1
|
Fang X, Zhou D, An Y, Dai Z, Sun D, Tong Y. A simple two-dimensional metal-organic framework-based phototherapy nanoplatform with a triple-synergistic mechanism for enhanced wound infection treatment. J Colloid Interface Sci 2025; 694:137656. [PMID: 40288276 DOI: 10.1016/j.jcis.2025.137656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Selecting an appropriate treatment for bacterial infections is critical. However, the rising prevalence of antimicrobial resistance has rendered many existing therapies less effective, highlighting the urgent need for novel antimicrobial strategies that are less prone to inducing antimicrobial resistance. Herein, we propose a simple, energy-efficient, photoresponsive antibacterial strategy based on metal-organic frameworks. Specifically, we developed an Au@Cu-THQ system activated by near-infrared laser irradiation, capable of exerting a synergistic triple-mode antibacterial effect-photothermal, photodynamic, and glutathione (GSH) depletion for the effective treatment of bacterial infections. The photothermal effect notably enhances the generation of reactive oxygen species and accelerates GSH depletion within bacterial cells, leading to a substantial disruption of their antioxidant defense systems and significantly amplifying the photodynamic therapeutic effect. Moreover, this material demonstrated excellent and stable photothermal performance both in vitro and in vivo, characterized by high photothermal conversion efficiency and effective GSH depletion activity. These features contribute to its potent antibacterial and anti-inflammatory effects, offering a promising multimodal strategy for the future development of in vivo anti-infective formulations.
Collapse
Affiliation(s)
- Xuankun Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dandan Zhou
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen 518133, China
| | - Yiwei An
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China.
| | - Yanli Tong
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Yang P, Su W, Wang L, Xu F, Kong Y, Long J. From aldehyde metabolism to delay aging: targeting ALDH2 as a novel strategy. Free Radic Biol Med 2025; 236:70-86. [PMID: 40349798 DOI: 10.1016/j.freeradbiomed.2025.05.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Aldehydes are molecules that are commonly found in both human physiology and the environment. The accumulation of these substances can lead to the cross-linking of intracellular DNA and proteins, thereby disrupting cellular function and contributing to the processes of premature aging and age-related diseases. Aldehyde dehydrogenase 2 (ALDH2), the key member of ALDH family, is an enzyme responsible for aldehyde metabolism, composed of four identical subunits located within the mitochondrial matrix. Its primary role is to catalyze the oxidation of aldehydes, resulting in the formation of their corresponding acid metabolites. This paper presents a succinct overview of the sources and metabolic pathways of key aldehydes within the human body, compares the various primary enzymes involved in aldehyde metabolism, and explores the structural and functional characteristics of ALDH2. Furthermore, ALDH2 is proposed as a potential therapeutic target for addressing aging and associated diseases. The discussion also includes prospective research avenues, particularly focusing on ALDH2 agonists and aldehyde scavengers designed to enhance the clearance of reactive aldehydes and safeguard cellular functions, thereby mitigating aldehyde-induced cellular damage and potentially delaying the aging process.
Collapse
Affiliation(s)
- Peng Yang
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Wu Su
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Lizhuo Wang
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Fanding Xu
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Yu Kong
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China
| | - Jiangang Long
- Xi'an Key Laboratory of Aging Biology, Institude of Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710116, China.
| |
Collapse
|
3
|
Zhang D, Tian W, Chen LH, Chen T, Wu D, Du Y, Hu J. Synergistic effects of oleanolic acid and curcumin nanoparticles in gastric ulcer prevention. Int J Pharm 2025; 674:125465. [PMID: 40089040 DOI: 10.1016/j.ijpharm.2025.125465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Gastric ulcers (GC) are prevalent gastrointestinal disorders with complex etiologies, including Helicobacter pylori infection and prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs). Curcumin (CUR), with its established anti-inflammatory and antioxidant properties, is limited in clinical application due to poor bioavailability. This study developed oleanolic acid-coated CUR nanoparticles (OC NPs) to enhance the efficacy of CUR in GC prevention. OC NPs were characterized by a spherical shape, demonstrating remarkable improvements in solubility and stability, maintaining structural integrity within biological systems and exhibiting excellent biocompatibility. In vitro studies showed OC NPs reduced inflammation and oxidative stress in GES-1 cells. In vivo, OC NPs effectively prevented ethanol-induced GC in mice by lowering inflammatory cytokines, while increasing antioxidant levels. Histological analysis confirmed enhanced gastric mucosal protection and reduced fibrosis and apoptosis. OC NPs demonstrated prolonged retention in the stomach, offering a targeted drug delivery system. These findings suggested OC NPs as a promising low-toxicity alternative for preventing GC.
Collapse
Affiliation(s)
- Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Wang Z, Ma X, Shi W, Zhu W, Feng X, Xin H, Zhang Y, Cong B, Li Y. The Gut Microbiota Metabolite Butyrate Modulates Acute Stress-Induced Ferroptosis in the Prefrontal Cortex via the Gut-Brain Axis. Int J Mol Sci 2025; 26:1698. [PMID: 40004161 PMCID: PMC11855447 DOI: 10.3390/ijms26041698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Stress has been implicated in the onset of mental disorders such as depression, with the prefrontal cortex (PFC) playing a crucial role. However, the underlying mechanisms remain to be fully elucidated. Metabolites secreted by intestinal flora can enter the bloodstream and exert regulatory effects on the body. Consequently, this study aims to investigate the molecular mechanisms by which gut flora influences ferroptosis in PFC neurons, thereby affecting depression-like behavioral changes in mice subjected to acute stress. Initially, we established a mouse model of acute restraint stress (3-day duration) and verified that stress-induced ferroptosis of PFC neurons contributed to depression-like behavioral alterations in mice, as evidenced by morphological, behavioral, and molecular biology assessments. Subsequently, through fecal microbiota transplantation (FMT) experiments, we established a significant correlation between gut microbiota and ferroptosis of PFC neurons in acute stress-exposed mice. 16S rDNA sequencing identified butyric acid-producing bacteria, specifically g_Butyricimonas and its primary metabolite, butyric acid, as critical regulators of ferroptosis in PFC neurons in acutely stressed mice. Furthermore, the intervention of butyrate demonstrated its potential to ameliorate damage to the intestinal and blood-brain barriers in these mice. This intervention also mitigated depression-like behaviors induced by ferroptosis of PFC neurons by alleviating systemic inflammatory responses. The findings of this study indicate that acute stress-induced ferroptosis of PFC neurons plays a critical role in depression-like behavioral changes in mice. Additionally, the gut microbiota metabolite butyrate can modulate ferroptosis and depression-like behavioral changes through the gut-brain axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Cong
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Z.W.); (X.M.); (W.S.); (X.F.); (H.X.); (Y.Z.)
| | - Yingmin Li
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Z.W.); (X.M.); (W.S.); (X.F.); (H.X.); (Y.Z.)
| |
Collapse
|
5
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
6
|
Zhao X, Fan DG, Zhang XC, You SW, Kuang F, Wu MM. Etomidate protects retinal ganglion cells from hydrogen peroxide-induced injury via Nrf2/HO-1 pathway. Int J Ophthalmol 2024; 17:1606-1613. [PMID: 39296564 PMCID: PMC11367447 DOI: 10.18240/ijo.2024.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/10/2024] [Indexed: 09/21/2024] Open
Abstract
AIM To determine whether etomidate (ET) has a protective effect on retinal ganglion cells (RGCs) injured with hydrogen peroxide (H2O2) and to explore the potential mechanism underlying the antioxidative stress effect of ET. METHODS Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1. An injury model of H2O2-induced RGCs oxidative stress was established in vitro. Cells were pretreated with different concentrations of ET (1, 5, and 10 µmol/L) for 4h, followed by further exposure to H2O2 at 1000 µmol/L. Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12, 24, and 48h after H2O2 stimulation. The levels of nitric oxide, malondialdehyde, and glutathione in culture media were measured at these time points. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12, 24, and 48h after H2O2 stimulation and in the retina at 12h after optic nerve transection (ONT). RESULTS The applications of 5 and 10 µmol/L of ET significantly increased the viability of RGCs. Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs at 12, 24 and 48h after H2O2 stimulation, as well as in ET-treated retinas at 12h after ONT. Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein, along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo. CONCLUSION ET is a neuroprotective agent in primary cultured RGCs injured by H2O2. The effect of ET is dose-dependent with the greatest effect being at 10 µmol/L. ET plays an antioxidant role by inhibiting iNOS, up-regulating Nrf2/HO-1, decreasing the production of acrolein, and increasing the scavenge of acrolein.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, Shaanxi Province, China
- Department of Neurobiology, the Basic Medical Science Academy, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - De-Gang Fan
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Xin-Chao Zhang
- Department of Neurobiology, the Basic Medical Science Academy, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- College of Life Sciences, Northwestern University, Xi'an 710069, Shaanxi Province, China
| | - Si-Wei You
- Department of Neurobiology, the Basic Medical Science Academy, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Fang Kuang
- Department of Neurobiology, the Basic Medical Science Academy, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ming-Mei Wu
- Department of Neurobiology, the Basic Medical Science Academy, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
7
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
8
|
Zhou T, Wu J, Liu Y, Xu A. Seawater Accelerated the Aging of Polystyrene and Enhanced Its Toxic Effects on Caenorhabditis elegans. Int J Mol Sci 2023; 24:17219. [PMID: 38139049 PMCID: PMC10743734 DOI: 10.3390/ijms242417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Kuntic I, Kuntic M, Oelze M, Stamm P, Karpi A, Kleinert H, Hahad O, Münzel T, Daiber A. The role of acrolein for E-cigarette vapour condensate mediated activation of NADPH oxidase in cultured endothelial cells and macrophages. Pflugers Arch 2023:10.1007/s00424-023-02825-9. [PMID: 37285062 DOI: 10.1007/s00424-023-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Electronic cigarettes (E-cigarettes) have recently become a popular alternative to traditional tobacco cigarettes. Despite being marketed as a healthier alternative, increasing evidence shows that E-cigarette vapour could cause adverse health effects. It has been postulated that degradation products of E-cigarette liquid, mainly reactive aldehydes, are responsible for those effects. Previously, we have demonstrated that E-cigarette vapour exposure causes oxidative stress, inflammation, apoptosis, endothelial dysfunction and hypertension by activating NADPH oxidase in a mouse model. To better understand oxidative stress mechanisms, we have exposed cultured endothelial cells and macrophages to condensed E-cigarette vapour (E-cigarette condensate) and acrolein. In both endothelial cells (EA.hy 926) and macrophages (RAW 264.7), we have observed that E-cigarette condensate incubation causes cell death. Since recent studies have shown that among toxic aldehydes found in E-cigarette vapour, acrolein plays a prominent role, we have incubated the same cell lines with increasing concentrations of acrolein. Upon incubation with acrolein, a translocation of Rac1 to the plasma membrane has been observed, accompanied by an increase in oxidative stress. Whereas reactive oxygen species (ROS) formation by acrolein in cultured endothelial cells was mainly intracellular, the release of ROS in cultured macrophages was both intra- and extracellular. Our data also demonstrate that acrolein activates the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and, in general, could mediate E-cigarette vapour-induced oxidative stress and cell death. More mechanistic insight is needed to clarify the toxicity associated with E-cigarette consumption and the possible adverse effects on human health.
Collapse
Affiliation(s)
- Ivana Kuntic
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Marin Kuntic
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Stamm
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Angelica Karpi
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
10
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 568] [Impact Index Per Article: 189.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|