1
|
Orciani C, Foret MK, Cuello AC, Do Carmo S. Long-term nucleus basalis cholinergic lesions alter the structure of cortical vasculature, astrocytic density and microglial activity in Wistar rats. Neurobiol Aging 2025; 150:132-145. [PMID: 40121723 DOI: 10.1016/j.neurobiolaging.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are the sole source of cholinergic innervation to the cerebral cortex and hippocampus in humans and the primary source in rodents. This system undergoes early degeneration in Alzheimer's disease. BFCNs terminal synapses are involved in the regulation of the cerebral blood flow by making classical synaptic contacts with other neurons. Additionally, they are located in proximity to cortical cerebral blood vessels, forming connections with various cell types of the neurovascular unit (NVU), including vascular smooth muscle cells, endothelial cells, and astrocytic end-feet. However, the effects of the BFCNs input on NVU components remain unresolved. To address this issue, we immunolesioned the nucleus basalis by administering bilateral stereotaxic injections of the cholinergic immunotoxin 192-IgG-Saporin in 2.5-month-old Wistar rats. Seven months post-lesion, we observed a significant reduction in cortical vesicular acetylcholine transporter-immunoreactive synapses. This was accompanied by changes in the diameter of cortical capillaries and precapillary arterioles, as well as lower levels of vascular endothelial growth factor A (VEGF-A). Additionally, the cholinergic immunolesion increased the density of cortical astrocytes and microglia in the cortex. At these post-BFCN-lesion stages, astrocytic end-feet exhibited an increased co-localization with arterioles. The number of microglia in the parietal cortex correlated with cholinergic loss and exhibited morphological changes indicative of an intermediate activation state. This was supported by decreased levels of proinflammatory mediators IFN-γ, IL-1β, and KC/GRO (CXCL1), and by increased expression of M2 markers SOCS3, IL4Rα, YM1, ARG1, and Fizz1. Our findings offer a novel insight: that the loss of nucleus basalis cholinergic input negatively impacts cortical blood vessels, NVU components, and microglia phenotype.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Morgan K Foret
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
2
|
Russell JK, Conley AC, Boyd BD, Begnoche JP, Schlossberg R, Stranick A, Rosenberg AJ, Acosta LMY, Martin D, Neal Y, Rafii MS, Dumas J, Newhouse PA. Brain cholinergic terminal density utilizing [ 18F]-fluoroethoxybenzovesamicol PET in adults with Down's syndrome: Relationship to amyloid PET and cognitive performance. Alzheimers Dement 2025; 21:e70134. [PMID: 40189807 PMCID: PMC11972980 DOI: 10.1002/alz.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Adults with Down syndrome (DS) have increased risk of Alzheimer's disease (AD). The cholinergic system declines in AD, underlying many cognitive deficits. We investigated the relationship between amyloid accumulation and cholinergic terminal density in adults with DS compared to amyloid-matched controls. METHODS A total of 15 non-demented adults with DS and 15 amyloid-matched healthy controls were assessed for [18F]-FEOBV uptake differences and [18F]-FEOBV uptake relationships with amyloid accumulation and cognitive performance. RESULTS Adults with DS displayed greater [18F]-FEOBV uptake than controls, with a similar uptake pattern. Amyloid-associated differences in [18F]-FEOBV uptake were observed in adults with DS. [18F]-FEOBV uptake in adults with DS was positively associated with cognition. DISCUSSION Adults with DS display higher [18F]-FEOBV uptake than amyloid-matched controls but relatively lower [18F]-FEOBV uptake in individuals with elevated amyloid. Thus, the cholinergic system appears to be adversely affected by AD pathology in individuals with DS, which may be relevant to cognitive decline. HIGHLIGHTS Adults with DS display greater cholinergic terminal density in specific ROIs than amyloid-match controls. Adults with DS exhibit a similar pattern of cholinergic terminal density across the brain. The first association of cholinergic terminal density with AD pathology in non-demented adults with DS. Adults with DS display a greater cholinergic terminal decline in association with amyloid accumulation than neurotypically developed age-matched controls. Region-specific cholinergic terminal density associated with cognitive performance in adults with DS.
Collapse
Affiliation(s)
- Jason K. Russell
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alexander C. Conley
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Brian D. Boyd
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - John Patrick Begnoche
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Rachel Schlossberg
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Allison Stranick
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adam J. Rosenberg
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Dann Martin
- Department of Clinical Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Yasmeen Neal
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteKeck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Julie Dumas
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Paul A. Newhouse
- Center for Cognitive MedicineDepartment of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Geriatric ResearchEducation, and Clinical CenterVeterans Affairs Tennessee Valley Health SystemNashvilleTennesseeUSA
| |
Collapse
|
3
|
Taza M, Schmitz TW, Spreng RN. Structural changes to the basal forebrain cholinergic system in the continuum of Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:81-93. [PMID: 40340069 DOI: 10.1016/b978-0-443-19088-9.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In this chapter, we review evidence, derived predominantly from in vivo human MRI studies, that the basal forebrain (BF) and its projection system undergo structural changes across the continuum of Alzheimer disease (AD) progression. We examine how these changes are detectable from the earliest presymptomatic stages and continue into the prodromal and clinical phases of AD. The chapter begins with a brief overview of BF neuroanatomy before characterizing how changes to the BF and ascending cholinergic white matter projections parallel AD progression. In subsequent sections, we describe how these structural changes are exacerbated in the presence of amyloid and tau pathology, as well as in individuals at elevated genetic risk for AD. We conclude with a review of recent findings implicating the BF as a potential origin site for AD neuropathology and discuss the transsynaptic spread hypothesis of AD progression, from the BF to cortical projection targets.
Collapse
Affiliation(s)
- Miriam Taza
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Li B, Chen H, Zheng Y, Xu X, You Z, Huang Q, Huang Y, Guan Y, Zhao J, Liu J, Xie F, Wang J, Xu W, Zhang J, Deng Y. Loss of synaptic density in nucleus basalis of meynert indicates distinct neurodegeneration in Alzheimer's disease: the RJNB-D study. Eur J Nucl Med Mol Imaging 2024; 52:134-144. [PMID: 39112615 DOI: 10.1007/s00259-024-06862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS In our study, we included 44 Aβ-negative normal controls (CN) and 76 Aβ-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Zheng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomeng Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfang Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Russell JK, Conley AC, Boyd BD, Begnoche JP, Schlossberg R, Stranick A, Rosenberg AJ, Acosta LMY, Martin D, Neal Y, Kanel P, Albin RL, Rafii MS, Dumas J, Newhouse PA. Age-Related Changes in the Cholinergic System in Adults with Down Syndrome Assessed Using [ 18F]-Fluoroethoxybenzovesamicol Positron Emission Tomography Imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.28.24316136. [PMID: 39574852 PMCID: PMC11581087 DOI: 10.1101/2024.10.28.24316136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Adults with Down syndrome are genetically predisposed to developing Alzheimer's disease after the age of 40. The cholinergic system, which is critical for cognitive functioning, is known to decline in Alzheimer's disease and although first investigated in individuals with Down syndrome 40 years ago, remains relatively understudied. Existing studies suggest individuals with Down syndrome have an intact cholinergic system at birth that declines through adulthood alongside the development of Alzheimer's disease pathology. The present study provides the first description of cholinergic terminals in vivo in non-demented adults with Down syndrome utilizing [18F]-fluoroethoxybenzovesamicol PET imaging. In addition, we investigated age-associated decline in cholinergic terminal density. Sixteen non-demented adults with Down syndrome and 20 neurotypically developed individuals were studied, comparing radiotracer uptake groupwise and associations with age utilizing a voxel-based approach. Adults with Down syndrome displayed significantly increased [18F]-fluoroethoxybenzovesamicol uptake in the cerebellum, brainstem, thalamus, and numerous cortical regions compared to age-matched controls. Cholinergic terminal density in numerous cortical regions showed a steeper decline associated with increasing age in adults with Down syndrome than observed in neurotypically developed adults in the age range tested. These data suggest increased cholinergic terminal density in early adulthood in individuals with Down syndrome with a more rapid or earlier age-associated decline than is observed in neurotypically developed individuals.
Collapse
Affiliation(s)
- Jason K Russell
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander C. Conley
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian D. Boyd
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J. Patrick Begnoche
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Schlossberg
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison Stranick
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam J. Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lealani Mae Y Acosta
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dann Martin
- Department of Clinical Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasmeen Neal
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
| | - Roger L. Albin
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatric Research, Education, and Clinical Center, VAAAHS, Ann Arbor, Michigan, USA
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Julie Dumas
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Paul A. Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Xia Y, Dore V, Fripp J, Bourgeat P, Laws SM, Fowler CJ, Rainey-Smith SR, Martins RN, Rowe C, Masters CL, Coulson EJ, Maruff P. Association of Basal Forebrain Atrophy With Cognitive Decline in Early Alzheimer Disease. Neurology 2024; 103:e209626. [PMID: 38885444 PMCID: PMC11254448 DOI: 10.1212/wnl.0000000000209626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In early Alzheimer disease (AD), β-amyloid (Aβ) deposition is associated with volume loss in the basal forebrain (BF) and cognitive decline. However, the extent to which Aβ-related BF atrophy manifests as cognitive decline is not understood. This study sought to characterize the relationship between BF atrophy and the decline in memory and attention in patients with early AD. METHODS Participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who completed Aβ-PET imaging and repeated MRI and cognitive assessments were included. At baseline, participants were classified based on their clinical dementia stage and Aβ status, yielding groups that were cognitively unimpaired (CU) Aβ-, CU Aβ+, and mild cognitive impairment (MCI) Aβ+. Linear mixed-effects models were used to assess changes in volumetric measures of BF subregions and the hippocampus and changes in AIBL memory and attention composite scores for each group compared with CU Aβ- participants. Associations between Aβ burden, brain atrophy, and cognitive decline were evaluated and explored further using mediation analyses. RESULTS The cohort included 476 participants (72.6 ± 5.9 years, 55.0% female) with longitudinal data from a median follow-up period of 6.1 years. Compared with the CU Aβ- group (n = 308), both CU Aβ+ (n = 107) and MCI Aβ+ (n = 61) adults showed faster decline in BF and hippocampal volumes and in memory and attention (Cohen d = 0.73-1.74). Rates of atrophy in BF subregions and the hippocampus correlated with cognitive decline, and each individually mediated the impact of Aβ burden on memory and attention decline. When all mediators were considered simultaneously, hippocampal atrophy primarily influenced the effect of Aβ burden on memory decline (β [SE] = -0.139 [0.032], proportion mediated [PM] = 28.0%) while the atrophy of the posterior nucleus basalis of Meynert in the BF (β [SE] = -0.068 [0.029], PM = 13.1%) and hippocampus (β [SE] = -0.121 [0.033], PM = 23.4%) distinctively influenced Aβ-related attention decline. DISCUSSION These findings highlight the significant role of BF atrophy in the complex pathway linking Aβ to cognitive impairment in early stages of AD. Volumetric assessment of BF subregions could be essential in elucidating the relationships between the brain structure and behavior in AD.
Collapse
Affiliation(s)
- Ying Xia
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Vincent Dore
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Jurgen Fripp
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Pierrick Bourgeat
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Simon M Laws
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher J Fowler
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Stephanie R Rainey-Smith
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Ralph N Martins
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher Rowe
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Colin L Masters
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Elizabeth J Coulson
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Paul Maruff
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| |
Collapse
|
7
|
Sundman MH, Green JM, Fuglevand AJ, Chou YH. TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia. AGING BRAIN 2024; 6:100123. [PMID: 39132326 PMCID: PMC11315225 DOI: 10.1016/j.nbas.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Aging is a complex and diverse biological process characterized by progressive molecular, cellular, and tissue damage, resulting in a loss of physiological integrity and heightened vulnerability to pathology. This biological diversity corresponds with highly variable cognitive trajectories, which are further confounded by genetic and environmental factors that influence the resilience of the aging brain. Given this complexity, there is a need for neurophysiological indicators that not only discern physiologic and pathologic aging but also closely align with cognitive trajectories. Transcranial Magnetic Stimulation (TMS) may have utility in this regard as a non-invasive brain stimulation tool that can characterize features of cortical excitability. Particularly, as a proxy for central cholinergic function, short-afferent inhibition (SAI) dysfunction is robustly associated with cognitive deficits in the latter stages of Alzheimer's Disease and Related Dementia (ADRD). In this study, we evaluated SAI in healthy young adults and older adults who, though absent clinical diagnoses, were algorithmically classified as cognitively normal (CN) or cognitively impaired (CI) according to the Jak/Bondi actuarial criteria. We report that SAI is preserved in the Old-CN cohort relative to the young adults, and SAI is significantly diminished in the Old-CI cohort relative to both young and CN older adults. Additionally, diminished SAI was significantly associated with impaired sustained attention and working memory. As a proxy measure for central cholinergic deficits, we discuss the potential value of SAI for discerning physiological and pathological aging.
Collapse
Affiliation(s)
- Mark H. Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob M. Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Teipel S, Grazia A, Dyrba M, Grothe MJ, Pomara N. Basal forebrain volume and metabolism in carriers of the Colombian mutation for autosomal dominant Alzheimer's disease. Sci Rep 2024; 14:11268. [PMID: 38760448 PMCID: PMC11101449 DOI: 10.1038/s41598-024-60799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
We aimed to study atrophy and glucose metabolism of the cholinergic basal forebrain in non-demented mutation carriers for autosomal dominant Alzheimer's disease (ADAD). We determined the level of evidence for or against atrophy and impaired metabolism of the basal forebrain in 167 non-demented carriers of the Colombian PSEN1 E280A mutation and 75 age- and sex-matched non-mutation carriers of the same kindred using a Bayesian analysis framework. We analyzed baseline MRI, amyloid PET, and FDG-PET scans of the Alzheimer's Prevention Initiative ADAD Colombia Trial. We found moderate evidence against an association of carrier status with basal forebrain volume (Bayes factor (BF10) = 0.182). We found moderate evidence against a difference of basal forebrain metabolism (BF10 = 0.167). There was only inconclusive evidence for an association between basal forebrain volume and delayed memory and attention (BF10 = 0.884 and 0.184, respectively), and between basal forebrain volume and global amyloid load (BF10 = 2.1). Our results distinguish PSEN1 E280A mutation carriers from sporadic AD cases in which cholinergic involvement of the basal forebrain is already detectable in the preclinical and prodromal stages. This indicates an important difference between ADAD and sporadic AD in terms of pathogenesis and potential treatment targets.
Collapse
Affiliation(s)
- Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine, University Medicine Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Alice Grazia
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Martin Dyrba
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Michel J Grothe
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan Kline Institute/Department of Psychiatry and Pathology, NYU Grossman School of Medicine, Orangeburg, NY, USA
| |
Collapse
|
9
|
German‐Castelan L, Shanks HRC, Gros R, Saito T, Saido TC, Saksida LM, Bussey TJ, Prado MAM, Schmitz TW, Prado VF. Sex-dependent cholinergic effects on amyloid pathology: A translational study. Alzheimers Dement 2024; 20:995-1012. [PMID: 37846816 PMCID: PMC10916951 DOI: 10.1002/alz.13481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION About two-thirds of Alzheimer's Disease (AD) patients are women, who exhibit more severe pathology and cognitive decline than men. Whether biological sex causally modulates the relationship between cholinergic signaling and amyloid pathology remains unknown. METHODS We quantified amyloid beta (Aβ) in male and female App-mutant mice with either decreased or increased cholinergic tone and examined the impact of ovariectomy and estradiol replacement in this relationship. We also investigated longitudinal changes in basal forebrain (cholinergic function) and Aβ in elderly individuals. RESULTS We show a causal relationship between cholinergic tone and amyloid pathology in males and ovariectomized female mice, which is decoupled in ovary-intact and ovariectomized females receiving estradiol. In elderly humans, cholinergic loss exacerbates Aβ. DISCUSSION Our findings emphasize the importance of reflecting human menopause in mouse models. They also support a role for therapies targeting estradiol and cholinergic signaling to reduce Aβ. HIGHLIGHTS Cholinergic tone regulates amyloid beta (Aβ) pathology in males and ovariectomized female mice. Estradiol uncouples the relationship between cholinergic tone and Aβ. In elderly humans, cholinergic loss correlates with increased Aβ in both sexes.
Collapse
Affiliation(s)
- Liliana German‐Castelan
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Hayley R. C. Shanks
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Robert Gros
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of MedicineSchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Takashi Saito
- Department of Neurocognitive ScienceInstitute of Brain ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Lisa M. Saksida
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
| | - Timothy J. Bussey
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
| | - Marco A. M. Prado
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor W. Schmitz
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Lawson Health Research InstituteSt. Joseph's HospitalLondonOntarioCanada
| | - Vania F. Prado
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | | |
Collapse
|
10
|
Yoo HS, Kim HK, Lee JH, Chun JH, Lee HS, Grothe MJ, Teipel S, Cavedo E, Vergallo A, Hampel H, Ryu YH, Cho H, Lyoo CH. Association of Basal Forebrain Volume with Amyloid, Tau, and Cognition in Alzheimer's Disease. J Alzheimers Dis 2024; 99:145-159. [PMID: 38640150 DOI: 10.3233/jad-230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aβ]-negative cognitively unimpaired, 6 Aβ-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aβ, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aβ and tau standardized uptake value ratio and cognition. Results Cross-sectionally, lower BF volume was not independently associated with higher cortical Aβ, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aβ accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aβ and tau burden. Conclusions Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation-ISCIII, Madrid, Spain
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Germany
| | - Enrica Cavedo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Harald Hampel
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Rozalem Aranha M, Iulita MF, Montal V, Pegueroles J, Bejanin A, Vaqué-Alcázar L, Grothe MJ, Carmona-Iragui M, Videla L, Benejam B, Arranz J, Padilla C, Valldeneu S, Barroeta I, Altuna M, Fernández S, Ribas L, Valle-Tamayo N, Alcolea D, González-Ortiz S, Bargalló N, Zetterberg H, Blennow K, Blesa R, Wisniewski T, Busciglio J, Cuello AC, Lleó A, Fortea J. Basal forebrain atrophy along the Alzheimer's disease continuum in adults with Down syndrome. Alzheimers Dement 2023; 19:4817-4827. [PMID: 37021589 DOI: 10.1002/alz.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.
Collapse
Affiliation(s)
- Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lídia Vaqué-Alcázar
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michel J Grothe
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sílvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laia Ribas
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Natalia Valle-Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sofía González-Ortiz
- Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Henrik Zetterberg
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, China, Hong Kong
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry and Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jorge Busciglio
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, California, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology, Oxford University, Oxford, UK
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Facultad de Medicina - Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| |
Collapse
|
12
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
13
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Chen Q, Chen F, Long C, Zhu Y, Jiang Y, Zhu Z, Lu J, Zhang X, Nedelska Z, Hort J, Zhang B. Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline. Alzheimers Res Ther 2023; 15:86. [PMID: 37098612 PMCID: PMC10127414 DOI: 10.1186/s13195-023-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Futao Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Cong Long
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yaoxian Jiang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China.
- Institute of Brain Science, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
16
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
17
|
Daamen M, Scheef L, Li S, Grothe MJ, Gaertner FC, Buchert R, Buerger K, Dobisch L, Drzezga A, Essler M, Ewers M, Fliessbach K, Herrera Melendez AL, Hetzer S, Janowitz D, Kilimann I, Krause BJ, Lange C, Laske C, Munk MH, Peters O, Priller J, Ramirez A, Reimold M, Rominger A, Rostamzadeh A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel SJ, Wagner M, Düzel E, Jessen F, Boecker H. Cortical Amyloid Burden Relates to Basal Forebrain Volume in Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1013-1028. [PMID: 37638433 DOI: 10.3233/jad-230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Atrophy of cholinergic basal forebrain (BF) nuclei is a frequent finding in magnetic resonance imaging (MRI) volumetry studies that examined patients with prodromal or clinical Alzheimer's disease (AD), but less clear for individuals in earlier stages of the clinical AD continuum. OBJECTIVE To examine BF volume reductions in subjective cognitive decline (SCD) participants with AD pathologic changes. METHODS The present study compared MRI-based BF volume measurements in age- and sex-matched samples of N = 24 amyloid-positive and N = 24 amyloid-negative SCD individuals, based on binary visual ratings of Florbetaben positron emission tomography (PET) measurements. Additionally, we assessed associations of BF volume with cortical amyloid burden, based on semiquantitative Centiloid (CL) analyses. RESULTS Group differences approached significance for BF total volume (p = 0.061) and the Ch4 subregion (p = 0.059) only, showing the expected relative volume reductions for the amyloid-positive subgroup. There were also significant inverse correlations between BF volumes and CL values, which again were most robust for BF total volume and the Ch4 subregion. CONCLUSIONS The results are consistent with the hypothesis that amyloid-positive SCD individuals, which are considered to represent a transitional stage on the clinical AD continuum, already show incipient alterations of BF integrity. The negative association with a continuous measure of cortical amyloid burden also suggests that this may reflect an incremental process. Yet, further research is needed to evaluate whether BF changes already emerge at "grey zone" levels of amyloid accumulation, before amyloidosis is reliably detected by PET visual readings.
Collapse
Affiliation(s)
- Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lukas Scheef
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | - Shumei Li
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Ewers
- Institute for Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ana Lucia Herrera Melendez
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center of Advanced Neuroimaging, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Matthias Reimold
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University, Tübingen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ayda Rostamzadeh
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
19
|
van den Berg M, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Front Aging Neurosci 2023; 15:1081058. [PMID: 37032829 PMCID: PMC10075364 DOI: 10.3389/fnagi.2023.1081058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (Aβ) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target. Synaptic dysfunction results in altered oscillatory activity, which can be detected with electroencephalography and electrophysiological recordings. However, the majority of these studies have been performed at advanced stages of AD, when extensive damage and cognitive symptoms are already present. The current study aimed to investigate if the hippocampal oscillatory activity is altered at pre-plaque stages of AD. The rats received stereotactic surgery to implant a laminar electrode in the CA1 layer of the right hippocampus. Electrophysiological recordings during two consecutive days in an open field were performed in 4-5-month-old TgF344-AD rats when increased concentrations of soluble Aβ species were observed in the brain, in the absence of Aβ-plaques. We observed a decreased power of high theta oscillations in TgF344-AD rats compared to wild-type littermates. Sharp wave-ripple (SWR) analysis revealed an increased SWR power and a decreased duration of SWR during quiet wake in TgF344-AD rats. The alterations in properties of SWR and the increased power of fast oscillations are suggestive of neuronal hyperexcitability, as has been demonstrated to occur during presymptomatic stages of AD. In addition, decreased strength of theta-gamma coupling, an important neuronal correlate of memory encoding, was observed in the TgF344-AD rats. Theta-gamma phase amplitude coupling has been associated with memory encoding and the execution of cognitive functions. Studies have demonstrated that mild cognitive impairment patients display decreased coupling strength, similar to what is described here. The current study demonstrates altered hippocampal network activity occurring at pre-plaque stages of AD and provides insights into prodromal network dysfunction in AD. The alterations observed could aid in the detection of AD during presymptomatic stages.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| |
Collapse
|
20
|
Liu X, Zeng Q, Luo X, Li K, Xu X, Hong L, Li J, Guan X, Xu X, Huang P, Zhang M. Effects of APOE ε2 allele on basal forebrain functional connectivity in mild cognitive impairment. CNS Neurosci Ther 2022; 29:597-608. [PMID: 36468416 PMCID: PMC9873529 DOI: 10.1111/cns.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Basal forebrain cholinergic system (BFCS) dysfunction is associated with cognitive decline in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Apolipoprotein E (APOE) ε2 is a protective genetic factor in AD and MCI, and cholinergic sprouting depends on APOE. OBJECTIVE We investigated the effect of the APOE ε2 allele on BFCS functional connectivity (FC) in cognitively normal (CN) subjects and MCI patients. METHOD We included 60 MCI patients with APOE ε3/ε3, 18 MCI patients with APOE ε2/ε3, 73 CN subjects with APOE ε3/ε3, and 36 CN subjects with APOE ε2/ε3 genotypes who had resting-state functional magnetic resonance imaging data from the Alzheimer's disease Neuroimaging Initiative. We used BFCS subregions (Ch1-3 and Ch4) as seeds and calculated the FC with other brain areas. Using a mixed-effect analysis, we explored the interaction effects of APOE ε2 allele × cognitive status on BFCS-FC. Furthermore, we examined the relationships between imaging metrics, cognitive abilities, and AD pathology markers, controlling for sex, age, and education as covariates. RESULTS An interaction effect on functional connectivity was found between the right Ch4 (RCh4) and left insula (p < 0.05, corrected), and between the RCh4 and left Rolandic operculum (p < 0.05, corrected). Among all subjects and APOE ε2 carriers, RCh4-left Insula FC was associated with early tau deposition. Furthermore, no correlation was found between imaging metrics and amyloid burden. Among all subjects and APOE ε2 carriers, FC metrics were associated with cognitive performance. CONCLUSION The APOE ε2 genotype may play a protective role during BFCS degeneration in MCI.
Collapse
Affiliation(s)
- Xiaocao Liu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingze Zeng
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao Luo
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kaicheng Li
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaopei Xu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luwei Hong
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jixuan Li
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Min‐Ming Zhang
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | | |
Collapse
|
21
|
Zeng Q, Qiu T, Li K, Luo X, Wang S, Xu X, Liu X, Hong L, Li J, Huang P, Zhang M. Increased functional connectivity between nucleus basalis of Meynert and amygdala in cognitively intact elderly along the Alzheimer's continuum. Neuroimage Clin 2022; 36:103256. [PMID: 36451361 PMCID: PMC9668640 DOI: 10.1016/j.nicl.2022.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND A growing body of research reported the degeneration of the basal forebrain (BF) cholinergic system in the early course of Alzheimer's disease (AD). However, functional changes of the BF in asymptomatic individuals along the Alzheimer's continuum remain unclear. METHODS A total of 229 cognitively intact participants were included from the Alzheimer's Disease Neuroimaging Initiative dataset and further divided into four groups based on the "A/T" profile using amyloid and tau positron emission tomography (PET). All A-T+ subjects were excluded. One hundred and seventy-three subjects along the Alzheimer's continuum (A-T-, A+ T-, A+ T+) were used for further study. The seed-based functional connectivity (FC) maps of the BF subregions (Ch1-3 and Ch4 [nucleus basalis of Meynert, NBM]) with whole-brain voxels were constructed. Analyses of covariance to detect the between-group differences and to further investigated the relations between FC values and AD biomarkers or cognition. RESULTS We found increased FC between right Ch4 and bilateral amygdala among three groups, and the FC value could well distinguish between the A-T- group and the Alzheimer's continuum groups. Furthermore, increased FC between the Ch4 and amygdala was associated with higher pathological burden reflected by amyloid and tau PET in the entire population as well as better logistic memory function in A + T+ group. CONCLUSION Our study demonstrated the NBM functional connectivity increased in cognitively normal elderly along the Alzheimer's continuum, which indicated a potential compensatory mechanism to counteract pathological changes in AD and maintain intact cognitive function.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Qian L, Rawashdeh O, Kasas L, Milne MR, Garner N, Sankorrakul K, Marks N, Dean MW, Kim PR, Sharma A, Bellingham MC, Coulson EJ. Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:6543. [PMID: 36323689 PMCID: PMC9630433 DOI: 10.1038/s41467-022-33624-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.
Collapse
Affiliation(s)
- Lei Qian
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Oliver Rawashdeh
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Leda Kasas
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Michael R. Milne
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Nicholas Garner
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Kornraviya Sankorrakul
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.10223.320000 0004 1937 0490Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Nicola Marks
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew W. Dean
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Pu Reum Kim
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Aanchal Sharma
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Mark C. Bellingham
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Elizabeth J. Coulson
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
23
|
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, Missault S, Heymans L, Ponsaerts P, De Vos WH, Van der Linden A, Keliris GA, Verhoye M. Altered basal forebrain function during whole-brain network activity at pre- and early-plaque stages of Alzheimer's disease in TgF344-AD rats. Alzheimers Res Ther 2022; 14:148. [PMID: 36217211 PMCID: PMC9549630 DOI: 10.1186/s13195-022-01089-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits. METHODS: To this end, we used an established AD rat model (TgF344-AD) and employed resting state functional MRI and quasi-periodic pattern (QPP) analysis, a method to detect recurrent spatiotemporal motifs of brain activity, in parallel with state-of-the-art immunohistochemistry in selected brain regions. RESULTS At the pre-plaque stage, QPPs in TgF344-AD rats showed decreased activity of the basal forebrain (BFB) and the default mode-like network. Histological analyses revealed increased astrocyte abundance restricted to the BFB, in the absence of amyloid plaques, tauopathy, and alterations in a number of cholinergic, gaba-ergic, and glutamatergic synapses. During the early-plaque stage, when mild amyloid-beta (Aβ) accumulation was observed in the cortex and hippocampus, QPPs in the TgF344-AD rats normalized suggesting the activation of compensatory mechanisms during this early disease progression period. Interestingly, astrogliosis observed in the BFB at the pre-plaque stage was absent at the early-plaque stage. Moreover, altered excitatory/inhibitory balance was observed in cortical regions belonging to the default mode-like network. In wild-type rats, at both time points, peak activity in the BFB preceded peak activity in other brain regions-indicating its modulatory role during QPPs. However, this pattern was eliminated in TgF344-AD suggesting that alterations in BFB-directed neuromodulation have a pronounced impact in network function in AD. CONCLUSIONS This study demonstrates the value of rsfMRI and advanced network analysis methods to detect early alterations in BFB function in AD, which could aid early diagnosis and intervention in AD. Restoring the global synaptic transmission, possibly by modulating astrogliosis in the BFB, might be a promising therapeutic strategy to restore brain network function and delay the onset of symptoms in AD.
Collapse
Affiliation(s)
- Monica van den Berg
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit H. Adhikari
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Isabel Pintelon
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Tamara Vasilkovska
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Loran Heymans
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.511960.aInstitute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Marleen Verhoye
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Wang Y, Zhan M, Roebroeck A, De Weerd P, Kashyap S, Roberts MJ. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022; 259:119421. [PMID: 35779763 DOI: 10.1016/j.neuroimage.2022.119421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, Gif sur Yvette, France
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
25
|
Firbank MJ, daSilva Morgan K, Collerton D, Elder GJ, Parikh J, Olsen K, Schumacher J, Ffytche D, Taylor JP. Investigation of structural brain changes in Charles Bonnet Syndrome. Neuroimage Clin 2022; 35:103041. [PMID: 35576854 PMCID: PMC9118504 DOI: 10.1016/j.nicl.2022.103041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022]
Abstract
Reduced grey matter in the occipital cortex in eye disease groups. Widespread altered diffusivity in eye disease groups. No cortical or white matter changes associated with presence of visual hallucinations. Negative association between hippocampal volume and Hallucination severity.
Background and objectives In Charles Bonnet Syndrome (CBS), visual hallucinations (VH) are experienced by people with sight loss due to eye disease or lesional damage to early visual pathways. The aim of this cross-sectional study was to investigate structural brain changes using magnetic resonance imaging (MRI) in CBS. Methods Sixteen CBS patients, 17 with eye disease but no VH, and 19 normally sighted people took part. Participants were imaged on a 3T scanner, with 1 mm resolution T1 weighted structural imaging, and diffusion tensor imaging with 64 diffusion directions. Results The three groups were well matched for age, sex and cognitive scores (MMSE). The two eye disease groups were matched on visual acuity. Compared to the sighted controls, we found reduced grey matter in the occipital cortex in both eye disease groups. We also found reductions of fractional anisotropy and increased diffusivity in widespread areas, including occipital tracts, the corpus callosum, and the anterior thalamic radiation. We did not find any significant differences between the eye disease participants with VH versus without VH, but did observe a negative association between hippocampal volume and VH severity in the CBS group. Discussion Our findings suggest that although there are cortical and subcortical effects associated with sight loss, structural changes do not explain the occurrence of VHs. CBS may relate instead to connectivity or excitability changes in brain networks linked to vision.
Collapse
Affiliation(s)
- Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Katrina daSilva Morgan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Collerton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Greg J Elder
- Northumbria Sleep Research, Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jehill Parikh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Yoo HS, Jeon S, Cavedo E, Ko M, Yun M, Lee PH, Sohn YH, Grothe MJ, Teipel S, Hampel H, Evans AC, Ye BS. Association of β-Amyloid and Basal Forebrain With Cortical Thickness and Cognition in Alzheimer and Lewy Body Disease Spectra. Neurology 2022; 98:e947-e957. [PMID: 34969939 PMCID: PMC8901177 DOI: 10.1212/wnl.0000000000013277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cholinergic degeneration and β-amyloid contribute to brain atrophy and cognitive dysfunction in Alzheimer disease (AD) and Lewy body disease (LBD), but their relationship has not been comparatively evaluated. METHODS In this cross-sectional study, we recruited 28 normal controls (NC), 55 patients with AD mild cognitive impairment (MCI), 34 patients with AD dementia, 28 patients with LBD MCI, and 51 patients with LBD dementia. Participants underwent cognitive evaluation, brain MRI to measure the basal forebrain (BF) volume and global cortical thickness (CTh), and 18F-florbetaben (FBB) PET to measure the standardized uptake value ratio (SUVR). Using general linear models and path analyses, we evaluated the association of FBB-SUVR and BF volume with CTh or cognitive dysfunction in the AD spectrum (AD and NC) and LBD spectrum (LBD and NC), respectively. Covariates included age, sex, education, deep and periventricular white matter hyperintensities, intracranial volume, hypertension, diabetes, and hyperlipidemia. RESULTS BF volume mediated the association between FBB-SUVR and CTh in both the AD and LBD spectra, while FBB-SUVR was associated with CTh independently of BF volume only in the LBD spectrum. Significant correlation between voxel-wise FBB-SUVR and CTh was observed only in the LBD group. FBB-SUVR was independently associated with widespread cognitive dysfunction in both the AD and LBD spectra, especially in the memory domain (standardized beta [B] for AD spectrum = -0.60, B for LBD spectrum = -0.33). In the AD spectrum, BF volume was associated with memory dysfunction (B = 0.18), and CTh was associated with language (B = 0.21) and executive (B = 0.23) dysfunction. In the LBD spectrum, however, BF volume and CTh were independently associated with widespread cognitive dysfunction. CONCLUSIONS There is a common β-amyloid-related degenerative mechanism with or without the mediation of BF in the AD and LBD spectra, while the association of BF atrophy with cognitive dysfunction is more profound and there is localized β-amyloid-cortical atrophy interaction in the LBD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Byoung Seok Ye
- From the Department of Neurology (H.S.Y., S.J., P.H.L., Y.H.S., B.S.Y.), Brain Research Institute (S.J.), Severance Biomedical Science Institute (M.J.K.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Sorbonne University (E.C., H.H.), GRC N0. 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital; Qynapse (E.C.), Paris, France; German Center for Neurodegenerative Diseases (DZNE)-Rostock/Greifswald (M.J.G., S.T.), Rostock, Germany; Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychosomatic Medicine (S.T.), University Medicine Rostock, Germany; and McGill Center for Integrative Neuroscience (A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada.
| |
Collapse
|
27
|
Kilimann I, Wucherer D, Ittermann T, Völzke H, Bülow R, Hoffmann W, Grabe HJ, Wittfeld K, Teipel SJ. Inverse association between the anticholinergic burden and hippocampus volume in a population-based cohort across the entire adult age range. GeroScience 2021; 44:1715-1726. [PMID: 34940948 PMCID: PMC9213601 DOI: 10.1007/s11357-021-00497-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022] Open
Abstract
Many medications of different indications have a relevant anticholinergic activity. The anticholinergic burden of medication has been shown to have significant effects on the cognition and the risk for cognitive impairment and dementia particularly in older patients. So far, most of the studies used data from geriatric patients and the effect of the anticholinergic burden on brain structures is still unexplored. Our study aimed to analyze possible associations of hippocampus and cholinergic basal forebrain volumes as vulnerable brain structures for the development of dementia and the anticholinergic burden in a population-based cohort of non-demented participants spanning the adult age range from 21 to 80 years. We analyzed associations between medication-related anticholinergic burden and structural MRI volumes from participants (n = 3087, 52.2% female) of the population-based “Study of Health in Pomerania” (SHIP). Anticholinergic burden was obtained from the current medication plan using the Anticholinergic Burden Scale (ACB). All analyses were adjusted for age, sex, education, and total intracranial volume. We found statistically significant associations between the ACB and the left and right hippocampus volume but not for the basal forebrain cholinergic system. Complementary voxel-based analysis across all participants revealed FWE-corrected (p = < 0.05) clusters in the temporo-parietal regions reaching into frontal areas, showing reduced volumes with higher ACB scores. We identified an association between anticholinergic burden of medication on hippocampal volume suggesting a potential inverse effect of such medication. This association highlights the importance of a careful prescription of medication with anticholinergic activity at any adult age.
Collapse
Affiliation(s)
- Ingo Kilimann
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Gehlsheimer Straße 20, 18147, Rostock, Germany. .,Department Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.
| | - Diana Wucherer
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Till Ittermann
- SHIP Study Unit, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str.48, 17475, Greifswald, Germany
| | - Henry Völzke
- SHIP Study Unit, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str.48, 17475, Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,Institute for Community Medicine, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Hans Jörgen Grabe
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Katharina Wittfeld
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Stefan Johannes Teipel
- German Center for Neurodegenerative Disease (DZNE), Rostock/Greifswald, Gehlsheimer Straße 20, 18147, Rostock, Germany.,Department Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
| |
Collapse
|
28
|
Laczó M, Lerch O, Martinkovic L, Kalinova J, Markova H, Vyhnalek M, Hort J, Laczó J. Spatial Pattern Separation Testing Differentiates Alzheimer's Disease Biomarker-Positive and Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:774600. [PMID: 34899277 PMCID: PMC8662816 DOI: 10.3389/fnagi.2021.774600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background: The hippocampus, entorhinal cortex (EC), and basal forebrain (BF) are among the earliest regions affected by Alzheimer’s disease (AD) pathology. They play an essential role in spatial pattern separation, a process critical for accurate discrimination between similar locations. Objective: We examined differences in spatial pattern separation performance between older adults with amnestic mild cognitive impairment (aMCI) with AD versus those with non-Alzheimer’s pathologic change (non-AD) and interrelations between volumes of the hippocampal, EC subregions and BF nuclei projecting to these subregions (medial septal nuclei and vertical limb of the diagonal band of Broca – Ch1-2 nuclei) with respect to performance. Methods: Hundred and eighteen older adults were recruited from the Czech Brain Aging Study. Participants with AD aMCI (n = 37), non-AD aMCI (n = 26), mild AD dementia (n = 26), and cognitively normal older adults (CN; n = 29) underwent spatial pattern separation testing, cognitive assessment and brain magnetic resonance imaging. Results: The AD aMCI group had less accurate spatial pattern separation performance than the non-AD aMCI (p = 0.039) and CN (p < 0.001) groups. The AD aMCI and non-AD groups did not differ in other cognitive tests. Decreased BF Ch1-2 volume was indirectly associated with worse performance through reduced hippocampal tail volume and reduced posteromedial EC and hippocampal tail or body volumes operating in serial. Conclusion: The study demonstrates that spatial pattern separation testing differentiates AD biomarker positive and negative older adults with aMCI and provides evidence that BF Ch1-2 nuclei influence spatial pattern separation through the posteromedial EC and the posterior hippocampus.
Collapse
Affiliation(s)
- Martina Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lukas Martinkovic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Jana Kalinova
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Hana Markova
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
29
|
Avram M, Grothe MJ, Meinhold L, Leucht C, Leucht S, Borgwardt S, Brandl F, Sorg C. Lower cholinergic basal forebrain volumes link with cognitive difficulties in schizophrenia. Neuropsychopharmacology 2021; 46:2320-2329. [PMID: 34188186 PMCID: PMC8580980 DOI: 10.1038/s41386-021-01070-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A potential pathophysiological mechanism of cognitive difficulties in schizophrenia is a dysregulated cholinergic system. Particularly, the cholinergic basal forebrain nuclei (BFCN), the source of cortical cholinergic innervation, support multiple cognitive functions, ranging from attention to decision-making. We hypothesized that BFCN structural integrity is altered in schizophrenia and associated with patients' attentional deficits. We assessed gray matter (GM) integrity of cytoarchitectonically defined BFCN region-of-interest in 72 patients with schizophrenia and 73 healthy controls, matched for age and gender, from the COBRE open-source database, via structural magnetic resonance imaging (MRI)-based volumetry. MRI-derived measures of GM integrity (i.e., volumes) were linked with performance on a symbol coding task (SCT), a paper-pencil-based metric that assesses attention, by correlation and mediation analysis. To assess the replicability of findings, we repeated the analyses in an independent dataset comprising 26 patients with schizophrenia and 24 matched healthy controls. BFCN volumes were lower in patients (t(139)=2.51, p = 0.01) and significantly associated with impaired SCT performance (r = 0.31, p = 0.01). Furthermore, lower BFCN volumes mediated the group difference in SCT performance. When including global GM volumes, which were lower in patients, as covariates-of-no-interest, these findings disappeared, indicating that schizophrenia did not have a specific effect on BFCN relative to other regional volume changes. We replicated these findings in the independent cohort, e.g., BFCN volumes were lower in patients and mediated patients' impaired SCT performance. Results demonstrate lower BFCN volumes in schizophrenia, which link with patients' attentional deficits. Data suggest that a dysregulated cholinergic system might contribute to cognitive difficulties in schizophrenia via impaired BFCN.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, 23538, Germany.
| | - Michel J. Grothe
- grid.414816.e0000 0004 1773 7922Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Lena Meinhold
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Claudia Leucht
- grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Stefan Leucht
- grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Stefan Borgwardt
- grid.4562.50000 0001 0057 2672Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, 23538 Germany
| | - Felix Brandl
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| | - Christian Sorg
- grid.6936.a0000000123222966TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, 81675 Germany ,grid.6936.a0000000123222966Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, 81675 Germany
| |
Collapse
|
30
|
Ghosh U, Yau WM, Collinge J, Tycko R. Structural differences in amyloid-β fibrils from brains of nondemented elderly individuals and Alzheimer's disease patients. Proc Natl Acad Sci U S A 2021; 118:e2111863118. [PMID: 34725161 PMCID: PMC8609303 DOI: 10.1073/pnas.2111863118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Although amyloid plaques composed of fibrillar amyloid-β (Aβ) assemblies are a diagnostic hallmark of Alzheimer's disease (AD), quantities of amyloid similar to those in AD patients are observed in brain tissue of some nondemented elderly individuals. The relationship between amyloid deposition and neurodegeneration in AD has, therefore, been unclear. Here, we use solid-state NMR to investigate whether molecular structures of Aβ fibrils from brain tissue of nondemented elderly individuals with high amyloid loads differ from structures of Aβ fibrils from AD tissue. Two-dimensional solid-state NMR spectra of isotopically labeled Aβ fibrils, prepared by seeded growth from frontal lobe tissue extracts, are similar in the two cases but with statistically significant differences in intensity distributions of cross-peak signals. Differences in solid-state NMR data are greater for 42-residue amyloid-β (Aβ42) fibrils than for 40-residue amyloid-β (Aβ40) fibrils. These data suggest that similar sets of fibril polymorphs develop in nondemented elderly individuals and AD patients but with different relative populations on average.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
| | - John Collinge
- Medical Research Council Prion Unit, University College London, London W1W 7FF, United Kingdom
- Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520;
| |
Collapse
|
31
|
Wang X, Wang M, Wang X, Zhou F, Jiang J, Liu H, Han Y. Subjective cognitive decline-related worries modulate the relationship between global amyloid load and gray matter volume in preclinical Alzheimer's disease. Brain Imaging Behav 2021; 16:1088-1097. [PMID: 34743296 DOI: 10.1007/s11682-021-00558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Subjective cognitive decline (SCD)-related worries are indicative of an increased risk for developing Alzheimer's disease (AD) dementia. However, the influence of SCD-related worries on the relationship between amyloid and gray matter (GM) atrophy remains unknown. A total of 93 SCD participants underwent 18F-florbetapir PET and T1-weighted MRI scans. SCD individuals were classified into amyloid-positive or amyloid-negative groups based on global amyloid uptake. Three-step statistical analyses were performed: (1) partial correlation analysis was conducted to determine whether global amyloid relates to GM volume in amyloid-positive and amyloid-negative groups; (2) linear regression analysis was conducted to determine whether the interaction term (worries × global amyloid) predicts GM volume; and (3) post hoc subgroup linear regression analysis was conducted to determine the association between amyloid and GM volume in the subgroups with and without worries. Age, sex, education and total intracranial volume were adjusted in all models. We found a negative relationship between global amyloid load and GM volume in the right hemisphere (r = 0.441, p = 0.012) and right temporal cortex (r = 0.506, p = 0.003) in the amyloid-positive group. Moreover, in the amyloid-positive group, a significant worries × amyloid interaction effect on GM volume was found in the bilateral hemisphere (right: pinteraction=0.037; left: pinteraction=0.036), left temporal cortex (pinteraction=0.044) and bilateral frontal cortex (right: pinteraction=0.010; left: pinteraction=0.011). Subsequent post hoc analysis revealed a significant amyloid-GM association only in the subgroup with worries but not in the subgroup without worries. In preclinical AD cases, SCD-related worries may occur as a symptom in those cases where amyloid affects GM to a greater extent and may thus represent a high-risk population for future cognitive decline.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Min Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jiehui Jiang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, China.
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China. .,School of Biomedical Engineering, Hainan University, Haikou, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
32
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 862] [Impact Index Per Article: 215.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
33
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
34
|
Chen Q, Wu S, Li X, Sun Y, Chen W, Lu J, Zhang W, Liu J, Qing Z, Nedelska Z, Hort J, Zhang X, Zhang B. Basal Forebrain Atrophy Is Associated With Allocentric Navigation Deficits in Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:596025. [PMID: 33658916 PMCID: PMC7917187 DOI: 10.3389/fnagi.2021.596025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/27/2021] [Indexed: 01/21/2023] Open
Abstract
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = −0.625, p < 0.001), Ch4p (r = −0.625, p < 0.001), total EC (r = −0.423, p = 0.031), and left EC volumes (r = −0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiani Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Vergallo A, Lemercier P, Cavedo E, Lista S, Vanmechelen E, De Vos A, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Teipel S, Hampel H. Plasma β-secretase1 concentrations correlate with basal forebrain atrophy and neurodegeneration in cognitively healthy individuals at risk for AD. Alzheimers Dement 2021; 17:629-640. [PMID: 33527718 DOI: 10.1002/alz.12228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Increased β-secretase 1 (BACE1) protein concentration, in body fluids, is a candidate biomarker of Alzheimer's disease (AD).We reported that plasma BACE1 protein concentrations are associated with the levels of brain amyloidβ (Αβ) accumulation in cognitively healthy individuals with subjective memory complaint (SMC). METHODS In 302 individuals from the same cohort, we investigated the cross-sectional and longitudinal association between plasma BACE1 protein concentrations and AD biomarkers of neurodegeneration (plasma t-tau and Neurofilament light chain (NfL), fluorodeoxyglucose-positron emission tomography (FDG-PET), brain volumes in the basal forebrain [BF], hippocampus, and entorhinal cortex). RESULTS We report a positive longitudinal correlation of BACE1 with both NfL and t-tau, as well as a correlation between annual BACE1 changes and bi-annual reduction of BF volume. We show a positive association between BACE1 and FDG-PET signal at baseline. CONCLUSIONS The association between plasma BACE1 protein concentrations and BF atrophy we found in cognitively healthy individuals with SMC corroborates translational studies, suggesting a role of BACE1 in neurodegeneration.
Collapse
Affiliation(s)
- Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, Paris, France
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Stefan Teipel
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | -
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
36
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
37
|
Implications of Oligomeric Amyloid-Beta (oAβ 42) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. J Neurosci 2020; 41:555-575. [PMID: 33239400 DOI: 10.1523/jneurosci.0876-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-β (Aβ) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-β (oAβ42), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition. We used single-channel electrophysiology to show that oAβ42 activates both homomeric α7- and heteromeric α7β2-nAChR subtypes while preferentially enhancing α7β2-nAChR open-dwell times. Organotypic slice cultures were prepared from male and female ChAT-EGFP mice, and current-clamp recordings obtained from BFCNs chronically exposed to pathophysiologically relevant level of oAβ42 showed enhanced neuronal intrinsic excitability and action potential firing rates. These resulted from a reduction in action potential afterhyperpolarization and alterations in the maximal rates of voltage change during spike depolarization and repolarization. These effects were observed in BFCNs from the medial septum diagonal band and horizontal diagonal band, but not the nucleus basalis. Last, aged male and female APP/PS1 transgenic mice, genetically null for the β2 nAChR subunit gene, showed improved spatial reference memory compared with APP/PS1 aged-matched littermates. Combined, these data provide a molecular mechanism supporting a role for α7β2-nAChR in mediating the effects of oAβ42 on excitability of specific populations of cholinergic neurons and provide a framework for understanding the role of α7β2-nAChR in oAβ42-induced cognitive decline.
Collapse
|
38
|
Herdick M, Dyrba M, Fritz HCJ, Altenstein S, Ballarini T, Brosseron F, Buerger K, Can Cetindag A, Dechent P, Dobisch L, Duezel E, Ertl-Wagner B, Fliessbach K, Dawn Freiesleben S, Frommann I, Glanz W, Dylan Haynes J, Heneka MT, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O, Priller J, Roy N, Scheffler K, Schneider A, Spottke A, Jakob Spruth E, Tscheuschler M, Vukovich R, Wiltfang J, Jessen F, Teipel S, Grothe MJ. Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer's disease spectrum. Neuroimage Clin 2020; 28:102495. [PMID: 33395986 PMCID: PMC7689403 DOI: 10.1016/j.nicl.2020.102495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysfunction of the cholinergic basal forebrain (cBF) is associated with cognitive decline in Alzheimer's disease (AD). Multimodal MRI allows for the investigation of cBF changes in-vivo. In this study we assessed alterations in cBF functional connectivity (FC), mean diffusivity (MD), and volume across the spectrum of AD. We further assessed effects of amyloid pathology on these changes. METHODS Participants included healthy controls, and subjects with subjective cognitive decline (SCD), mild cognitive impairment (MCI), or AD dementia (ADD) from the multicenter DELCODE study. Resting-state functional MRI (rs-fMRI) and structural MRI data was available for 477 subjects, and a subset of 243 subjects also had DTI data available. Differences between diagnostic groups were investigated using seed-based FC, volumetric, and MD analyses of functionally defined anterior (a-cBF) and posterior (p-cBF) subdivisions of a cytoarchitectonic cBF region-of-interest. In complementary analyses groups were stratified according to amyloid status based on CSF Aβ42/40 biomarker data, which was available in a subset of participants. RESULTS a-cBF and p-cBF subdivisions showed regional FC profiles that were highly consistent with previously reported patterns, but there were only minimal differences between diagnostic groups. Compared to controls, cBF volumes and MD were significantly different in MCI and ADD but not in SCD. The Aβ42/40 stratified analyses largely matched these results. CONCLUSIONS We reproduced subregion-specific FC profiles of the cBF in a clinical sample spanning the AD spectrum. At least in this multicentric cohort study, cBF-FC did not show marked changes along the AD spectrum, and multimodal MRI did not provide more sensitive measures of AD-related cBF changes compared to volumetry.
Collapse
Affiliation(s)
- Meret Herdick
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Hans-Christian J Fritz
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Tommaso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Arda Can Cetindag
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Silka Dawn Freiesleben
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Maike Tscheuschler
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931Köln, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany.
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
39
|
Teipel SJ, Fritz HC, Grothe MJ. Neuropathologic features associated with basal forebrain atrophy in Alzheimer disease. Neurology 2020; 95:e1301-e1311. [PMID: 32631924 PMCID: PMC7538215 DOI: 10.1212/wnl.0000000000010192] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To study the neuropathologic correlates of cholinergic basal forebrain (BF) atrophy as determined using antemortem MRI in the Alzheimer disease (AD) spectrum. METHODS We determined associations between BF volume from antemortem MRI brain scans and postmortem assessment of neuropathologic features, including neuritic plaques, neurofibrillary tangles (NFTs), Lewy body (LB) pathology, and TDP-43, in 64 cases of the Alzheimer's Disease Neuroimaging Initiative cohort. For comparison, we assessed neuropathologic features associated with hippocampal and parahippocampal gyrus atrophy. In addition to region of interest-based analysis, we determined the association of neuropathologic features with whole brain gray matter volume using regionally unbiased voxel-based volumetry. RESULTS BF atrophy was associated with Thal amyloid phases (95% confidence interval [CI] -0.49 to -0.01, p = 0.049) and presence of LB pathology (95% CI -0.54 to -0.06, p = 0.015), as well as with the degree of LB pathology within the nucleus basalis Meynert (95% CI -0.54 to -0.07, p = 0.025). These effects were no longer significant after false discovery rate (FDR) correction. Hippocampal atrophy was significantly associated with the presence of TDP-43 pathology (95% CI -0.61 to -0.17, p = 0.003; surviving FDR correction), in addition to dentate gyrus NFT load (95% CI -0.49 to -0.01, p = 0.044; uncorrected). Voxel-based analysis confirmed spatially restricted effects of Thal phases and presence of LB pathology on BF volume. CONCLUSIONS These findings indicate that neuropathologic correlates of regional atrophy differ substantially between different brain regions that are typically involved in AD-related neurodegeneration, including different susceptibilities to common comorbid pathologies.
Collapse
Affiliation(s)
- Stefan J Teipel
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - H-Christian Fritz
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Michel J Grothe
- From the German Center for Neurodegenerative Diseases (DZNE) (S.J.T., M.J.G.); Department of Psychosomatic Medicine (S.J.T., H.-C.F.), University Medicine Rostock, Germany; and Instituto de Biomedicina de Sevilla (IBiS) (M.J.G.), Unidad de Trastornos del Movimiento, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | | |
Collapse
|
40
|
Machado A, Ferreira D, Grothe MJ, Eyjolfsdottir H, Almqvist PM, Cavallin L, Lind G, Linderoth B, Seiger Å, Teipel S, Wahlberg LU, Wahlund LO, Westman E, Eriksdotter M. The cholinergic system in subtypes of Alzheimer's disease: an in vivo longitudinal MRI study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:51. [PMID: 32375872 PMCID: PMC7203806 DOI: 10.1186/s13195-020-00620-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The heterogeneity within Alzheimer's disease (AD) seriously challenges the development of disease-modifying treatments. We investigated volume of the basal forebrain, hippocampus, and precuneus in atrophy subtypes of AD and explored the relevance of subtype stratification in a small clinical trial on encapsulated cell biodelivery (ECB) of nerve growth factor (NGF) to the basal forebrain. METHODS Structural MRI data was collected for 90 amyloid-positive patients and 69 amyloid-negative healthy controls at baseline, 6-, 12-, and 24-month follow-up. The effect of the NGF treatment was investigated in 10 biopsy-verified AD patients with structural MRI data at baseline and at 6- or 12-month follow-up. Patients were classified as typical, limbic-predominant, hippocampal-sparing, or minimal atrophy AD, using a validated visual assessment method. Volumetric analyses were performed using a region-of-interest approach. RESULTS All AD subtypes showed reduced basal forebrain volume as compared with the healthy controls. The limbic-predominant subtype showed the fastest basal forebrain atrophy rate, whereas the minimal atrophy subtype did not show any significant volume decline over time. Atrophy rates of the hippocampus and precuneus also differed across subtypes. Our preliminary data from the small NGF cohort suggest that the NGF treatment seemed to slow the rate of atrophy in the precuneus and hippocampus in some hippocampal-sparing AD patients and in one typical AD patient. CONCLUSIONS The cholinergic system is differentially affected in distinct atrophy subtypes of AD. Larger studies in the future should confirm that this differential involvement of the cholinergic system may contribute to subtype-specific response to cholinergic treatment. Our preliminary findings suggest that future clinical trials should target specific subtypes of AD, or at least report treatment effects stratified by subtype. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01163825. Registered 14 July 2010.
Collapse
Affiliation(s)
- Alejandra Machado
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden.
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
| | - Helga Eyjolfsdottir
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden
| | - Per M Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Cavallin
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Åke Seiger
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Lars U Wahlberg
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden.,Gloriana Therapeutics, Inc, Providence, RI, USA
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, NEO, Floor 7th, Blickagången 16, 141 52, Huddinge, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
41
|
Kalzendorf J, Brueggen K, Teipel S. Cognitive Reserve Is Not Associated With Hippocampal Microstructure in Older Adults Without Dementia. Front Aging Neurosci 2020; 11:380. [PMID: 32226374 PMCID: PMC7081775 DOI: 10.3389/fnagi.2019.00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/26/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Mean Diffusivity (MD) as measured by diffusion tensor imaging (DTI) can be used to detect microstructural alterations of the brain's gray matter (GM). A previous study found that higher education, which is a proxy for cognitive reserve (CR), was related to decreased hippocampal MD in middle-aged healthy adults, indicating decreased microstructural damage in more educated participants. Based on this study, we aimed at determining the role of hippocampal GM MD in the interaction of AD pathology and CR in older people without dementia. Method We used a sample of 52 cognitively normal people and 38 participants with late mild cognitive impairment (LMCI) from the ADNI database. MCI and cognitively normal participants were analyzed separately. Using linear models, we regressed hippocampal GM MD on CR (quantified by a composite score), amyloid status and the interaction of both, adjusting for age, gender and memory score. Results CR was not associated with hippocampal GM MD and hippocampal GM volume. Also, no interaction of amyloid status and CR was found. Conclusion Our results do not confirm an association of CR and hippocampal GM MD in older adults. In contrast to previous studies, we did not find an association between CR and microstructural, nor macrostructural alterations of the hippocampus in older adults. More research is needed to determine the influence of CR on hippocampal microstructural integrity in relation to age and AD pathology.
Collapse
Affiliation(s)
- Judith Kalzendorf
- DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Stefan Teipel
- DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
42
|
Cavedo E, Lista S, Houot M, Vergallo A, Grothe MJ, Teipel S, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Hampel H. Plasma tau correlates with basal forebrain atrophy rates in people at risk for Alzheimer disease. Neurology 2019; 94:e30-e41. [DOI: 10.1212/wnl.0000000000008696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
ObjectiveTo investigate whether baseline concentrations of plasma total tau (t-tau) and neurofilament light (NfL) chain proteins are associated with annual percent change (APC) of the basal forebrain cholinergic system (BFCS) in cognitively intact older adults at risk for Alzheimer disease (AD).MethodsThis was a large-scale study of 276 cognitively intact older adults from the monocentric INSIGHT-preAD (Investigation of Alzheimer's Predictors in Subjective Memory Complainers) cohort. Participants underwent baseline assessment of plasma t-tau and NfL concentrations as well as baseline and 24-month follow-up MRI scans. Linear models with and without influential observations (calculated using the Cook distance) were carried out to investigate the effect of plasma NfL and t-tau concentrations, and their interaction effect with β-amyloid status and APOE genotype, on the APC of the whole BFCS and its anterior (Ch1/2) and posterior (Ch4) subdivisions separately.ResultsHigher plasma t-tau concentrations at baseline were associated with higher BFCS rate of atrophy (model without influencers: n = 251, F value = 4.6815; p value = 0.031). Subregional analyses showed similar results for both the APC of the Ch1/2 (model without influencers: n = 256, F value = 3.9535, p corrected = 0.047) and Ch4 BFCS sectors (model without influencers: n = 253, F value = 4.9090, p corrected = 0.047). Baseline NfL, β-amyloid load, and APOE ε4 carrier status did not affect APC of the BFCS.ConclusionIncreased concentrations of baseline plasma t-tau may predict in vivo structural BFCS atrophy progression in older adults at risk for AD, independently of β-amyloid status and APOE genotype.
Collapse
|
43
|
Nicolas B, Alessandra D, Daniela P, Osman R, Sara T, Giovanni B F, Valentina G. Basal forebrain metabolism in Alzheimer's disease continuum: relationship with education. Neurobiol Aging 2019; 87:70-77. [PMID: 32008856 DOI: 10.1016/j.neurobiolaging.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
We analyzed education, as a proxy of cognitive reserve, and the cholinergic pathway in Alzheimer's disease (AD), to test the hypothesis that education might modulate the relationship between clinical symptoms and metabolic and structural changes in AD. We included 84 subjects and compared between diagnostic groups and different educational levels the glucose metabolism of basal forebrain (BFM) and volume of the basal forebrain, the major cholinergic structure, and hippocampus (HM) (and hippocampal volume), a relevant projection site for the basal forebrain. Correlations with the global cognitive status and education in the whole sample were also performed. Patients with AD dementia showed reduced basal forebrain volume, hippocampal volume, and HM compared with controls. In the whole group, the global cognitive status was positively correlated with BFM and HM. Among high-educated subjects, mild cognitive impairment showed higher BFM and HM in comparison to other diagnostic groups. Our results suggest that in mild cognitive impairment subjects with a higher educational level, cholinergic activity is upregulated and this appears to have a compensatory effect, which may be lost in later symptomatic stages.
Collapse
Affiliation(s)
- Brandt Nicolas
- Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Dodich Alessandra
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - Perani Daniela
- Vita-Salute San Raffaele University and Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Ratib Osman
- Faculty of Medicine, Geneva University, Geneva, Switzerland; Department of Radiology and Medical informatics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Trombella Sara
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland; Memory Center and LANVIE-Laboratory of Neuroimaging of Aging, Geneva University Hospitals, Geneva, Switzerland
| | - Frisoni Giovanni B
- Memory Center and LANVIE-Laboratory of Neuroimaging of Aging, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Garibotto Valentina
- Faculty of Medicine, Geneva University, Geneva, Switzerland; NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland; Department of Radiology and Medical informatics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
44
|
Jethwa KD, Dhillon P, Meng D, Auer DP. Are Linear Measurements of the Nucleus Basalis of Meynert Suitable as a Diagnostic Biomarker in Mild Cognitive Impairment and Alzheimer Disease? AJNR Am J Neuroradiol 2019; 40:2039-2044. [PMID: 31727757 DOI: 10.3174/ajnr.a6313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cell loss within the nucleus basalis of Meynert is an early event in Alzheimer disease. The thickness of the nucleus basalis of Meynert (NBM) can be measured on structural MR imaging. We investigated NBM thickness in relation to cognitive state and biochemical markers. MATERIALS AND METHODS Mean bilateral nucleus basalis of Meynert thickness was measured on coronal T1-weighted MR imaging scans from the Alzheimer's Disease Neuroimaging Initiative dataset. Three hundred and fifteen scans (80 controls, 79 cases of early mild cognitive impairment, 77 cases of late mild cognitive impairment and 79 cases of Alzheimer disease) were assessed. Alzheimer's Disease Assessment Scale-Cognitive scores, CSF tau, and amyloid quantification were extracted. Group differences in NBM thickness, their correlates and measurement reliability were assessed. RESULTS Mean NBM thickness ± SD progressively declined from 2.9 ± 0.3, 2.5 ± 0.3, and 2.3 ± 0.3 to 1.8 ± 0.4 mm in healthy controls, patients with early mild cognitive impairment, late mild cognitive impairment and Alzheimer disease respectively (P < .001). NBM thickness was negatively correlated with Alzheimer's Disease Assessment Scale-Cognitive scores (r = -0.53, P < .001) and weakly positively correlated with CSF amyloid (r = 0.250, P < .001) respectively. No association with CSF tau was found. NBM thickness showed excellent diagnostic accuracy to differentiate Alzheimer disease (area under the curve, 0.986) and late mild cognitive impairment from controls (area under the curve, 0.936) with excellent sensitivity, but lower specificity 66.7%. Intra- and interrater reliability for measurements was 0.66 and 0.47 (P < .001). CONCLUSIONS There is progressive NBM thinning across the aging-dementia spectrum, which correlates with cognitive decline and CSF markers of amyloid-β pathology. We show high diagnostic accuracy but limited reliability, representing an area for future improvement. NBM thickness is a promising, readily available MR imaging biomarker of Alzheimer disease warranting diagnostic-accuracy testing in clinical practice.
Collapse
Affiliation(s)
- K D Jethwa
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine; Sir Peter Mansfield Imaging Centre, School of Medicine; and National Institute for Health Research Nottingham Biomedical Research Centre (K.D.J., P.D., D.M., D.P.A.), Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| | - P Dhillon
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine; Sir Peter Mansfield Imaging Centre, School of Medicine; and National Institute for Health Research Nottingham Biomedical Research Centre (K.D.J., P.D., D.M., D.P.A.), Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - D Meng
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine; Sir Peter Mansfield Imaging Centre, School of Medicine; and National Institute for Health Research Nottingham Biomedical Research Centre (K.D.J., P.D., D.M., D.P.A.), Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - D P Auer
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine; Sir Peter Mansfield Imaging Centre, School of Medicine; and National Institute for Health Research Nottingham Biomedical Research Centre (K.D.J., P.D., D.M., D.P.A.), Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
45
|
Ye C, Albert M, Brown T, Bilgel M, Hsu J, Ma T, Caffo B, Miller MI, Mori S, Oishi K. Extended multimodal whole-brain anatomical covariance analysis: detection of disrupted correlation networks related to amyloid deposition. Heliyon 2019; 5:e02074. [PMID: 31372540 PMCID: PMC6656959 DOI: 10.1016/j.heliyon.2019.e02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Background An anatomical covariance analysis (ACA) enables to elucidate inter-regional connections on a group basis, but little is known about the connections among white matter structures or among gray and white matter structures. Effect of including multiple magnetic resonance imaging (MRI) modalities into ACA framework in detecting white-to-white or gray-to-white connections is yet to be investigated. New method Proposed extended anatomical covariance analysis (eACA), analyzes correlations among gray and white matter structures (multi-structural) in various types of imaging modalities (T1-weighted images, T2 maps obtained from dual-echo sequences, and diffusion tensor images (DTI)). To demonstrate the capability to detect a disruption of the correlation network affected by pathology, we applied the eACA to two groups of cognitively-normal elderly individuals, one with (PiB+) and one without (PiB-) amyloid deposition in their brains. Results The volume of each anatomical structure was symmetric and functionally related structures formed a cluster. The pseudo-T2 value was highly homogeneous across the entire cortex in the PiB- group, while a number of physiological correlations were altered in the PiB + group. The DTI demonstrated unique correlation network among structures within the same phylogenetic portions of the brain that were altered in the PiB + group. Comparison with Existing Method The proposed eACA expands the concept of existing ACA to the connections among the white matter structures. The extension to other image modalities expands the way in which connectivity may be detected. Conclusion The eACA has potential to evaluate alterations of the anatomical network related to pathological processes.
Collapse
Affiliation(s)
- Chenfei Ye
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Johns Hopkins Alzheimer's Disease Research Center, Baltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Johnny Hsu
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Ting Ma
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Connectomics and molecular imaging in neurodegeneration. Eur J Nucl Med Mol Imaging 2019; 46:2819-2830. [PMID: 31292699 DOI: 10.1007/s00259-019-04394-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.
Collapse
|
47
|
Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, Teipel SJ, Grothe MJ. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson's disease. Brain 2019; 141:165-176. [PMID: 29228203 PMCID: PMC5837422 DOI: 10.1093/brain/awx310] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article. Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson’s disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer’s disease. These methods have not yet been applied to longitudinal Parkinson’s disease data. In a large sample of people with de novo Parkinson’s disease (n = 168), retrieved from the Parkinson’s Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson’s disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson’s disease-related cognitive decline.
Collapse
Affiliation(s)
- Nicola J Ray
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | | | - Umar Toseeb
- Department of Education, Derwent College, University of York, York, YO10 5DD, UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Csubstantia innominataC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
48
|
Boskovic Z, Meier S, Wang Y, Milne M, Onraet T, Tedoldi A, Coulson E. Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors. Neuronal Signal 2019; 3:NS20180066. [PMID: 32269831 PMCID: PMC7104233 DOI: 10.1042/ns20180066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75NTR mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75NTR and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.
Collapse
Affiliation(s)
- Zoran Boskovic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Wang
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- College of Forensic Science, Xi’an Jiaotong University, Shaanxi, China
| | - Michael R. Milne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Angelo Tedoldi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Fritz HJ, Ray N, Dyrba M, Sorg C, Teipel S, Grothe MJ. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum Brain Mapp 2019; 40:868-878. [PMID: 30311315 PMCID: PMC6865372 DOI: 10.1002/hbm.24417] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
The cholinergic basal forebrain (CBF), comprising different groups of cortically projecting cholinergic neurons, plays a crucial role in higher cognitive processes and has been implicated in diverse neuropsychiatric disorders. A distinct corticotopic organization of CBF projections has been revealed in animal studies, but little is known about their organization in the human brain. We explored regional differences in functional connectivity (FC) profiles within the human CBF by applying a clustering approach to resting-state functional magnetic resonance imaging (rs-fMRI) data of healthy adult individuals (N = 85; 19-85 years). We further examined effects of age on FC of the identified CBF clusters and assessed the reproducibility of cluster-specific FC profiles in independent data from healthy older individuals (N = 25; 65-89 years). Results showed that the human CBF is functionally organized into distinct anterior-medial and posterior-lateral subdivisions that largely follow anatomically defined boundaries of the medial septum/diagonal band and nucleus basalis Meynert. The anterior-medial CBF subdivision was characterized by connectivity with the hippocampus and interconnected nodes of an extended medial cortical memory network, whereas the posterior-lateral subdivision was specifically connected to anterior insula and dorsal anterior cingulate components of a salience/attention network. FC of both CBF subdivisions declined with increasing age, but the overall topography of subregion-specific FC profiles was reproduced in independent rs-fMRI data of healthy older individuals acquired in a typical clinical setting. Rs-fMRI-based assessments of subregion-specific CBF function may complement established volumetric approaches for the in vivo study of CBF involvement in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hans‐Christian J. Fritz
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Nicola Ray
- Department of PsychologyManchester Metropolitan UniversityManchesterUK
| | - Martin Dyrba
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Christian Sorg
- Departments of Neuroradiology and Psychiatry, TUM‐Neuroimaging Center of Klinikum rechts der IsarTechnische Universität München TUMMunichGermany
| | - Stefan Teipel
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic and Psychotherapeutic MedicineRostock University Medical CenterRostockGermany
| | - Michel J. Grothe
- Clinical Dementia Research SectionGerman Center for Neurodegenerative Diseases (DZNE)RostockGermany
| |
Collapse
|
50
|
Qian L, Milne MR, Shepheard S, Rogers ML, Medeiros R, Coulson EJ. Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-β Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice. Mol Neurobiol 2018; 56:4639-4652. [DOI: 10.1007/s12035-018-1404-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
|