1
|
Kang DW, Wilson RL, Christopher CN, Normann AJ, Barnes O, Lesansee JD, Choi G, Dieli-Conwright CM. Exercise Cardio-Oncology: Exercise as a Potential Therapeutic Modality in the Management of Anthracycline-Induced Cardiotoxicity. Front Cardiovasc Med 2022; 8:805735. [PMID: 35097024 PMCID: PMC8796963 DOI: 10.3389/fcvm.2021.805735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
Anthracyclines are one of the most effective chemotherapy agents and have revolutionized cancer therapy. However, anthracyclines can induce cardiac injuries through ‘multiple-hits', a series of cardiovascular insults coupled with lifestyle risk factors, which increase the risk of developing short- and long-term cardiac dysfunction and cardiovascular disease that potentially lead to premature mortality following cancer remission. Therefore, the management of anthracycline-induced cardiotoxicity is a serious unmet clinical need. Exercise therapy, as a non-pharmacological intervention, stimulates numerous biochemical and physiologic adaptations, including cardioprotective effects, through the cardiovascular system and cardiac muscles, where exercise has been proposed to be an effective clinical approach that can protect or reverse the cardiotoxicity from anthracyclines. Many preclinical and clinical trials demonstrate the potential impacts of exercise on cardiotoxicity; however, the underlying mechanisms as well as how to implement exercise in clinical settings to improve or protect against long-term cardiovascular disease outcomes are not clearly defined. In this review, we summarize the current evidence in the field of “exercise cardio-oncology” and emphasize the utilization of exercise to prevent and manage anthracycline-induced cardiotoxicities across high-risk and vulnerable populations diagnosed with cancer.
Collapse
Affiliation(s)
- Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rebekah L. Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Cami N. Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States
| | - Amber J. Normann
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Health Sciences, Boston University, Boston, MA, United States
| | - Oscar Barnes
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Jordan D. Lesansee
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Christina M. Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Christina M. Dieli-Conwright
| |
Collapse
|
2
|
Mclaughlin M, Florida-James G, Ross M. Breast cancer chemotherapy vascular toxicity: a review of mediating mechanisms and exercise as a potential therapeutic. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2021; 3:R106-R120. [PMID: 34870095 PMCID: PMC8630759 DOI: 10.1530/vb-21-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 06/02/2023]
Abstract
Breast cancer chemotherapy, although very potent against tumour tissue, results in significant cardiovascular toxicity. The focus of research in this area has been predominantly towards cardiotoxicity. There is limited evidence detailing the impact of such treatment on the vasculature despite its central importance within the cardiovascular system and resultant detrimental effects of damage and dysfunction. This review highlights the impact of chemotherapy for breast cancer on the vascular endothelium. We consider the most likely mechanisms of endothelial toxicity to be through direct damage and dysfunction of the endothelium. There are sharp consequences of these detrimental effects as they can lead to cardiovascular disease. However, there is potential for exercise to alleviate some of the vascular toxicity of chemotherapy, and the evidence for this is provided. The potential role of exercise in protecting against vascular toxicity is explained, highlighting the recent in-human and animal model exercise interventions. Lastly, the mediating mechanisms of exercise protection of endothelial health is discussed, focusing on the importance of exercise for endothelial health, function, repair, inflammation and hyperlipidaemia, angiogenesis, and vascular remodelling. These are all important counteracting measures against chemotherapy-induced toxicity and are discussed in detail.
Collapse
Affiliation(s)
- Marie Mclaughlin
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | | | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
3
|
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG, May AM. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J Am Heart Assoc 2021; 10:e021580. [PMID: 34472371 PMCID: PMC8649276 DOI: 10.1161/jaha.121.021580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Physical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence. Methods and Results We conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism. Conclusions Animal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer. Registration URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - David Binyam
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Center for Quality of Life The Netherlands Cancer Institute Amsterdam The Netherlands.,Centre of Expertise Urban Vitality Faculty of Health Amsterdam University of Applied Sciences Amsterdam The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Arco J Teske
- Department of Cardiology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Department of Health Technology and Services Research University of Twente Enschede The Netherlands
| | - Wim G Groen
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
4
|
Ghignatti PVDC, Nogueira LJ, Lehnen AM, Leguisamo NM. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis of preclinical studies. Sci Rep 2021; 11:6330. [PMID: 33737561 PMCID: PMC7973566 DOI: 10.1038/s41598-021-83877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity in chemotherapy is a major treatment drawback. Clinical trials on the cardioprotective effects of exercise in cancer patients have not yet been published. Thus, we conducted a systematic review and meta-analysis of preclinical studies for to assess the efficacy of exercise training on DOX-induced cardiomyopathy. We included studies with animal models of DOX-induced cardiomyopathy and exercise training from PubMed, Web of Sciences and Scopus databases. The outcome was the mean difference (MD) in fractional shortening (FS, %) assessed by echocardiography between sedentary and trained DOX-treated animals. Trained DOX-treated animals improved 7.40% (95% CI 5.75-9.05, p < 0.001) in FS vs. sedentary animals. Subgroup analyses revealed a superior effect of exercise training execution prior to DOX exposure (MD = 8.20, 95% CI 6.27-10.13, p = 0.010). The assessment of cardiac function up to 10 days after DOX exposure and completion of exercise protocol was also associated with superior effect size in FS (MD = 7.89, 95% CI 6.11-9.67, p = 0.020) vs. an echocardiography after over 4 weeks. Modality and duration of exercise, gender and cumulative DOX dose did were not individually associated with changes on FS. Exercise training is a cardioprotective approach in rodent models of DOX-induced cardiomyopathy. Exercise prior to DOX exposure exerts greater effect sizes on FS preservation.
Collapse
Affiliation(s)
- Paola Victória da Costa Ghignatti
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Laura Jesuíno Nogueira
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Alexandre Machado Lehnen
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Natalia Motta Leguisamo
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil.
| |
Collapse
|
5
|
Sequeira CM, Martins MA, Alves R, Nascimento ALR, Botti GCRM, Rocha VN, Matsuura C. Aerobic exercise training attenuates doxorubicin-induced ultrastructural changes in rat ventricular myocytes. Life Sci 2021; 264:118698. [PMID: 33137370 DOI: 10.1016/j.lfs.2020.118698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effects of aerobic exercise training on cardiomyocyte ultrastructure, oxidative stress, and activation of protein synthesis pathways in a model of cardiomyopathy induced by doxorubicin (Dox). MAIN METHODS Male Sprague Dawley rats were randomly assigned to Control (saline, sedentary), Dox/sedentary (DoxSed), or Dox/exercise (DoxEx) groups. Saline or Dox were injected i.p. for 10 days (1 mg/kg/d). Aerobic exercise training was performed for 9 wks (starting with drug administration) on a treadmill, 5 d/wk, 30 min/d at 60% of maximum velocity. After euthanasia, the left ventricle (LV) was dissected, and processed for microscopy or frozen for Western blot and kinetic measurement of antioxidant enzymes activity. KEY FINDINGS Dox resulted in a mortality of 31.2% of sedentary animals, whilst all animals from both Control and DoxEx groups survived. DoxSed animals presented increased LV connective tissue deposition alongside with massive sarcomeric disorganization with dissolution of myofibrils and wavy Z-lines. There was an increase in oxidative damage and a reduction in the activation of both Akt and ERK pathways in LV from DoxSed compared to Control group. Aerobic training caused notable changes in myocardial structure with reduced fibrosis and preservation of myofibrils integrity and sarcomere organization. This was associated with reduced LV oxidative damage and increased activity of antioxidant enzymes, and an increase in the activation of PI3K-Akt pathway. SIGNIFICANCE Aerobic exercise training was effective in preventing mortality caused by Dox and in preserving LV ultrastructure, partially via activation of the physiological protein synthesis pathway, PI3K-Akt, and reducing oxidative stress.
Collapse
Affiliation(s)
- Claudia Morais Sequeira
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Anjos Martins
- Department of Physiological Sciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Alves
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Rosa Nascimento
- Department of Histology and Embryology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuly Cristina Rodrigues Mello Botti
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Vinicius Novaes Rocha
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Cristiane Matsuura
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
de Andrade Soares R, de Oliveira BC, de Bem GF, de Menezes MP, Romão MH, Santos IB, da Costa CA, de Carvalho LCDRM, Nascimento ALR, de Carvalho JJ, Ognibene DT, de Moura RS, Resende AC. Açaí (Euterpe oleracea Mart.) seed extract improves aerobic exercise performance in rats. Food Res Int 2020; 136:109549. [PMID: 32846601 DOI: 10.1016/j.foodres.2020.109549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to examine whether the supplementation with an açai (Euterpe oleracea Mart.) seed extract (ASE) would affect the aerobic exercise performance in rats and correlate with the vascular function, muscle oxidative stress and mitochondrial biogenesis. Male Wistar rats were divided into five groups: Sedentary, Sedentary with chronic supplementation of ASE, Training, Training with chronic (200 mg/Kg/day intragastric gavage for 5 weeks) or acute (30 min before the maximal treadmill stress test (MST) supplementation with ASE. The exercise training was performed on a treadmill (30 min/day; 5 days/week) for 4 weeks. The chronic supplementation with ASE increased the exercise time (58%) and the running distance (129%) in relation to the MST, while the Training group increased 40% and 78% and the Training with acute ASE group increased 30% and 63%, respectively. The training-induced increase of ACh vasodilation was not changed by ASE, but the norepinephrine-induced vasoconstriction was reduced by chronic and acute supplementation with ASE. The increased levels of malondialdehyde in soleus muscle homogenates from the Training group was reduced only by chronic supplementation with ASE. The muscle antioxidant defense, NO2 levels, and expression of the mitochondrial biogenesis-related proteins (PGC1α, SIRT-1, p-AMPK/AMPK, Nrf-2) were not different between Training and Sedentary groups, but all these parameters were increased in the Training with Chronic ASE compared with the Sedentary groups. In conclusion, chronic supplementation with ASE improves aerobic physical performance by increasing the vascular function, reducing the oxidative stress, and up-regulating the mitochondrial biogenesis key proteins.
Collapse
Affiliation(s)
- Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Beatriz Cardoso de Oliveira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Pontes de Menezes
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Henrique Romão
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Ana Lúcia Rosa Nascimento
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jorge José de Carvalho
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Kirkham AA, Paterson DI, Prado CM, Mackey JR, Courneya KS, Pituskin E, Thompson RB. Rationale and design of the Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study: a 3-arm parallel group phase II randomized controlled trial in early breast cancer. BMC Cancer 2018; 18:864. [PMID: 30176834 PMCID: PMC6122558 DOI: 10.1186/s12885-018-4778-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background Anthracycline chemotherapy agents are commonly used to treat breast cancer, but also result in cardiac injury, and potentially detrimental effects to vascular and skeletal muscle. Preclinical evidence demonstrates that exercise and caloric restriction can independently reduce anthracycline-related injury to the heart as well as cancer progression, and may be promising short-term strategies prior to treatment administration. For women with breast cancer, a short-term strategy may be more feasible and appealing, as maintaining regular exercise training or a diet throughout chemotherapy can be challenging due to treatment symptoms and psychosocial distress. Methods The Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study will determine whether acute application of these interventions shortly prior to receipt of each treatment can reduce anthracycline-related toxicity to the heart, aorta, and skeletal muscle. Fifty-six women with early stage breast cancer scheduled to receive anthracycline treatment will be randomly assigned to one of three groups who will: 1) perform a single, 30-min, vigorous-intensity, aerobic exercise session 24 h prior to each anthracycline treatment; 2) consume a prepared diet reduced to 50% of caloric needs for 48 h prior to each anthracycline treatment; or 3) receive usual cancer care. The primary outcome is magnetic resonance imaging (MRI) derived left ventricular ejection fraction reserve (peak exercise LVEF – resting LVEF) at the end of anthracycline treatment. Secondary outcomes include MRI-derived measures of cardiac, aortic and skeletal muscle structure and function, circulating NT-proBNP, cardiorespiratory fitness and treatment symptoms. Exploratory outcomes include quality of life, fatigue, tumor size (only in neoadjuvant patients), oxidative stress and antioxidants, as well as clinical cardiac or cancer outcomes. MRI, exercise tests, and questionnaires will be administered before, 2–3 weeks after the last anthracycline treatment, and one-year follow-up. Discussion The proposed lifestyle interventions are accessible, low cost, drug-free potential methods for mitigating anthracycline-related toxicity. Reduced toxic effects on the heart, aorta and muscle are very likely to translate to short and long-term cardiovascular health benefits, including enhanced resilience to the effects of subsequent cancer treatment (e.g., radiation, trastuzumab) aging, and infection. Trial registration ClinicalTrials.gov NCT03131024; 4/21/18.
Collapse
Affiliation(s)
- Amy A Kirkham
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, AB, T6G 2V2, Canada.
| | - D Ian Paterson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Canada
| | - Carla M Prado
- Department of Agricultural, Food & Nutrition Science, University of Alberta, Edmonton, Canada
| | | | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Edith Pituskin
- Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, AB, T6G 2V2, Canada
| |
Collapse
|
8
|
de Bem GF, Costa CA, Santos IB, Cristino Cordeiro VDS, de Carvalho LCRM, de Souza MAV, Soares RDA, Sousa PJDC, Ognibene DT, Resende AC, de Moura RS. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS One 2018; 13:e0199207. [PMID: 29920546 PMCID: PMC6007924 DOI: 10.1371/journal.pone.0199207] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Squires RW, Shultz AM, Herrmann J. Exercise Training and Cardiovascular Health in Cancer Patients. Curr Oncol Rep 2018. [DOI: 10.1007/s11912-018-0681-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
de Bem GF, da Costa CA, da Silva Cristino Cordeiro V, Santos IB, de Carvalho LCRM, de Andrade Soares R, Ribeiro JH, de Souza MAV, da Cunha Sousa PJ, Ognibene DT, Resende AC, de Moura RS. Euterpe oleracea Mart. (açaí) seed extract associated with exercise training reduces hepatic steatosis in type 2 diabetic male rats. J Nutr Biochem 2018; 52:70-81. [DOI: 10.1016/j.jnutbio.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/01/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
|
11
|
Scott JM, Armenian S, Giralt S, Moslehi J, Wang T, Jones LW. Cardiovascular disease following hematopoietic stem cell transplantation: Pathogenesis, detection, and the cardioprotective role of aerobic training. Crit Rev Oncol Hematol 2016; 98:222-34. [PMID: 26643524 PMCID: PMC5003053 DOI: 10.1016/j.critrevonc.2015.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
Advances in hematopoietic cell transplantation (HCT) techniques and supportive care strategies have led to dramatic improvements in relapse mortality in patients with high-risk hematological malignancies. These improvements, however, conversely increase the risk of late-occurring non-cancer competing causes, mostly cardiovascular disease (CVD). HCT recipients have a significantly increased risk of CVD-specific mortality, including elevated incidence of coronary artery disease (CAD), cerebrovascular disease, and heart failure (HF) compared to age-matched counterparts. Accordingly, there is an urgent need to identify techniques for the detection of early CVD in HCT patients to inform early prevention strategies. Aerobic training (AT) is established as the cornerstone of primary and secondary disease prevention in multiple clinical settings, and may confer similar benefits in HCT patients at high-risk of CVD. The potential benefits of AT either before, immediately after, or in the months/years following HCT have received limited attention. Here, we discuss the risk and extent of CVD in adult HCT patients, highlight novel tools for early detection of CVD, and review existing evidence in oncology and non-oncology populations supporting the efficacy of AT to attenuate HCT-induced CVD. This knowledge can be utilized to optimize treatment, while minimizing CVD risk in individuals with hematological malignancies undergoing HCT.
Collapse
Affiliation(s)
- Jessica M Scott
- Universities Space Research Association NASA Johnson Space Center, Houston, TX, USA
| | - Saro Armenian
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sergio Giralt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. JOURNAL OF ONCOLOGY 2015; 2015:917606. [PMID: 26339243 PMCID: PMC4539168 DOI: 10.1155/2015/917606] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Thanks to increasingly effective treatment, breast cancer mortality rates have significantly declined over the past few decades. Following the increase in life expectancy of women diagnosed with breast cancer, it has been recognized that these women are at an elevated risk for cardiovascular disease due in part to the cardiotoxic side effects of treatment. This paper reviews evidence for the role of exercise in prevention of cardiovascular toxicity associated with chemotherapy used in breast cancer, and in modifying cardiovascular risk factors in breast cancer survivors. There is growing evidence indicating that the primary mechanism for this protective effect appears to be improved antioxidant capacity in the heart and vasculature and subsequent reduction of treatment-related oxidative stress in these structures. Further clinical research is needed to determine whether exercise is a feasible and effective nonpharmacological treatment to reduce cardiovascular morbidity and mortality in breast cancer survivors, to identify the cancer therapies for which it is effective, and to determine the optimal exercise dose. Safe and noninvasive measures that are sensitive to changes in cardiovascular function are required to answer these questions in patient populations. Cardiac strain, endothelial function, and cardiac biomarkers are suggested outcome measures for clinical research in this field.
Collapse
|
13
|
Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, Obert P, Cazorla O, Tanguy S, Reboul C. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 2013; 108:389. [PMID: 24105420 DOI: 10.1007/s00395-013-0389-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/08/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.
Collapse
Affiliation(s)
- C Farah
- Laboratoire de Pharm-Ecologie Cardiovasculaire (EA4278), Faculty of Sciences, Avignon University, 33 rue Louis Pasteur, 84000, Avignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bonsignore A, Warburton D. The mechanisms responsible for exercise intolerance in early-stage breast cancer: What role does chemotherapy play? Hong Kong Physiother J 2013. [DOI: 10.1016/j.hkpj.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Preventing Cardiovascular Complications of Breast Cancer Treatment: The Utility of Effective Exercise Prescription. CURRENT CARDIOVASCULAR RISK REPORTS 2013. [DOI: 10.1007/s12170-013-0319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, Parry T. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 2012; 69:177-87. [PMID: 22890792 DOI: 10.1007/s13105-012-0200-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/19/2012] [Indexed: 11/29/2022]
Abstract
Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients.
Collapse
Affiliation(s)
- Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Shah A, Passacquale G, Gkaliagkousi E, Ritter J, Ferro A. Platelet nitric oxide signalling in heart failure: role of oxidative stress. Cardiovasc Res 2011; 91:625-31. [PMID: 21502370 DOI: 10.1093/cvr/cvr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Heart failure is associated with deficient endothelial nitric oxide (NO) production as well as increased oxidative stress and accelerated NO degradation. The aim of this study was to evaluate platelet NO biosynthesis and superoxide anion (O(2)(-)) production in patients with heart failure. METHODS AND RESULTS In platelets from patients with heart failure due to idiopathic dilated cardiomyopathy (n= 16) and healthy control subjects (n= 23), NO synthase (NOS) activity was evaluated by L-[(3)H]-arginine to l-[(3)H]-citrulline conversion, cGMP was determined by radioimmunoassay, vasodilator-stimulated phosphoprotein (VASP: total and serine-239-phosphorylated) was assessed by western blotting, and O(2)(-) production and O(2)(-) scavenging capacity were measured by pholasin-enhanced chemiluminescence. In platelets from patients with heart failure, basal NOS activity was higher than in those from controls; furthermore, whereas platelet NOS activity increased as expected in response to albuterol or collagen in controls, no increase occurred in platelets from heart failure subjects. Despite this, basal intraplatelet NO-attributable cGMP was lower in heart failure than in control subjects, as was serine-239 phosphorylation of VASP, suggesting a decrease in bioactive NO. Platelets from heart failure subjects exhibited higher basal and collagen-stimulated O(2)(-) production and impaired O(2)(-) scavenging capacity, resulting in higher oxidative stress, consistent with the observed decrease in bioactive NO. CONCLUSION In heart failure, despite activation of NOS, platelets produce less bioactive NO, probably as a result of NO scavenging due to increased O(2)(-) production. This functional defect in the platelet l-arginine/NO/guanylyl cyclase pathway could contribute to the platelet activation observed in heart failure.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine, King's College London, UK
| | | | | | | | | |
Collapse
|
18
|
Current world literature. Curr Opin Cardiol 2011; 26:165-73. [PMID: 21307667 DOI: 10.1097/hco.0b013e328344b569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|