1
|
He X, Xiao X, Wei W, Li L, Zhao Y, Zhang N, Wang M. Soil rare microorganisms mediated the plant cadmium uptake: The central role of protists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168505. [PMID: 37967623 DOI: 10.1016/j.scitotenv.2023.168505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Plants and microorganisms symbiotically mediate and/or catalyse the turnover of elements in rhizosphere soils, thus directly influencing the effectiveness of phytoremediation in addressing heavy metal contamination. Soil rare microbial communities are diverse but not well understood in terms of their importance for phytoremediation. In this study, we simulated the loss of rare microorganisms through dilution-to-extinction approach, and investigated the effects on integrated rhizosphere microbiome with soil microcosm experiments, including bacteria, fungi, protists, and microfauna. Additionally, we explored the implications for ryegrass (Lolium multiflorum Lam.) growth and its uptake of Cd (cadmium). Compared with the undiluted group, ryegrass exhibited a significant decrease in Cd uptake ranging from 52.34 % to 73.71 % in the rare species-loss soils, indicating a lack of functional redundancy in rhizosphere soil microbial community following rare species loss. Interestingly, these soils displayed a remarkable 1.79-fold increase in plant biomass and a 41.02 % increase in plant height. By sequencing the 16S, 18S, and ITS rRNA gene amplicons of rhizosphere microbes, we found that soil rare species loss decreased the rhizosphere microbial α-diversity, changed the community structures, and shifted the functional potential. Protists were particularly affected. Through the analysis of species co-occurrence networks, along with the partial least squares path modeling, we found that the diversity of protists and bacteria and the co-occurring network connectivity of protists and fungi contributed most to plant Cd uptake and growth. These results highlighted the potential significance of rare microorganisms, particularly protists, in phytoextraction of Cd-contaminated soils, owing to their central role in the microbial food web.
Collapse
Affiliation(s)
- Xingguo He
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Weiwei Wei
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Liangzhong Li
- Chongqing Huanyue Ecological Environment Technology Co., Ltd., Chongqing 400000, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Na Zhang
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingyu Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Xu Q, Song X, Xu M, Xu Q, Liu Q, Tang C, Wang X, Yin W, Wang X. Elevated CO 2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.). CHEMOSPHERE 2022; 308:136347. [PMID: 36087720 DOI: 10.1016/j.chemosphere.2022.136347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Biochar application is a potent climate change mitigation strategy in agroecosystems. However, little is known about the interactive effects of elevated CO2 (eCO2) and biochar on plant nutrient uptake and soil microbial processes. A pot experiment was conducted to investigate the effects of eCO2 and biochar addition on plant C:N:P stoichiometry and rhizobacterial community for better management of nutrient balance and use efficiency in a future climate scenario. White lupin (Lupinus albus L.) was grown for 30 days in topsoil and subsoil with or without 2% corn-stubble biochar under ambient CO2 (aCO2: 390 ppm) or eCO2 (550 ppm). Elevated CO2 increased, but biochar decreased, plant biomass and shoot N and P uptake, with no interactions in either soil layer. Elevated CO2 decreased shoot N concentration by 16% and biochar decreased shoot P concentration by 11%. As a result, eCO2 increased shoot C:N ratio by 20% and decreased the N:P ratio by 11%. Biochar decreased shoot C:N ratio by 8% in the subsoil under eCO2. However, biochar increased shoot C:P ratio by an average of 13% and N:P ratio by 23% in the subsoil. Moreover, plants grown in the subsoil showed lower shoot N (35%) and P (70%) uptake compared to the topsoil. The results indicate that N and P are the more limiting factors that regulate plant growth under eCO2 and biochar application, respectively. Elevated CO2 and biochar oppositely affected dominant rhizobacterial community composition, with the eCO2 effect being greater. The microbiota in the subsoil held a greater diversity of contrasting species than the topsoil, which were associated with nutrient cycling, hydrocarbon degradation and plant productivity. These results enrich our understanding of potential soil nutrient cycling and plant nutrient balance in future agroecosystems.
Collapse
Affiliation(s)
- Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xian Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qiuyue Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiaoli Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China.
| |
Collapse
|
3
|
Yang C, Han N, Inoue C, Yang YL, Nojiri H, Ho YN, Chien MF. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128870. [PMID: 35452977 DOI: 10.1016/j.jhazmat.2022.128870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Phytoextraction is a cost-effective and eco-friendly technology to remove arsenic (As) from contaminated soil using plants and associated microorganisms. Pteris vittata is the most studied As hyperaccumulator, which effectively takes up inorganic arsenate via roots. Arsenic solubilization and speciation occur prior to plant absorption in the rhizosphere, which play a key role in As phytoextraction by P. vittata. This study investigated the metabolomic correlation of P. vittata and associated rhizospheric microorganisms during As phytoextraction. Three-month pot cultivation of P. vittata in As polluted soil was conducted. In rhizosphere, an increase of water-soluble As concentration and a decrease of pH was observed in the second month, suggesting acidic metabolites as a possible cause of As solubilization. A correlation network was built to elucidate the interactions among metabolites, bacteria and fungi in the rhizosphere of P. vittata. Our results demonstrate that the plant is the major driving force of rhizospheric microbiota generation, and both microbial community and metabolites in rhizosphere of P. vittata correlate to increased bioavailable As. Multi-omics analysis revealed that pterosins enrich microbes that potentially promote As phytoextraction. This study extends the current view of rhizospheric plant-microbes synergistic effects of hyperaccumulators on phytoextraction, which provides clues for developing efficient As phytoremediation approaches.
Collapse
Affiliation(s)
- Chongyang Yang
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan; Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ning Han
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan
| | - Chihiro Inoue
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan
| | - Yu-Liang Yang
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Mei-Fang Chien
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
4
|
Suleiman MK, Dixon K, Commander L, Nevill P, Quoreshi AM, Bhat NR, Manuvel AJ, Sivadasan MT. Assessment of the Diversity of Fungal Community Composition Associated With Vachellia pachyceras and Its Rhizosphere Soil From Kuwait Desert. Front Microbiol 2019; 10:63. [PMID: 30766519 PMCID: PMC6365840 DOI: 10.3389/fmicb.2019.00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
This research examined the general soil fungi and AM fungal communities associated with a Lonely Tree species (Vachellia pachyceras) existing in the Sabah Al-Ahmad Natural Reserve located at the Kuwait desert. The goals of the study were to describe the general fungal and AM fungal communities present in the rhizospheric, non-rhizospheric soils and roots of V. pachyceras, respectively, as well as local and non-local V. pachyceras seedlings when grown under standard nursery growing environments. Soil and root samples were analyzed for an array of characteristics including soil physicochemical composition, and culture-independent method termed PCR-cloning, intermediate variable region of rDNA, the large subunit (LSU) and internal transcribed spacer (ITS) region sequence identifications. The results reveal that the fungal phylotypes were classified in four major fungal phyla namely Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblage of fungal analyses showed communities dominated by members of the phylum Ascomycota. The assays also revealed a wealth of incertae sedis fungi, mostly affiliated to uncultured fungi from diverse environmental conditions. Striking difference between rhizosphere and bulk soils communities, with more fungal diversities and Operational Taxonomic Units (OTUs) richness associated with both the field and nursery rhizosphere soils. In contrast, a less diverse fungal community was found in the bulk soil samples. The characterization of AM fungi from the root system demonstrated that the most abundant and diversified group belongs to the family Glomeraceae, with the common genus Rhizophagus (5 phylotypes) and another unclassified taxonomic group (5 phylotypes). Despite the harsh climate that prevails in the Kuwait desert, studied roots displayed the existence of considerable number of AM fungal biota. The present work thus provides a baseline of the fungal and mycorrhizal community associated with rhizosphere and non-rhizosphere soils and roots of only surviving V. pachyceras tree from the Kuwaiti desert and seedlings under nursery growing environments.
Collapse
Affiliation(s)
- Majda K. Suleiman
- Environment and Life Sciences Research Center, Desert Agriculture and Ecosystems Program, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Kingsley Dixon
- ARC Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Lucy Commander
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Ali M. Quoreshi
- Environment and Life Sciences Research Center, Desert Agriculture and Ecosystems Program, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Narayana R. Bhat
- Environment and Life Sciences Research Center, Desert Agriculture and Ecosystems Program, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Anitha J. Manuvel
- Environment and Life Sciences Research Center, Desert Agriculture and Ecosystems Program, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Mini T. Sivadasan
- Environment and Life Sciences Research Center, Desert Agriculture and Ecosystems Program, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
5
|
Raut S, Polley HW, Fay PA, Kang S. Bacterial community response to a preindustrial-to-future CO 2 gradient is limited and soil specific in Texas Prairie grassland. GLOBAL CHANGE BIOLOGY 2018; 24:5815-5827. [PMID: 30230661 DOI: 10.1111/gcb.14453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Rising atmospheric CO2 concentration directly stimulates plant productivity and affects nutrient dynamics in the soil. However, the influence of CO2 enrichment on soil bacterial communities remains elusive, likely due to their complex interactions with a wide range of plant and soil properties. Here, we investigated the bacterial community response to a decade long preindustrial-to-future CO2 gradient (250-500 ppm) among three contrasting soil types using 16S rRNA gene amplicon sequencing. In addition, we examined the effect of seasonal variation and plant species composition on bacterial communities. We found that Shannon index (H') and Faith's phylogenetic diversity (PD) did not change in response to the CO2 gradient (R2 = 0.01, p > 0.05). CO2 gradient and season also had a negligible effect on overall community structure, although silty clay soil communities were better structured on a CO2 gradient (p < 0.001) among three soils. Similarly, CO2 gradient had no significant effect on the relative abundance of different phyla. However, we observed soil-specific variation of CO2 effects in a few individual families. For example, the abundance of Pirellulaceae family decreased linearly with CO2 gradient, but only in sandy loam soils. Conversely, the abundance of Micromonosporaceae and Gaillaceae families increased with CO2 gradient in clay soils. Soil water content (SWC) and nutrient properties were the key environmental constraints shaping bacterial community structure, one manifestation of which was a decline in bacterial diversity with increasing SWC. Furthermore, the impact of plant species composition on community structure was secondary to the strong influence of soil properties. Taken together, our findings indicate that bacterial communities may be largely unresponsive to indirect effects of CO2 enrichment through plants. Instead, bacterial communities are strongly regulated by edaphic conditions, presumably because soil differences create distinct environmental niches for bacteria.
Collapse
Affiliation(s)
- Swastika Raut
- Department of Biology, Baylor University, Waco, Texas
| | - Herbert W Polley
- Grassland, Soil and Water Research Laboratory, Department of Agriculture, Agricultural Research Service, Temple, Texas
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, Department of Agriculture, Agricultural Research Service, Temple, Texas
| | - Sanghoon Kang
- Department of Biology, Baylor University, Waco, Texas
| |
Collapse
|
6
|
Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau. Appl Environ Microbiol 2017; 83:AEM.03020-16. [PMID: 28087533 DOI: 10.1128/aem.03020-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.
Collapse
|
7
|
Polley HW, Bailey DW, Nowak RS, Stafford-Smith M. Ecological Consequences of Climate Change on Rangelands. RANGELAND SYSTEMS 2017. [DOI: 10.1007/978-3-319-46709-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Veresoglou SD, Anderson IC, de Sousa NMF, Hempel S, Rillig MC. Resilience of Fungal Communities to Elevated CO2. MICROBIAL ECOLOGY 2016; 72:493-5. [PMID: 27273090 DOI: 10.1007/s00248-016-0795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/23/2023]
Abstract
Soil filamentous fungi play a prominent role in regulating ecosystem functioning in terrestrial ecosystems. This necessitates understanding their responses to climate change drivers in order to predict how nutrient cycling and ecosystem services will be influenced in the future. Here, we provide a quantitative synthesis of ten studies on soil fungal community responses to elevated CO2. Many of these studies reported contradictory diversity responses. We identify the duration of the study as an influential parameter that determines the outcome of experimentation. Our analysis reconciles the existing globally distributed experiments on fungal community responses to elevated CO2 and provides a framework for comparing results of future CO2 enrichment studies.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany.
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Natalia M F de Sousa
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
9
|
Pascual J, Blanco S, García-López M, García-Salamanca A, Bursakov SA, Genilloud O, Bills GF, Ramos JL, van Dillewijn P. Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches. PLoS One 2016; 11:e0146558. [PMID: 26741495 PMCID: PMC4711807 DOI: 10.1371/journal.pone.0146558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
Little is known of the bacterial communities associated with the rhizosphere of wild plant species found in natural settings. The rhizosphere bacterial community associated with wild thyme, Thymus zygis L., plants was analyzed using cultivation, the creation of a near-full length 16S rRNA gene clone library and 454 amplicon pyrosequencing. The bacterial community was dominated by Proteobacteria (mostly Alphaproteobacteria and Betaproteobacteria), Actinobacteria, Acidobacteria, and Gemmatimonadetes. Although each approach gave a different perspective of the bacterial community, all classes/subclasses detected in the clone library and the cultured bacteria could be found in the pyrosequencing datasets. However, an exception caused by inconclusive taxonomic identification as a consequence of the short read length of pyrotags together with the detection of singleton sequences which corresponded to bacterial strains cultivated from the same sample highlight limitations and considerations which should be taken into account when analysing and interpreting amplicon datasets. Amplicon pyrosequencing of replicate rhizosphere soil samples taken a year later permit the definition of the core microbiome associated with Thymus zygis plants. Abundant bacterial families and predicted functional profiles of the core microbiome suggest that the main drivers of the bacterial community in the Thymus zygis rhizosphere are related to the nutrients originating from the plant root and to their participation in biogeochemical cycles thereby creating an intricate relationship with this aromatic plant to allow for a feedback ecological benefit.
Collapse
Affiliation(s)
- Javier Pascual
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
- MEDINA Foundation, Centre of Excellence for Innovative Medicines Research, Granada, Spain
| | - Silvia Blanco
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Marina García-López
- MEDINA Foundation, Centre of Excellence for Innovative Medicines Research, Granada, Spain
| | - Adela García-Salamanca
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Sergey A. Bursakov
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Olga Genilloud
- MEDINA Foundation, Centre of Excellence for Innovative Medicines Research, Granada, Spain
| | - Gerald F. Bills
- MEDINA Foundation, Centre of Excellence for Innovative Medicines Research, Granada, Spain
| | - Juan L. Ramos
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
10
|
Formánek P, Rejšek K, Vranová V. Effect of elevated CO2, O3, and UV radiation on soils. ScientificWorldJournal 2014; 2014:730149. [PMID: 24688424 PMCID: PMC3933551 DOI: 10.1155/2014/730149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 11/17/2022] Open
Abstract
In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.
Collapse
Affiliation(s)
- Pavel Formánek
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Klement Rejšek
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Valerie Vranová
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
11
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
12
|
Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Kuske CR. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 2012; 14:3247-58. [DOI: 10.1111/1462-2920.12011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/11/2012] [Accepted: 09/28/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Blaire Steven
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| | | | - Chris M. Yeager
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| | - Jayne Belnap
- US Geological Service; Southwest Biological Science Center; Moab; UT; 84532; USA
| | - R. David Evans
- School of Biological Sciences; Washington State University; Pullman; WA; 99163; USA
| | - Cheryl R. Kuske
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| |
Collapse
|