1
|
Parveen N, Da'na E, Taha A. Sustainable fabrication of Fe 2O 3/C nanoparticles via Acacia niloticaextract for enhanced supercapacitor performance. NANOTECHNOLOGY 2025; 36:115704. [PMID: 39740250 DOI: 10.1088/1361-6528/ada44a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1 and FeC-2 NPs, using seedless pods ofAcacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations ofA. niloticaextract (ANE) on the electrochemical characteristics of the resulting n FeC-1 and FeC-2 electrodes. Both FeC-1 and FeC-2 NPs were tested extensively using cyclic voltammetry and galvanostatic charge-discharge methods to evaluate their pseudocapacitive properties in a three-electrode setup. The FeC-2 electrodes showed much better performance, achieving a specific capacitance of 482.85 F g-1, compared to FeC-1's 155.71 F g-1. This enhanced capacity is attributed to an optimal content that notably boosts conductivity. Additionally, FeC-2 showed impressive cyclic stability, retaining approximately 80% capacity at a constant current density. These findings underscore the potential of using ANE for developing cost-effective and environmentally benign FeC-1 and FeC-2 NPs with promising applications in high-performance supercapacitors.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Enshirah Da'na
- Faculty of Engineering Technology, Al-Balqa Applied University, PO Box 15008, Amman 11134, Jordan
| | - Amel Taha
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, PO Box 11121, Khartoum, Sudan
| |
Collapse
|
2
|
Manikandan M, Prasankumar T, Manikandan E, Papanasam E, Ramesh K, Ramesh S. Hydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor application. Sci Rep 2024; 14:25596. [PMID: 39462069 PMCID: PMC11513009 DOI: 10.1038/s41598-024-77245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Nanostructured materials incorporating transition metal sulfides have demonstrated considerable potential across various applications, particularly in the realms of energy production and storage. Sulfide-based material preparation is a challenging and costly procedure that requires a high temperature and reducing atmosphere. This work reports that manganese cobalt sulfide (MCS) and reduced graphene oxide composite manganese cobalt sulfide (rMCS) were successfully prepared through a hydrothermal method. Various characterization techniques were employed to analyze the prepared materials, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. In a three-electrode system, MCS and rMCS electrodes exhibit an excellent specific capacitance of 1695 and 1925 F g-1 at 1 A g-1 current density respectively. MCS delivers the capacitance retention of 99% and rMCS exhibits the capacitance retention of 100% capacitance retention over 5000 consecutive cycles. The constructed asymmetric supercapacitor electrode (rMCS//rGO) exhibits the energy and power density of 64 Wh kg-1 at 799 W kg-1, respectively with outstanding cyclic stability of 97.4% even after 10,000 cycles. The exceptional electrochemical properties of MCS with rGO composite electrode indicate that they would make an outstanding electrode material for cutting-edge energy storage devices.
Collapse
Affiliation(s)
- M Manikandan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - T Prasankumar
- Department of Physics, Centre for Ionics Universiti Malaya, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Institute of Power Engineering, Universiti Tenaga Nasional (UNITEN), Kajang, 43000, Selangor, Malaysia
| | - E Manikandan
- Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, India.
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India.
| | - E Papanasam
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - K Ramesh
- Department of Physics, Centre for Ionics Universiti Malaya, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - S Ramesh
- Department of Physics, Centre for Ionics Universiti Malaya, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
3
|
Xiao T, Tang C, Lin H, Li X, Mei Y, Xu C, Gao L, Jiang L, Xiang P, Ni S, Xiao Y, Tan X. Investigating the NH 4+ Preintercalation and Surface Coordination Effects on MnO 2 for Ammonium-Ion Supercapacitors. Inorg Chem 2024. [PMID: 39233664 DOI: 10.1021/acs.inorgchem.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Ion preintercalation is an effective method for fine-tuning the electrochemical characteristics of electrode materials, thereby enhancing the performance of aqueous ammonium-ion hybrid supercapacitors (A-HSCs). However, much of the current research on ion preintercalation lacks controllability, and the underlying mechanisms remain unclear. In this study, we employ a two-step electrochemical activation approach, involving galvanostatic charge-discharge and cyclic voltammetry, to modulate the preintercalation of NH4+ in MnO2. An in-depth analysis of the electrochemical activation mechanism is presented. This two-step electrochemical activation approach endows the final MnO2/AC electrode with a high capacitance of 917.4 F g-1, approximately 2.4 times higher than that of original MnO2. Furthermore, the MnO2/AC electrode retains approximately 93.4% of its capacitance after 10 000 cycles at a current density of 25 mA cm-2. Additionally, aqueous A-HSC, comprising MnO2/AC and P-MoO3, achieves a maximum energy density of 87.6 Wh kg-1. This study offers novel insights into the controllable ion preintercalation approach via electrochemical activation.
Collapse
Affiliation(s)
- Ting Xiao
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Can Tang
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Hongxiang Lin
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Xiuru Li
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Yuting Mei
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Can Xu
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Lin Gao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Lihua Jiang
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Peng Xiang
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Shibing Ni
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Yequan Xiao
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Xinyu Tan
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
4
|
Fareed I, Khan MD, Murtaza S, Hassan Farooq MU, Rehman ZU, Farooq MU, Butt FK, Tahir M. Investigating metal (M = Mn, Fe, and Ni)-doped Co(OH) 2 nanofibers for electrocatalytic oxygen evolution and electrochemical biosensing performance. RSC Adv 2024; 14:26556-26567. [PMID: 39175682 PMCID: PMC11339775 DOI: 10.1039/d4ra04240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024] Open
Abstract
To achieve efficient and cost-effective electrochemical water splitting, highly active and affordable nanostructured catalysts are the key requirement. The current study presents the investigations of the efficacy of metal (Mn, Fe and Ni)-doped Co(OH)2 nanofibers towards oxygen evolution via water splitting. Notably, Ni-doped Co(OH)2 demonstrates superior OER performance in KOH electrolyte, surpassing standard IrO2 with a modest potential of 1.62 V at 10 mA cm-2. The remarkable activity is attributed to the nanofiber structure, facilitating faster conduction and offering readily available active sites. Ni-doped Co(OH)2 nanofibers displayed enduring stability even after 1000 cycles. This work underscores the importance of transition-metal based catalysts as effective electrocatalysts, providing the groundwork for the development of cutting-edge catalysts. Additionally, the electrochemical sensing capability towards ascorbic acid is evaluated, with Ni-doped Co(OH)2 showing the most promising response, characterized by the lowest LOD and LOQ values. These findings highlight the potential of Ni-doped Co(OH)2 nanofibers for upcoming diagnostic detection devices.
Collapse
Affiliation(s)
- Iqra Fareed
- Laboratory of Eco-Materials and Sustainable Technology (LEMST), Natural Sciences and Humanities Department New Campus, UET Lahore 54890 Pakistan
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Danish Khan
- Laboratory of Eco-Materials and Sustainable Technology (LEMST), Natural Sciences and Humanities Department New Campus, UET Lahore 54890 Pakistan
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Sadia Murtaza
- Department of Physics, University of Lahore 53700 Pakistan
| | - Masood Ul Hassan Farooq
- Laboratory of Eco-Materials and Sustainable Technology (LEMST), Natural Sciences and Humanities Department New Campus, UET Lahore 54890 Pakistan
| | - Zia Ur Rehman
- School of Environmental Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Muhammad Umer Farooq
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Faheem K Butt
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Muhammad Tahir
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
5
|
Enache LB, State S, Mihai G, Prodana M, Messina AA, Enachescu M. Fabrication of Co-Sb Junction Nanowires by Galvanostatic Electrodeposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7947-7961. [PMID: 38578030 DOI: 10.1021/acs.langmuir.3c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This work presents the synthesis of CoSb3 one-dimensional (1D) thermoelectric nanomaterials using electrodeposition under galvanostatic conditions and polycarbonate membranes as a template (50 nm diameter pores). Cyclic voltammetry measurements have been performed to get preliminary information on the electrochemical reduction process of the involved species. Different current density values in the range 1-4 mA cm-2 have been applied, leading to the formation of nanowires (NWs) and micro- and nanomushroom caps, as evidenced by the scanning electron microscopy and scanning transmission electron microscopy investigations. Through fine-tuning of the current density the desired Co/Sb atomic ratio could be achieved. Energy-dispersive X-ray spectroscopy analysis showed the formation of CoSb3 at 1.4 mA cm-2, and it has also been confirmed by high-resolution transmission electron microscopy and micro-Raman spectroscopy. In this work, we present for the first time the fabrication of a CoSb3-CoxSby heterojunction on the same NW exhibiting Sb-rich and Co-rich alloy segments, prepared by electrodeposition from the same electrolyte by simply varying the applied current density.
Collapse
Affiliation(s)
- Laura-Bianca Enache
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Sabrina State
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Geanina Mihai
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Mariana Prodana
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, Department of General Chemistry, National University of Science and Technology Politehnica Bucharest, 1-7, Polizu Str., 011061 Bucharest, Romania
| | - Angelo Alberto Messina
- STMicroelectronics Stradale Primosole, 50, 95121 Catania, Italy
- Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi, Strada VIII, n. 5 - Zona 6 Industriale, 95121 Catania, Italy
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
6
|
Parveen N. Resent Development of Binder-Free Electrodes of Transition Metal Oxides and Nanohybrids for High Performance Supercapacitors - A Review. CHEM REC 2024; 24:e202300065. [PMID: 37194959 DOI: 10.1002/tcr.202300065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/02/2023] [Indexed: 05/18/2023]
Abstract
The entire world is aware of the serious issue of global warming and therefore utilizing renewable energy sources is the most encouraging steps toward solving energy crises, and as a result, energy storage solutions are necessary. The supercapacitors (SCs) have a high-power density and a long cycle life, they are promising as an electrochemical conversion and storage device. In order to achieve high electrochemical performance, electrode fabrication must be implemented properly. Electrochemically inactive and insulating binders are utilized in the conventional slurry coating method of making electrodes to provide adhesion between the electrode material and the substrate. This results in an undesirable "dead mass," which lowers the overall device performance. In this review, we focused on binder-free SCs electrodes based on transition metal oxides and composites. With the best examples providing the critical aspects, the benefits of binder-free electrodes over slurry-coated electrodes are addressed. Additionally, different metal-oxides used in the fabrication of binder-free electrodes are assessed, taking into account the various synthesis methods, giving an overall picture of the work done for binder-free electrodes. The future outlook is provided along with the benefits and drawbacks of binder-free electrodes based on transition metal oxides.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Hofuf, 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
8
|
Ansari SA. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3814. [PMID: 36364590 PMCID: PMC9656052 DOI: 10.3390/nano12213814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Batteries and supercapacitors are the next-generation alternative energy resources that can fulfil the requirement of energy demand worldwide. In regard to the development of efficient energy storage devices, various materials have been tested as electrode materials. Graphene quantum dots (GQDs), a new class of carbon-based nanomaterial, have driven a great research interest due to their unique fundamental properties. High conductivity, abundant specific surface area, and sufficient solubility, in combination with quantum confinement and edge effect, have made them appropriate for a broad range of applications such as optical, catalysis, energy storage and conversion. This review article will present the latest research on the utilization of GQDs and their composites to modify the electrodes used in energy storage devices. Several major challenges have been discussed and, finally, future perspectives have been provided for the better implementation of GQDs in the energy storage research.
Collapse
Affiliation(s)
- Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|