2024; 183:108420. [PMID: 38199131 DOI: 10.1016/j.envint.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.
Collapse
Affiliation(s)
- Giulia Motta
- University of Milano Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy.
| | - Maurizio Gualtieri
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy.
| | - Rossella Bengalli
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy
| | - Melissa Saibene
- Centre for Advanced Microscopy, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Franco Belosi
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Alessia Nicosia
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Joan Cabellos
- Leitat Technological Center, c/de la Innovació 2, Terrassa, 08225 Barcelona, Spain
| | - Paride Mantecca
- Research Centre POLARIS, Department of Earth and Environmental Sciences, University of Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
11
|
Kuprat AP, Price O, Asgharian B, Singh RK, Colby S, Yugulis K, Corley RA, Darquenne C. Automated bidirectional coupling of multiscale models of aerosol dosimetry: validation with subject-specific deposition data. JOURNAL OF AEROSOL SCIENCE 2023; 174:106233. [PMID: 37637507 PMCID: PMC10448711 DOI: 10.1016/j.jaerosci.2023.106233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Assessing the toxicity of airborne particulate matter or the efficacy of inhaled drug depends upon accurate estimates of deposited fraction of inhaled materials. In silico approaches can provide important insights into site- or airway-specific deposition of inhaled aerosols in the respiratory system. In this study, we improved on our recently developed 3D/1D model that simulate aerosol transport and deposition in the whole lung over multiple breath cycles (J. Aerosol Sci 151:105647). A subject-specific multiscale lung model of a healthy male subject using computational fluid-particle dynamics (CFPD) in a 3D model of the oral cavity through the large bronchial airways entering each lobe was bidirectionally coupled with a recently improved Multiple Path Particle Dosimetry (MPPD) model to predict aerosol deposition over the entire respiratory tract over multiple breaths for four conditions matching experimental aerosol exposures in the same subject from which the model was developed. These include two particle sizes (1 and 2.9 μm) and two subject-specific breathing rates of ~300 ml/s (slow breathing) and ~750 ml/s (fast breathing) at a target tidal volume of 1 L. In silico predictions of retained fraction were 0.31 and 0.29 for 1 μm and 0.66 and 0.62 for 2.9 μm during slow and fast breathing, respectively, and compared well with experimental data (1 μm: 0.31±0.01 (slow) and 0.27±0.01 (fast), 2.9 μm: 0.63±0.03 (slow) and 0.68±0.02 (fast)). These results provide a great deal of confidence in the validity and reliability of our approach.
Collapse
Affiliation(s)
- A P Kuprat
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - O Price
- Applied Research Associates, Arlington Division, Raleigh, NC, USA
| | - B Asgharian
- Applied Research Associates, Arlington Division, Raleigh, NC, USA
| | - R K Singh
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - S Colby
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - K Yugulis
- Battelle Memorial Institute, Columbus, OH, USA
| | - R A Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID, USA
| | - C Darquenne
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
12
|
Kolewe EL, Padhye S, Woodward IR, Feng Y, Briddell JW, Fromen CA. A Pediatric Upper Airway Library to Evaluate Interpatient Variability of In Silico Aerosol Deposition. AAPS PharmSciTech 2023; 24:162. [PMID: 37523076 PMCID: PMC10660588 DOI: 10.1208/s12249-023-02619-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
The airway of pediatric patients' changes through development, presenting a challenge in developing pediatric-specific aerosol therapeutics. Our work aims to quantify geometric variations and aerosol deposition patterns during upper airway development in subjects between 3.5 months-6.9 years old using a library of 24 pediatric models and 4 adult models. Computational fluid-particle dynamics was performed with varying particle size (0.1-10 μm) and flow rate (10-120 Lpm), which was rigorously analyzed to compare anatomical metrics (epiglottis angle (θE), glottis to cricoid ring ratio (GC-ratio), and pediatric to adult trachea ratio (H-ratio)), inhaler metrics (particle diameter, [Formula: see text], and flow rate, Q), and clinical metrics (age, sex, height, and weight) against aerosol deposition. Multivariate non-linear regression indicated that all metrics were all significantly influential on resultant deposition, with varying influence of individual parameters. Additionally, principal component analysis was employed, indicating that [Formula: see text], Q, GC-ratio, θE, and sex accounted for 90% of variability between subject-specific deposition. Notably, age was not statistically significant among pediatric subjects but was influential in comparing adult subjects. Inhaler design metrics were hugely influential, thus supporting the critical need for pediatric-specific inhalable approaches. This work not only improves accuracy in prescribing inhalable therapeutics and informing pediatric aerosol optimization, but also provides a framework for future aerosol studies to continue to strive toward optimized and personalized pediatric medicine.
Collapse
Affiliation(s)
- Emily L Kolewe
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware, 19716, USA
| | - Saurav Padhye
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware, 19716, USA
| | - Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware, 19716, USA
| | - Yu Feng
- Department of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jenna W Briddell
- Division of Otorhinolaryngology, Department of Surgery, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware, 19716, USA.
| |
Collapse
|
13
|
Paridokht F, Soury S, Karimi Zeverdegani S. The simulation of the emission of iron fumes caused by shielded metal arc welding using a computational fluid dynamics method. Toxicol Ind Health 2023; 39:36-48. [PMID: 36464906 DOI: 10.1177/07482337221144143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Computational fluid dynamics (CFD) is an indispensable simulation tool for predicting the emission of pollutants in the work environment. Welding is one of the most common industrial processes that might expose the operators and surrounding workers to certain hazardous gaseous metal fumes. In the present study, we used computational fluid dynamics (CFD) methodology for simulating the emission of iron fumes from the shielded metal arc welding (SMAW) procedure. A galvanized steel chamber was fabricated to measure the pollutant concentration and identify the size of the fume created by the SMAW. Then, the emission of welding aerosol was simulated using a method of computational fluid-particle dynamics with the ANSYS 2020 R1 software. The highest amount of welding fumes concentration was related to iron fumes (i.e., 3045 μg/m3 with a diameter of 0.25 μm). The results of the current study indicated that the local exhaust and general ventilation system can prevent the spreading of welding fumes to the welder's breathing zone and the surrounding environment. CFD was also found to be an efficient method for predicting the emission of the iron fumes created by SMAW as well as for selecting an appropriate ventilation system. However, further studies that take the modeling of welding-generated emission of additional metal particles and gases into account will need to be undertaken.
Collapse
Affiliation(s)
- Fatemeh Paridokht
- Department of Occupational Health and Safety Engineering, Student Research Committee, School of Health, 48455Isfahan University of Medical Sciences, Isfahan , Iran
| | - Shiva Soury
- Department of Occupational Health Engineering, School of Health, 48443Ilam University of Medical Science, Ilam, Iran
| | - Sara Karimi Zeverdegani
- Department of Occupational Health and Safety Engineering, Student Research Committee, School of Health, 48455Isfahan University of Medical Sciences, Isfahan , Iran
| |
Collapse
|
14
|
Lee KM, Corley R, Jarabek AM, Kleinstreuer N, Paini A, Stucki AO, Bell S. Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT-NAMs Symposium. TOXICS 2022; 10:760. [PMID: 36548593 PMCID: PMC9781465 DOI: 10.3390/toxics10120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
New approach methodologies (NAMs) are emerging chemical safety assessment tools consisting of in vitro and in silico (computational) methodologies intended to reduce, refine, or replace (3R) various in vivo animal testing methods traditionally used for risk assessment. Significant progress has been made toward the adoption of NAMs for human health and environmental toxicity assessment. However, additional efforts are needed to expand their development and their use in regulatory decision making. A virtual symposium was held during the 2021 Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) Smoke Science and Product Technology (SSPT) conference (titled "Advancing New Alternative Methods for Tobacco Harm Reduction"), with the goals of introducing the concepts and potential application of NAMs in the evaluation of potentially reduced-risk (PRR) tobacco products. At the symposium, experts from regulatory agencies, research organizations, and NGOs shared insights on the status of available tools, strengths, limitations, and opportunities in the application of NAMs using case examples from safety assessments of chemicals and tobacco products. Following seven presentations providing background and application of NAMs, a discussion was held where the presenters and audience discussed the outlook for extending the NAMs toxicological applications for tobacco products. The symposium, endorsed by the CORESTA In Vitro Tox Subgroup, Biomarker Subgroup, and NextG Tox Task Force, illustrated common ground and interest in science-based engagement across the scientific community and stakeholders in support of tobacco regulatory science. Highlights of the symposium are summarized in this paper.
Collapse
Affiliation(s)
| | - Richard Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID 83714, USA
| | - Annie M. Jarabek
- Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), Research Triangle Park, NC 27711, USA
| | - Alicia Paini
- European Commission Joint Research Center (EC JRC), 2749 Ispra, Italy
| | - Andreas O. Stucki
- PETA Science Consortium International e.V., 70499 Stuttgart, Germany
| | - Shannon Bell
- Inotiv-RTP, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Kolewe EL, Padhye S, Woodward IR, Wee J, Rahman T, Feng Y, Briddell JW, Fromen CA. Spatial aerosol deposition correlated to anatomic feature development in 6-year-old upper airway computational models. Comput Biol Med 2022; 149:106058. [PMID: 36103743 PMCID: PMC10167792 DOI: 10.1016/j.compbiomed.2022.106058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 02/01/2023]
Abstract
The upper airways of children undergo developmental changes around age 6, yielding differences between adult and pediatric anatomies. These differences include the cricoid ring area shape, the location of narrowest constriction, and the angle of the epiglottis, all of which are expected to alter local fluid dynamic profiles and subsequent upper airway deposition and downstream aerosol delivery of inhaled therapeutics. In this work, we quantify "pediatric"-like and "adult"-like geometric and fluid dynamic features of two computed tomography (CT)-scan derived models of 6-year-old upper airways in healthy subjects and compare to an idealized model. The two CT-scan models had a mixture of "adult"- and "pediatric"-like anatomic features, with Subject B exhibiting more "pediatric"-like features than Subject A, while the idealized model exhibited entirely "adult"-like features. By computational fluid-particle dynamics, these differences in anatomical features yielded distinct local fluid profiles with altered aerosol deposition between models. Notably, the idealized model better predicted deposition characteristics of Subject A, the more "adult"-like model, including the relationship between the impaction parameter, dp2Q and the fraction of deposition across a range of flow rates and particle diameters, as well as deposition of an approximate pharmaceutical particle size distribution model. Our results with even this limited dataset suggest that there are key personalized metrics that are influenced by anatomical development, which should be considered when developing pediatric inhalable therapeutics. Quantifying anatomical development and correlating to aerosol deposition has the potential for high-throughput developmental characterization and informing desired aerosol characteristics for pediatric applications.
Collapse
Affiliation(s)
- Emily L Kolewe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Saurav Padhye
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Jinyong Wee
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Tariq Rahman
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Yu Feng
- Department of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Jenna W Briddell
- Division of Otorhinolaryngology, Department of Surgery, Nemours Children's Hospital, Wilmington, DE, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
16
|
How Nanoparticle Aerosols Transport through Multi-Stenosis Sections of Upper Airways: A CFD-DPM Modelling. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway stenosis is a global respiratory health problem that is caused by airway injury, endotracheal intubation, malignant tumor, lung aging, or autoimmune diseases. A precise understanding of the airflow dynamics and pharmaceutical aerosol transport through the multi-stenosis airways is vital for targeted drug delivery, and is missing from the literature. The object of this study primarily relates to behaviors and nanoparticle transport through the multi-stenosis sections of the trachea and upper airways. The combination of a CT-based mouth–throat model and Weibel’s model was adopted in the ANSYS FLUENT solver for the numerical simulation of the Euler–Lagrange (E-L) method. Comprehensive grid refinement and validation were performed. The results from this study indicated that, for all flow rates, a higher velocity was usually found in the stenosis section. The maximum velocity was found in the stenosis section having a 75% reduction, followed by the stenosis section having a 50% reduction. Increasing flow rate resulted in higher wall shear stress, especially in stenosis sections. The highest pressure was found in the mouth–throat section for all flow rates. The lowest pressure was usually found in stenosis sections, especially in the third generation. Particle escape rate was dependent on flow rate and inversely dependent on particle size. The overall deposition efficiency was observed to be significantly higher in the mouth–throat and stenosis sections compared to other areas. However, this was proven to be only the case for a particle size of 1 nm. Moreover, smaller nanoparticles were usually trapped in the mouth–throat section, whereas larger nanoparticle sizes escaped through the lower airways from the left side of the lung; this accounted for approximately 50% of the total injected particles, and 36% escaped from the right side. The findings of this study can improve the comprehensive understanding of airflow patterns and nanoparticle deposition. This would be beneficial in work with polydisperse particle deposition for treatment of comprehensive stenosis with specific drugs under various disease conditions.
Collapse
|
17
|
Darquenne C, Borojeni AA, Colebank MJ, Forest MG, Madas BG, Tawhai M, Jiang Y. Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations. Front Physiol 2022; 13:923945. [PMID: 35795643 PMCID: PMC9251577 DOI: 10.3389/fphys.2022.923945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, an information bridge between epidemiological models (that inform policymakers to develop public health responses) and within-host models (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract. We then articulate how aerosol transport modeling can serve as a bridge between and guide calibration of within-host and epidemiological models, forming a comprehensive tool to formulate and test hypotheses about respiratory tract exposure and infection within and between individuals.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Azadeh A.T. Borojeni
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mitchel J. Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - M. Gregory Forest
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Tedla G, Jarabek AM, Byrley P, Boyes W, Rogers K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152622. [PMID: 34963600 PMCID: PMC8961686 DOI: 10.1016/j.scitotenv.2021.152622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
Fused filament fabrication (FFF) or 3D printing is a growing technology used in industry, cottage industry and for consumer applications. Low-cost 3D printing devices have become increasingly popular among children and teens. Consequently, 3D printers are increasingly common in households, schools, and libraries. Because the operation of 3D printers is associated with the release of inhalable particles and volatile organic compounds (VOCs), there are concerns of possible health implications, particularly for use in schools and residential environments that may not have adequate ventilation such as classrooms bedrooms and garages, etc. Along with the growing consumer market for low-cost printers and printer pens, there is also an expanding market for a range of specialty filaments with additives such as inorganic colorants, metal particles and nanomaterials as well as metal-containing flame retardants, antioxidants, heat stabilizers and catalysts. Inhalation of particulate-associated metals may represent a health risk depending on both the metal and internal dose to the respiratory tract. Little has been reported, however, about the presence, speciation, and source of metals in the emissions; or likewise the effect of metals on emission processes and toxicological implications of these 3D printer generated emissions. This report evaluates various issues including the following: metals in feedstock with a focus on filament characteristics and function of metals; the effect of metals on the emissions and metals detected in emissions; printer emissions, particle formation, transport, and transformation; exposure and translation to internal dose; and potential toxicity on inhaled dose. Finally, data gaps and potential areas of future research are discussed within these contexts.
Collapse
Affiliation(s)
- Getachew Tedla
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - William Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
19
|
Zarnitsyna VI, Gianlupi JF, Hagar A, Sego TJ, Glazier JA. Advancing therapies for viral infections using mechanistic computational models of the dynamic interplay between the virus and host immune response. Curr Opin Virol 2021; 50:103-109. [PMID: 34450519 PMCID: PMC8384423 DOI: 10.1016/j.coviro.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
The COVID-19 pandemic has highlighted a need for improved frameworks for drug discovery, repurposing, clinical trial design and therapy optimization and personalization. Mechanistic computational models can play an important role in developing these frameworks. We discuss how mechanistic models, which consider viral entry, replication in target cells, viral spread in the body, immune response, and the complex factors involved in tissue and organ damage and recovery, can clarify the mechanisms of humoral and cellular immune responses to the virus, viral distribution and replication in tissues, the origins of pathogenesis and patient-to-patient heterogeneity in responses. These models are already improving our understanding of the mechanisms of action of antivirals and immune modulators. We discuss how closer collaboration between the experimentalists, clinicians and modelers could result in more predictive models which may guide therapies for viral infections, improving survival and leading to faster and more complete recovery.
Collapse
Affiliation(s)
- Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juliano Ferrari Gianlupi
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Amit Hagar
- Department of History and Philosophy of Science, Indiana University, Bloomington, IN, USA
| | - T J Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - James A Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA; Biocomplexity Institute, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
20
|
Corley RA, Kuprat AP, Suffield SR, Kabilan S, Hinderliter PM, Yugulis K, Ramanarayanan TS. New Approach Methodology for Assessing Inhalation Risks of a Contact Respiratory Cytotoxicant: Computational Fluid Dynamics-Based Aerosol Dosimetry Modeling for Cross-Species and In Vitro Comparisons. Toxicol Sci 2021; 182:243-259. [PMID: 34077545 PMCID: PMC8331159 DOI: 10.1093/toxsci/kfab062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regulatory agencies are considering alternative approaches to assessing inhalation toxicity that utilizes in vitro studies with human cells and in silico modeling in lieu of additional animal studies. In support of this goal, computational fluid-particle dynamics models were developed to estimate site-specific deposition of inhaled aerosols containing the fungicide, chlorothalonil, in the rat and human for comparisons to prior rat inhalation studies and new human in vitro studies. Under bioassay conditions, the deposition was predicted to be greatest at the front of the rat nose followed by the anterior transitional epithelium and larynx corresponding to regions most sensitive to local contact irritation and cytotoxicity. For humans, simulations of aerosol deposition covering potential occupational or residential exposures (1-50 µm diameter) were conducted using nasal and oral breathing. Aerosols in the 1-5 µm range readily penetrated the deep region of the human lung following both oral and nasal breathing. Under actual use conditions (aerosol formulations >10 µm), the majority of deposited doses were in the upper conducting airways. Beyond the nose or mouth, the greatest deposition in the pharynx, larynx, trachea, and bronchi was predicted for aerosols in the 10-20 µm size range. Only small amounts of aerosols >20 µm penetrated past the pharyngeal region. Using the ICRP clearance model, local retained tissue dose metrics including maximal concentrations and areas under the curve were calculated for each airway region following repeated occupational exposures. These results are directly comparable with benchmark doses from in vitro toxicity studies in human cells leading to estimated human equivalent concentrations that reduce the reliance on animals for risk assessments.
Collapse
Affiliation(s)
- Richard A Corley
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Andrew P Kuprat
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Sarah R Suffield
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Senthil Kabilan
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | - Kevin Yugulis
- Battelle Memorial Institute, Columbus, Ohio 43201, USA
| | | |
Collapse
|
21
|
Islam MS, Larpruenrudee P, Saha SC, Pourmehran O, Paul AR, Gemci T, Collins R, Paul G, Gu Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081911. [PMID: 34552312 PMCID: PMC8450910 DOI: 10.1063/5.0061627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 05/22/2023]
Abstract
The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Oveis Pourmehran
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Akshoy Ranjan Paul
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | | | - Richard Collins
- Biomechanics International, Cranberry Township, Pennsylvania 16066, USA
| | - Gunther Paul
- James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Queensland 4810, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|