1
|
Paris J, Theisen A, Marzullo BP, Haris A, Morgan TE, Barrow MP, O’Hara J, O’Connor PB. Multimodal Tandem Mass Spectrometry Techniques for the Analysis of Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1126-1133. [PMID: 35604791 PMCID: PMC9264387 DOI: 10.1021/jasms.1c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collisionally activated dissociation (CAD), infrared multiphoton dissociation (IRMPD), ultraviolet photodissociation (UVPD), electron capture dissociation and electron detachment dissociation (EDD) experiments were conducted on a set of phosphopeptides, in a Fourier transform ion cyclotron resonance mass spectrometer. The fragmentation patterns were compared and varied according to the fragmentation mechanisms and the composition of the peptides. CAD and IRMPD produced similar fragmentation profiles of the phosphopeptides, while UVPD produced a large number of complementary fragments. Electron-based dissociation techniques displayed lower fragmentation efficiencies, despite retaining the labile phosphate group, and drastically different fragmentation profiles. EDD produced complex spectra whose interpretation proved challenging.
Collapse
Affiliation(s)
- Johanna Paris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alina Theisen
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bryan P. Marzullo
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Anisha Haris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tomos E. Morgan
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John O’Hara
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
2
|
Paris J, Morgan TE, Wootton CA, Barrow MP, O'Hara J, O'Connor PB. Facile Determination of Phosphorylation Sites in Peptides Using Two-Dimensional Mass Spectrometry. Anal Chem 2020; 92:6817-6821. [PMID: 32286050 DOI: 10.1021/acs.analchem.0c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Detection and characterization of phosphopeptides by infrared multiphoton dissociation two-dimensional mass spectrometry (IRMPD 2DMS) is shown to be particularly effective. A mixture of phosphopeptides was analyzed by 2DMS without any prior separation. 2DMS enables the data independent analysis of the mixture and the correlation of the fragments to their precursor ions. The extraction of neutral loss lines corresponding to the loss of phosphate under IRMPD fragmentation allows the selective identification of phosphopeptides. Resonance of the 10.6 μm infrared radiation with the vibrational modes of the phosphate functional group produced efficient absorption and high cleavage coverage of the phosphopeptides at much lower irradiation fluence than for nonphosphorylated peptides improving discrimination. Additionally, the localization of the phosphate group was determined.
Collapse
Affiliation(s)
- Johanna Paris
- University of Warwick, Department of Chemistry, Coventry CV4 7AL, United Kingdom
| | - Tomos E Morgan
- University of Warwick, Department of Chemistry, Coventry CV4 7AL, United Kingdom
| | | | - Mark P Barrow
- University of Warwick, Department of Chemistry, Coventry CV4 7AL, United Kingdom
| | - John O'Hara
- UCB, 216 Bath Road, Slough SL1 3WE, United Kingdom
| | - Peter B O'Connor
- University of Warwick, Department of Chemistry, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
4
|
M Ribeiro FW, Rodrigues-Oliveira AF, C Correra T. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates. J Phys Chem A 2019; 123:8179-8187. [PMID: 31483645 DOI: 10.1021/acs.jpca.9b05065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Benzoxazine formation is a fundamental step in the preparation of polybenzoxazine resins, and a detailed description of the mechanism governing the formation of benzoxazine and side products is vital for improving the properties and performance of these resins. Determination of the nature and properties of reaction intermediates is not trivial. Therefore, a Mannich-type condensation of aniline, formaldehyde, and phenol was evaluated as a potential method to form benzoxazine. Coupling positive mode electrospray ionization mass spectrometry (ESI(+)-MS) with infrared multiple photon dissociation (IRMPD) spectroscopy allowed unambiguous determination of an iminium-based mechanism and the direct observation of iminium intermediates. The benzoxazine formation mechanism was indirectly confirmed by the observation of side products that are relevant to the polymerization step, and directly confirmed by the identification of four distinct reaction intermediates that were completely characterized by IRMPD spectroscopy. The benzoxazine monomer was also shown to undergo isomerization under standard ESI-MS analysis conditions, suggesting the presence of a mixture of three isomers during their usual ESI-MS analysis.
Collapse
Affiliation(s)
- Francisco W M Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - André F Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| |
Collapse
|
5
|
Halim MA, MacAleese L, Lemoine J, Antoine R, Dugourd P, Girod M. Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:270-283. [PMID: 28980177 DOI: 10.1007/s13361-017-1794-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, widespread SO3 losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mohammad A Halim
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Luke MacAleese
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Jérôme Lemoine
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69622, Villeurbanne, Cedex, France
| | - Rodolphe Antoine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France
| | - Philippe Dugourd
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Marion Girod
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69622, Villeurbanne, Cedex, France
| |
Collapse
|
6
|
Borotto NB, McClory PJ, Martin BR, Håkansson K. Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry. Anal Chem 2017; 89:8304-8310. [PMID: 28708386 DOI: 10.1021/acs.analchem.7b01461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein S-sulfinylation (R-SO2-) and S-sulfonylation (R-SO3-) are irreversible oxidative post-translational modifications of cysteine residues. Greater than 5% of cysteines are reported to occupy these higher oxidation states, which effectively inactivate the corresponding thiols and alter the electronic and physical properties of modified proteins. Such higher oxidation states are reached after excessive exposure to cellular oxidants, and accumulate across different disease states. Despite widespread and functionally relevant cysteine oxidation across the proteome, there are currently no robust methods to profile higher order cysteine oxidation. Traditional data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods generally miss low-occupancy modifications in complex analyses. Here, we present a data-independent acquisition (DIA) LC/MS-based approach, leveraging the high IR absorbance of sulfoxides at 10.6 μm, for selective dissociation and discovery of S-sulfonated peptides. Across peptide standards and protein digests, we demonstrate selective infrared multiphoton dissociation (IRMPD) of S-sulfonated peptides in the background of unmodified peptides. This selective DIA IRMPD LC/MS-based approach allows identification and annotation of S-sulfonated peptides across complex mixtures while providing sufficient sequence information to localize the modification site.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Phillip J McClory
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Brent R Martin
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Riley NM, Hebert AS, Dürnberger G, Stanek F, Mechtler K, Westphall MS, Coon JJ. Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Anal Chem 2017; 89:6367-6376. [PMID: 28383256 PMCID: PMC5555596 DOI: 10.1021/acs.analchem.7b00212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to localize phosphosites to specific amino acid residues is crucial to translating phosphoproteomic data into biological meaningful contexts. In a companion manuscript ( Anal. Chem. 2017 , DOI: 10.1021/acs.analchem.7b00213 ), we described a new implementation of activated ion electron transfer dissociation (AI-ETD) on a quadrupole-Orbitrap-linear ion trap hybrid MS system (Orbitrap Fusion Lumos), which greatly improved peptide fragmentation and identification over ETD and other supplemental activation methods. Here we present the performance of AI-ETD for identifying and localizing sites of phosphorylation in both phosphopeptides and intact phosphoproteins. Using 90 min analyses we show that AI-ETD can identify 24,503 localized phosphopeptide spectral matches enriched from mouse brain lysates, which more than triples identifications from standard ETD experiments and outperforms ETcaD and EThcD as well. AI-ETD achieves these gains through improved quality of fragmentation and MS/MS success rates for all precursor charge states, especially for doubly protonated species. We also evaluate the degree to which phosphate neutral loss occurs from phosphopeptide product ions due to the infrared photoactivation of AI-ETD and show that modifying phosphoRS (a phosphosite localization algorithm) to include phosphate neutral losses can significantly improve localization in AI-ETD spectra. Finally, we demonstrate the utility of AI-ETD in localizing phosphosites in α-casein, an ∼23.5 kDa phosphoprotein that showed eight of nine known phosphorylation sites occupied upon intact mass analysis. AI-ETD provided the greatest sequence coverage for all five charge states investigated and was the only fragmentation method to localize all eight phosphosites for each precursor. Overall, this work highlights the analytical value AI-ETD can bring to both bottom-up and top-down phosphoproteomics.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander S. Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gerhard Dürnberger
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- GMI, Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Florian Stanek
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Robotham SA, Brodbelt JS. Comparison of Ultraviolet Photodissociation and Collision Induced Dissociation of Adrenocorticotropic Hormone Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1570-9. [PMID: 26122515 DOI: 10.1007/s13361-015-1186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 05/16/2023]
Abstract
In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y-S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types (a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
9
|
Zhang X, Li H, Moore B, Wongkongkathep P, Ogorzalek Loo RR, Loo JA, Julian RR. Radical-directed dissociation of peptides and proteins by infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation with Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2729-34. [PMID: 25380495 PMCID: PMC4237167 DOI: 10.1002/rcm.7068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 05/19/2023]
Abstract
RATIONALE Recent experiments utilizing photodissociation in linear ion traps have enabled significant development of Radical-Directed Dissociation (RDD) for the examination of peptides and proteins. The increased mass accuracy and resolution available in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) should enable further progress in this area. Preliminary experiments with photoactivated radicals are reported herein. METHODS A 266 nm Nd:YAG laser is coupled to a FTICR or linear ion trap mass spectrometer. Radical peptides and proteins are generated by ultraviolet photodissociation (PD) and further activated by collisions or infrared photons. RESULTS A 266 nm UV laser and an IR laser can be simultaneously coupled to a 15 Tesla FTICR mass spectrometer. The ultra-low-pressure environment in FTICR-MS makes collisional cooling less competitive, and thus more secondary fragments are generated by UVPD than in linear ion traps. Activation by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) or infrared multiphoton dissociation (IRMPD) also yields additional secondary fragmentation relative to CID in an ion trap. Accurate identification of RDD fragments is possible in FTICR-MS. CONCLUSIONS Relative to linear ion trap instruments, PD experiments in FTICR-MS are more difficult to execute due to poor ion cloud overlap and the low pressure environment. However, the results can be more easily interpreted due to the increased resolution and mass accuracy.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
| | - Benjamin Moore
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
- UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
- UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095, USA
- To whom correspondence should be addressed: and
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California, 92521, USA
- To whom correspondence should be addressed: and
| |
Collapse
|
10
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
11
|
Stedwell CN, Galindo JF, Roitberg AE, Polfer NC. Structures of biomolecular ions in the gas phase probed by infrared light sources. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:267-285. [PMID: 23560933 DOI: 10.1146/annurev-anchem-062012-092700] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Infrared (IR) spectroscopy of biomolecular ions combines mass spectrometry's high sensitivity and ability to analyze complex mixtures with the enhanced structural information available from vibrational spectroscopy. IR spectroscopy is in principle well placed to distinguish isomers and allow chemical classification of unknown molecules. This review gives an outline of current instrumentation, spectroscopic approaches, and potential bottlenecks. We discuss the most promising applications in bioanalytical mass spectrometry in view of recent experimental results, as well as future applications based on bioinformatics.
Collapse
Affiliation(s)
- Corey N Stedwell
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
| | | | | | | |
Collapse
|
12
|
Stedwell CN, Patrick AL, Gulyuz K, Polfer NC. Screening for Phosphorylated and Nonphosphorylated Peptides by Infrared Photodissociation Spectroscopy. Anal Chem 2012; 84:9907-12. [DOI: 10.1021/ac3023058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Corey N. Stedwell
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Amanda L. Patrick
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Kerim Gulyuz
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Nicolas C. Polfer
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| |
Collapse
|
13
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
14
|
Brodbelt JS. Shedding light on the frontier of photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:197-206. [PMID: 21472579 DOI: 10.1007/s13361-010-0023-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The development of new ion activation/dissociation methods is motivated by the need for more versatile ways to characterize structures of ions, especially in the growing arena of biological mass spectrometry in which better tools for determining sequences, modifications, interactions, and conformations of biopolymers are essential. Although most agree that collision-induced dissociation (CID) remains the gold standard for ion activation/dissociation, recent inroads in electron- and photon-based activation methods have cemented their role as outstanding alternatives. This article will focus on the impact of photodissociation, including its strengths and drawbacks as an analytical tool, and its potential for further development in the next decade. Moreover, the discussion will emphasize photodissociation in quadrupole ion traps, because that platform has been used for one of the greatest arrays of new applications over the past decade.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Yoo HJ, Håkansson K. Determination of Phospholipid Regiochemistry by Ag(I) Adduction and Tandem Mass Spectrometry. Anal Chem 2011; 83:1275-83. [DOI: 10.1021/ac102167q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
16
|
Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 2011; 753:183-213. [PMID: 21604124 DOI: 10.1007/978-1-61779-148-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.
Collapse
Affiliation(s)
- Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | |
Collapse
|
17
|
Wang H, Ouyang Z, Xia Y. Peptide Fragmentation during Nanoelectrospray Ionization. Anal Chem 2010; 82:6534-41. [PMID: 20608645 DOI: 10.1021/ac100872x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | - Yu Xia
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| |
Collapse
|
18
|
Madsen JA, Gardner MW, Smith SI, Ledvina AR, Coon JJ, Schwartz JC, Stafford GC, Brodbelt JS. Top-down protein fragmentation by infrared multiphoton dissociation in a dual pressure linear ion trap. Anal Chem 2010; 81:8677-86. [PMID: 19785447 DOI: 10.1021/ac901554z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (approximately 29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lundström SL, D'Alexandri FL, Nithipatikom K, Haeggström JZ, Wheelock AM, Wheelock CE. HPLC/MS/MS-based approaches for detection and quantification of eicosanoids. Methods Mol Biol 2010; 579:161-87. [PMID: 19763475 DOI: 10.1007/978-1-60761-322-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.
Collapse
Affiliation(s)
- Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Park S, Ahn WK, Lee S, Han SY, Rhee BK, Oh HB. Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3609-3620. [PMID: 19890956 DOI: 10.1002/rcm.4184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) photodissociation (PD) experiments using 266 nm light were performed for a series of phosphopeptide cations in a Fourier transform mass spectrometer. The objective of the experiments was to determine whether 266 nm UV irradiation on the phosphopeptide cations would induce unique peptide backbone dissociation. In addition, the general behavior of the phosphate loss (-80 or -98 Da) was monitored, particularly for those phosphopeptides with a phosphotyrosine residue that itself is a UV chromophore. For phosphopeptides with a UV chromophore, their photodissociation behavior was very similar to that of low-energy sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD), with a few exceptions. For example, b- and y-type peptide backbone fragments were prevalent, and their dephosphorylation behavior was consistent with that of the SORI-CAD results. For phosphoserine peptides, the loss of a phosphate group was always observed. On the other hand, for phosphotyrosine peptides, the phosphate loss was found to be dependent on the presence of a basic amino group in the sequence and the charge state of the precursor ions, in agreement with the CAD results in the literature. However, hydrogen atom loss or aromatic side chain loss, which is known to be the excited state specific fragmentation pathway, was rarely observed in our 266 nm UV PD experiments, in contrast to the previous UV PD literature (particularly at 220 nm). The mechanism for these observations is described in terms of dominant internal conversion followed by intramolecular vibrational energy redistribution (IVR).
Collapse
Affiliation(s)
- Soojin Park
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Schäfer M, Drayss MK, Blunk D, Purcell JM, Hendrickson CL, Marshall AG, Mookherjee A, Armentrout PB. Kinetic Determination of Potassium Affinities by IRMPD: Elucidation of Precursor Ion Structures. J Phys Chem A 2009; 113:7779-83. [DOI: 10.1021/jp903232y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathias Schäfer
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Miriam K. Drayss
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Dirk Blunk
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Jeremiah M. Purcell
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Christopher L. Hendrickson
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Alan G. Marshall
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Abhigya Mookherjee
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - P. B. Armentrout
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany, Shell Global Solutions, Inc., Houston, Texas, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, and Department of Chemistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Vasicek LA, Wilson JJ, Brodbelt JS. Improved infrared multiphoton dissociation of peptides through N-terminal phosphonite derivatization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:377-384. [PMID: 19027323 DOI: 10.1016/j.jasms.2008.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 05/27/2023]
Abstract
A strategy for improving the sequencing of peptides by infrared multiphoton dissociation (IRMPD) in a linear ion trap mass spectrometer is described. We have developed an N-terminal derivatization reagent, 4-methylphosphonophenylisothiocyanate (PPITC), which allows the attachment of an IR-chromogenic phosphonite group to the N-terminus of peptides, thus enhancing their IRMPD efficiencies. After the facile derivatization process, the PPITC-modified peptides require shorter irradiation times for efficient IRMPD and yield extensive series of y ions, including those of low m/z that are not detected upon traditional CID. The resulting IRMPD mass spectra afford more complete sequence coverage for both model peptides and tryptic peptides from cytochrome c. We compare the effectiveness of this derivatization/IRMPD approach to that of a common N-terminal sulfonation reaction that utilizes 4-sulfophenylisothiocyanate (SPITC) in conjunction with CID and IRMPD.
Collapse
Affiliation(s)
- Lisa A Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
23
|
Madsen JA, Brodbelt JS. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:349-58. [PMID: 19036605 DOI: 10.1016/j.jasms.2008.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 05/12/2023]
Abstract
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | |
Collapse
|
24
|
Eberlin LS, Xia Y, Chen H, Cooks RG. Atmospheric pressure thermal dissociation of phospho- and sulfopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1897-1905. [PMID: 18722138 DOI: 10.1016/j.jasms.2008.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Several phospho- and sulfopeptides were subjected to atmospheric pressure thermal dissociation (APTD), which was effected by passing peptide ions generated by electrosonic spray ionization (ESSI) through a heated coiled metal tube. Sequence informative fragment ions including a-, b-, c-, and y-types of ions were observed with increased relative intensities under APTD compared with collision-induced dissociation (CID), performed inside the ion trap. A certain degree of preservation of phosphate and sulfate ester moieties was observed for some fragments ions under APTD. The neutral fragments generated outside the mass spectrometer were further analyzed via on-line corona discharge to provide rich and complementary sequence information to that provided by the fragment ions directly obtained from APTD, although complete losses of the modification groups were noted. Improved primary sequence information for phospho- and sulfopeptides was typically obtained by analyzing both ionic and neutral fragments from APTD compared with fragment ions from CID alone. Localization of the modification sites of phospho- and sulfopeptides was achieved by combining the structural information acquired from APTD and CID.
Collapse
Affiliation(s)
- Lívia S Eberlin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | |
Collapse
|
25
|
Correia CF, Clavaguera C, Erlekam U, Scuderi D, Ohanessian G. IRMPD Spectroscopy of a Protonated, Phosphorylated Dipeptide. Chemphyschem 2008; 9:2564-73. [DOI: 10.1002/cphc.200800469] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Gardner MW, Vasicek LA, Shabbir S, Anslyn EV, Brodbelt JS. Chromogenic cross-linker for the characterization of protein structure by infrared multiphoton dissociation mass spectrometry. Anal Chem 2008; 80:4807-19. [PMID: 18517224 DOI: 10.1021/ac800625x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new IR chromogenic cross-linker (IRCX) to aid in rapidly distinguishing cross-linked peptides from unmodified species in complex mixtures. By incorporating a phosphate functional group into the cross-linker, one can take advantage of its unique IR absorption properties, affording selective infrared multiphoton dissociation (IRMPD) of the cross-linked peptides. In a mock mixture of unmodified peptides and IRCX-cross-linked peptides (intramolecularly and intermolecularly cross-linked), only the peptides containing the IRCX modification were shown to dissociate upon exposure to 50 ms of 10.6-microm radiation. LC-IRMPD-MS proved to be an effective method to distinguish the cross-linked peptides in a tryptic digest of IRCX-cross-linked ubiquitin. A total of four intermolecular cross-links and two dead-end modifications were identified using IRCX and LC-IRMPD-MS. IRMPD of these cross-linked peptides resulted in secondary dissociation of all primary fragment ions containing the chromophore, producing a series of unmodified b- or y-type ions that allowed the cross-linked peptides to be sequenced without the need for collision-induced dissociation.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, USA 78712, USA
| | | | | | | | | |
Collapse
|
27
|
Cui L, Isbell MA, Chawengsub Y, Falck JR, Campbell WB, Nithipatikom K. Structural characterization of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids by ESI-FTICR. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:569-85. [PMID: 18296063 PMCID: PMC2373256 DOI: 10.1016/j.jasms.2008.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/17/2008] [Accepted: 01/17/2008] [Indexed: 05/25/2023]
Abstract
The fragmentation characteristics of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids were investigated by electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation (IRMPD). The fragmentation patterns of these compounds were associated with the number and positions of the hydroxyl substituents. The fragmentation is more complicated with increasing number of the hydroxyl groups of the compounds. In general, the major carbon-carbon cleavage of [M - H](-) ions occurred at the alpha-position to the hydroxyl group, and the carbon-carbon cleavage occurred when there was a double-bond at the beta-position to the hydroxyl group. SORI-CID and IRMPD produced some common fragmentation patterns; however, each technique provided some unique patterns that are useful for structural identification of these compounds. This study demonstrated the application of FTICR via the identification of regioisomers of trihydroxyeicosatrienoic acids in rabbit aorta samples.
Collapse
Affiliation(s)
- Lijie Cui
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Marilyn A. Isbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Yuttana Chawengsub
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - John R. Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| |
Collapse
|
28
|
Correia CF, Balaj PO, Scuderi D, Maitre P, Ohanessian G. Vibrational Signatures of Protonated, Phosphorylated Amino Acids in the Gas Phase. J Am Chem Soc 2008; 130:3359-70. [DOI: 10.1021/ja073868z] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Catarina F. Correia
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France, and the Laboratoire de Chimie Physique, Université Paris-Sud 11, CNRS, 91405 Orsay CEDEX, France
| | - Petru O. Balaj
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France, and the Laboratoire de Chimie Physique, Université Paris-Sud 11, CNRS, 91405 Orsay CEDEX, France
| | - Debora Scuderi
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France, and the Laboratoire de Chimie Physique, Université Paris-Sud 11, CNRS, 91405 Orsay CEDEX, France
| | - Philippe Maitre
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France, and the Laboratoire de Chimie Physique, Université Paris-Sud 11, CNRS, 91405 Orsay CEDEX, France
| | - Gilles Ohanessian
- Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France, and the Laboratoire de Chimie Physique, Université Paris-Sud 11, CNRS, 91405 Orsay CEDEX, France
| |
Collapse
|
29
|
Wu J, Vajjhala S, O'Connor S. A microPLC-based approach for determining kinase-substrate specificity. Assay Drug Dev Technol 2007; 5:559-66. [PMID: 17767424 DOI: 10.1089/adt.2007.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation is central to signal transduction in living organisms. The specificity of phosphorylation ensures signaling fidelity. Understanding substrate specificity is essential for novel assay development in drug discovery. In this study, we have developed an innovative approach to study protein kinase and its substrate specificity. Using 24 micro parallel liquid chromatography, we studied the reaction kinetics for two different peptide substrates commonly associated with protein kinase A (PKA): Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Glu) and CREBtide (Lys-Arg-Arg-Glu-Ile-Leu-Ser-Arg-Arg-Pro-Ser-Tyr-Arg). The phosphorylation of each substrate was monitored in real time, and the kinetic parameters (V(max), K(m), k(cat), and k(cat) K(m)) were determined for a variety of initial conditions. The results from several kinetic experiments indicated that Kemptide had higher V(max) and k(cat) values compared to CREBtide under the same assay conditions. However, both substrates had a similar k cat)/K(m) value, suggesting that both substrates have similar specificity constants for PKA. We further analyzed the reaction kinetics of ATP for both PKA/substrate complexes. Interestingly, we found that there was a fivefold difference in the specificity constants for ATP affinity to the two complexes, suggesting that even though the sequence differences between the two substrates do not affect their independent interactions with PKA, the differences do have a secondary effect on each enzyme's interaction with ATP and significantly alter the ATP consumption and thus phosphorylation. This novel approach has a broad application for studying enzyme functions and enzyme/substrate specificity.
Collapse
Affiliation(s)
- Jun Wu
- Nanostream Inc., Pasadena, CA 91107, USA.
| | | | | |
Collapse
|
30
|
Yoo HJ, Liu H, Håkansson K. Infrared multiphoton dissociation and electron-induced dissociation as alternative MS/MS strategies for metabolite identification. Anal Chem 2007; 79:7858-66. [PMID: 17880105 DOI: 10.1021/ac071139w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major challenge encountered in mass spectrometric metabolite analysis is the identification and structural characterization of metabolites. Fourier transform ion cyclotron resonance mass spectrometry is a valuable technique for metabolite structural determination because it provides accurate masses and allows for multiple MS/MS fragmentation strategies, including infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID). Collision activated dissociation (CAD) is currently the most commonly used MS/MS technique for metabolite structural characterization. In contrast, IRMPD and EID have had very limited, if any, application for metabolite characterization. Here, we explore IRMPD and EID of phosphate-containing metabolites and compare the resulting fragmentation patterns to those of CAD. Our results show that CAD, IRMPD, and EID provide complementary structural information for phosphate-containing metabolites. Overall, CAD provided the most extensive fragmentation for smaller (<600 Da) phosphate-containing metabolites; however, IRMPD generated more extensive fragmentation for larger (>600 Da) phosphate-containing metabolites, particularly for species containing increased numbers of phosphate groups. EID generally provided complementary fragmentation to CAD and showed extensive fragmentation with relatively evenly abundant product ions, regardless of metabolite size. However, EID fragmentation efficiency is lower than those of CAD and IRMPD.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
31
|
Crowe MC, Brodbelt JS. Differentiation of phosphorylated and unphosphorylated peptides by high-performance liquid chromatography-electrospray ionization-infrared multiphoton dissociation in a quadrupole ion trap. Anal Chem 2007; 77:5726-34. [PMID: 16131088 DOI: 10.1021/ac0509410] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap coupled to high-performance liquid chromatography allows the selective dissociation of phosphorylated peptides in mixtures following chromatographic separation. This method is shown to be effective for differentiation of phosphorylated peptides from unphosphorylated ones; only the abundances of the phosphorylated species are appreciably decreased following exposure to 125 ms of 10.6-microm radiation. This LC-IRMPD-MS strategy is demonstrated for a mock mixture of peptides and a tryptic digest of alphaS1-casein. The ability of this technique to differentiate peptides based on phosphorylation state is unaffected by whether the peptides are protonated or sodium-cationized.
Collapse
Affiliation(s)
- Matthew C Crowe
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
32
|
Yang L, Sturgeon RE, Mester Z. Quantitation of Trace Metals in Liquid Samples by Dried-Droplet Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2005; 77:2971-7. [PMID: 15859618 DOI: 10.1021/ac048275a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, discrete sample introduction approach based on laser ablation (LA) is described for the quantitation of several trace metals in aqueous samples by ICPMS. Dried microdroplets of sample, previously mixed with a sodium acetate matrix, were quantitatively ablated from a polystyrene substrate. Calibration via the method of standard additions or isotope dilution provided accurate results for Ni, Cd, and Pb in drinking water and Se in a yeast extract. Compared to conventional solution nebulization, LA sample introduction provided a 2-7-fold enhancement in absolute sensitivity and transport efficiency of 2-14% for the elements examined. Estimated detection limits are 1-7-fold poorer for the dried-droplet LA technique, primarily a result of degraded precision arising from counting statistics limitations for discrete sample introduction. On the basis of the several-second half-width of the resulting transient signals, sample throughput can be in the range of 250 samples per hour. Additionally, integration of the transient signal should eliminate contributions to elemental fractionation from the LA step. Dried-droplet LA-ICPMS offers several advantages over its counterpart, ETV-ICPMS, with respect to background intensity, throughput, and ease of desorption.
Collapse
Affiliation(s)
- Lu Yang
- Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
33
|
Crowe MC, Brodbelt JS. Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1581-1592. [PMID: 15519225 DOI: 10.1016/j.jasms.2004.07.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 05/24/2023]
Abstract
Dissociation of protonated peptides via infrared multiphoton dissociation (IRMPD) provides more extensive sequence information than is obtained with collisionally activated dissociation (CAD) in a quadrupole ion trap due to the lack of the CAD low m/z cutoff and the ability to form secondary and higher order fragments with the non-resonant photoactivation technique. In addition, IRMPD is shown to be useful for the selective dissociation of phosphopeptides over those which are not phosphorylated because the greater photon absorption efficiency of the phosphorylated peptides leads to their more rapid dissociation. Finally, the selectivity of the IRMPD technique for phosphorylated species in complex mixtures is confirmed with the analysis of a mock peptide mixture and a tryptic digest of alpha-casein.
Collapse
Affiliation(s)
- Matthew C Crowe
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | |
Collapse
|