1
|
Glenister M, Mistarz U, Cook K, Stephenson J, Dickman M. Optimisation of Heated Electrospray Ionisation Parameters to Minimise In-Source Generated Impurities in the Analysis of Oligonucleotide Therapeutics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10033. [PMID: 40181565 PMCID: PMC11969060 DOI: 10.1002/rcm.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
RATIONALE Oligonucleotides have emerged as an important new class of therapeutic. Due to their structural complexity, this presents significant challenges for the development of analytical methods to characterise and determine their impurity profile. In this study, we introduce a sensitive ion-pair reverse phase method interfaced with mass spectrometry for analysis of antisense oligonucleotides and small interfering RNAs. METHODS Liquid chromatography-mass spectrometry analysis of antisense oligonucleotides and small interfering RNAs was performed using hexylamine: hexafluoro-2-propanol mobiles phases. LC-MS analysis was performed in both negative and positive ion mode. Electrospray ionisation source conditions including collision energy and temperature were optimised to minimise in-source generated impurities and alkylamine adducts in the analysis of oligonucleotide therapeutics. RESULTS The results show that under low or no in-source collision energy the presence of hexylamine adducts are observed and are predominantly on the lowest charge states present. As the in-source collision energy is increased, a reduction of hexylamine adducts is observed in conjunction with an increase in nucleobase loss in the gas phase, therefore generating in-source impurities. In comparison to tributylammonium acetate, increased MS sensitivity, higher charge states and effective removal of hexylamine adducts using mild source conditions was achieved. CONCLUSIONS Optimisation of the mild source conditions in conjunction with high pH mobile phases was combined with high-resolution accurate mass spectrometry analysis and automated deconvolution workflows to develop a simplified and streamlined approach for characterising oligonucleotide therapeutics and their related impurities.
Collapse
Affiliation(s)
- Mollie A. Glenister
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| | | | - Ken Cook
- ThermoFisher ScientificHemel HempsteadUK
| | | | - Mark J. Dickman
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
Palasser M, Breuker K. FAST MS: Software for the Automated Analysis of Top-Down Mass Spectra of Polymeric Molecules Including RNA, DNA, and Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:247-257. [PMID: 39715325 PMCID: PMC11808778 DOI: 10.1021/jasms.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Top-down mass spectrometry (MS) enables comprehensive characterization of modified proteins and nucleic acids and, when native electrospray ionization (ESI) is used, binding site mapping of their complexes with native or therapeutic ligands. However, the high complexity of top-down MS spectra poses a serious challenge to both manual and automated data interpretation, even when the protein, RNA, or DNA sequence and the type of modification or the ligand are known. Here, we introduce FAST MS, a user-friendly software that identifies, assigns and relatively quantifies signals of molecular and fragment ions in MS and MS/MS spectra of biopolymers with known sequence and provides a toolbox for statistical analysis. FAST MS searches mass spectra for ion signals by comparing all signals in the spectrum with isotopic profiles calculated from known sequences, resulting in superior sensitivity and an increased number of assigned fragment ions compared to algorithms that rely on artificial monomer units while maintaining the false positive rate on a moderate level (<5%). FAST MS is an open-source, cross-platform software for the accurate identification, localization and relative quantification of modifications, even in complex mixtures of positional isomers of proteins, oligonucleotides, or any other user-defined linear polymer.
Collapse
Affiliation(s)
| | - Kathrin Breuker
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Review of fragmentation of synthetic single-stranded oligonucleotides by tandem mass spectrometry from 2014 to 2022. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9596. [PMID: 37580500 PMCID: PMC10909466 DOI: 10.1002/rcm.9596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023]
Abstract
The fragmentation of oligonucleotides by mass spectrometry allows for the determination of their sequences. It is necessary to understand how oligonucleotides dissociate in the gas phase, which allows interpretation of data to obtain sequence information. Since 2014, a range of fragmentation mechanisms, including a novel internal rearrangement, have been proposed using different ion dissociation techniques. The recent publications have focused on the fragmentation of modified oligonucleotides such as locked nucleic acids, modified nucleobases (methylated, spacer, nebularine and aminopurine) and modification to the carbon 2'-position on the sugar ring; these modified oligonucleotides are of great interest as therapeutics. Comparisons of different dissociation techniques have been reported, including novel approaches such as plasma electron detachment dissociation and radical transfer dissociation. This review covers the period 2014-2022 and details the new knowledge gained with respect to oligonucleotide dissociation using tandem mass spectrometry (without priori sample digestion) during that time, with a specific focus on synthetic single-stranded oligonucleotides.
Collapse
Affiliation(s)
- Fabien Hannauer
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Rachelle Black
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Andrew D. Ray
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Eugen Stulz
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Stephen W. Holman
- Chemical Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| |
Collapse
|
4
|
Sun RX, Zuo MQ, Zhang JS, Dong MQ. Charge-State-Dependent Collision-Induced Dissociation Behaviors of RNA Oligonucleotides via High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37463304 DOI: 10.1021/jasms.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Mass spectrometry (MS)-based analysis of RNA oligonucleotides (oligos) plays an increasingly important role in the development of RNA therapeutics and epitranscriptomics research. However, MS fragmentation behaviors of RNA oligomers are understood insufficiently. Herein, we characterized the negative-ion-mode fragmentation behaviors of 26 synthetic RNA oligos containing four to eight nucleotides using collision-induced dissociation (CID) on a high-resolution, accurate-mass instrument. We found that in CID spectra acquired under the normalized collision energy (NCE) of 35%, approximately 70% of the total peak intensity was attributed to sequencing ions (a-B, a, b, c, d, w, x, y, z), around 25% of the peak intensity came from precursor ions that experienced complete or partial loss of a nucleobase in the form of either a neutral or an anion, and the remainder were internal ions and anionic nucleobases. The top five sequencing ions were the y, c, w, a-B, and a ions. Furthermore, we observed that CID fragmentation behaviors of RNA oligos were significantly impacted by their precursor charge. Specifically, when the precursors had a charge from 1- to 5-, the fractional intensity of sequencing ions decreased, while that of precursors that underwent either neutral or charged losses of a nucleobase increased. Additionally, we found that RNA oligos containing 3'-U tended to produce precursors with HNCO and/or NCO- losses, which presumably corresponded to isocyanic acid and cyanate anion, respectively. These findings provide valuable insights for better comprehending the mechanism behind RNA fragmentation by MS/MS, thereby facilitating the future automated identification of RNA oligos based on their CID spectra in a more efficient manner.
Collapse
Affiliation(s)
- Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Mei-Qing Zuo
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Ji-Shuai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. MASS SPECTROMETRY REVIEWS 2023; 42:1332-1357. [PMID: 34939674 PMCID: PMC9218015 DOI: 10.1002/mas.21766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
The deceptively simple concepts of mass determination and fragment analysis are the basis for the application of mass spectrometry (MS) to a boundless range of analytes, including fundamental components and polymeric forms of nucleic acids (NAs). This platform affords the intrinsic ability to observe first-hand the effects of NA-active drugs on the chemical structure, composition, and conformation of their targets, which might affect their ability to interact with cognate NAs, proteins, and other biomolecules present in a natural environment. The possibility of interfacing with high-performance separation techniques represents a multiplying factor that extends these capabilities to cover complex sample mixtures obtained from organisms that were exposed to NA-active drugs. This report provides a brief overview of these capabilities in the context of the analysis of the products of NA-drug activity and NA therapeutics. The selected examples offer proof-of-principle of the applicability of this platform to all phases of the journey undertaken by any successful NA drug from laboratory to bedside, and provide the rationale for its rapid expansion outside traditional laboratory settings in support to ever growing manufacturing operations.
Collapse
Affiliation(s)
| | - Dan Fabris
- Department of Chemistry, University of Connecticut
| |
Collapse
|
6
|
Wolff P, Lechner A, Droogmans L, Grosjean H, Westhof E. Identification of U p47 in three thermophilic archaea, one mesophilic archaeon, and one hyperthermophilic bacterium. RNA (NEW YORK, N.Y.) 2023; 29:551-556. [PMID: 36759127 PMCID: PMC10159004 DOI: 10.1261/rna.079546.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 05/06/2023]
Abstract
Analysis of the profile of the tRNA modifications in several Archaea allowed us to observe a novel modified uridine in the V-loop of several tRNAs from two species: Pyrococcus furiosus and Sulfolobus acidocaldarius Recently, Ohira and colleagues characterized 2'-phosphouridine (Up) at position 47 in tRNAs of thermophilic Sulfurisphaera tokodaii, as well as in several other archaea and thermophilic bacteria. From the presence of the gene arkI corresponding to the RNA kinase responsible for Up47 formation, they also concluded that Up47 should be present in tRNAs of other thermophilic Archaea Reanalysis of our earlier data confirms that the unidentified residue in tRNAs of both P. furiosus and S. acidocaldarius is indeed 2'-phosphouridine followed by m5C48. Moreover, we find this modification in several tRNAs of other Archaea and of the hyperthermophilic bacterium Aquifex aeolicus.
Collapse
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Antony Lechner
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, Anderlecht B-1070, Belgium
| | - Henri Grosjean
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, Anderlecht B-1070, Belgium
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| |
Collapse
|
7
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas-Phase Infrared Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202115481. [PMID: 35231141 PMCID: PMC9314874 DOI: 10.1002/anie.202115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.
Collapse
Affiliation(s)
- Kim Greis
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Carla Kirschbaum
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Martín I. Taccone
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Michael Götze
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
8
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, Helden G, Pagel K. Untersuchung des reaktiven Intermediats der RNA Autohydrolyse mittels kryogener Infrarotspektroskopie in der Gasphase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kim Greis
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Carla Kirschbaum
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Martín I. Taccone
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Michael Götze
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Gert Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
9
|
Santos IC, Lanzillotti M, Shilov I, Basanta-Sanchez M, Roushan A, Lawler R, Tang W, Bern M, Brodbelt JS. Ultraviolet Photodissociation and Activated Electron Photodetachment Mass Spectrometry for Top-Down Sequencing of Modified Oligoribonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:510-520. [PMID: 35157441 DOI: 10.1021/jasms.1c00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increased development of new RNA-based therapeutics, the need for robust analytical methods for confirming sequences and mapping modifications has accelerated. Characterizing modified ribonucleic acids using mass spectrometry is challenging because diagnostic fragmentation may be suppressed for modified nucleotides, thus hampering complete sequence coverage and the confident localization of modifications. Ultraviolet photodissociation (UVPD) has shown great potential for the characterization of nucleic acids due to extensive backbone fragmentation. Activated electron photodetachment dissociation (a-EPD) has also been used as an alternative to capitalize on the dominant charge-reduction pathway prevalent in UVPD, facilitate dissociation, and produce high abundances of fragment ions. Here, we compare higher-energy collisional activation (HCD), UVPD using 193 and 213 nm photons, and a-EPD for the top-down sequencing of modified nucleic acids, including methylated, phosphorothioate, and locked nucleic acid-modified DNA. The presence of these modifications alters the fragmentation pathways observed upon UVPD and a-EPD, and extensive backbone cleavage is observed that results in the production of fragment ions that retain the modifications and allow them to be pinpointed. LNA and 2'-O-methoxy phosphorothioate modifications caused a significant suppression of fragmentation for UVPD but not for a-EPD, whereas phosphorothioate bonds did not cause any significant suppression for either method. The incorporation of 2'-O-methyl modifications suppressed fragmentation of the antisense strand of patisiran, which resulted in some gaps in sequence coverage. However, UVPD provided the highest sequence coverage when compared to a-EPD.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael Lanzillotti
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ignat Shilov
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Maria Basanta-Sanchez
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Abhishek Roushan
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Rose Lawler
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Wilfred Tang
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Marshall Bern
- Protein Metrics Inc., 20863 Stevens Creek Boulevard, Cupertino, California 95014, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Pourshahian S. THERAPEUTIC OLIGONUCLEOTIDES, IMPURITIES, DEGRADANTS, AND THEIR CHARACTERIZATION BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:75-109. [PMID: 31840864 DOI: 10.1002/mas.21615] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oligonucleotides are an emerging class of drugs that are manufactured by solid-phase synthesis. As a chemical class, they have unique product-related impurities and degradants, characterization of which is an essential step in drug development. The synthesis cycle, impurities produced during the synthesis and degradation products are presented and discussed. The use of liquid chromatography combined with mass spectrometry for characterization and quantification of product-related impurities and degradants is reviewed. In addition, sequence determination of oligonucleotides by gas-phase fragmentation and indirect mass spectrometric methods is discussed. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Soheil Pourshahian
- Janssen Pharmaceutical Companies of Johnson & Johnson, South San Francisco, CA, 94080
| |
Collapse
|
11
|
Kimura S, Obika S. Effect of oligonucleotide structural difference on matrix-assisted laser desorption/ionization in-source decay in comparison with collision-induced dissociation fragmentation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8819. [PMID: 32346915 DOI: 10.1002/rcm.8819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Mass spectrometry (MS) is an effective tool for the structural analysis of oligonucleotides. Currently, various modifications of oligonucleotides have been proposed to increase the efficacy and safety of oligonucleotide therapeutics. For MS-based structural characterization, the fragmentation behavior of modified oligonucleotides by MS must first be determined. METHODS The impact of the oligonucleotide structure on the in-source decay (ISD) of matrix-assisted laser desorption/ionization (MALDI) was examined using a new matrix and compared with collision-induced dissociation (CID) fragmentation behavior. RESULTS When a part of the oligonucleotide structure was replaced, an impact was observed at the 3' side of the replaced structure. Among the oligonucleotide components considered herein, nucleobases most significantly impacted both ISD and CID fragmentation patterns. CONCLUSIONS Compared with CID, ISD was less sensitive to structural differences. Because ISD fragmentation was less affected by various oligonucleotide modifications, MALDI is a useful and applicable method for the structural characterization or identification of various modified oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Satoshi Kimura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Gamba E, Sosic A, Saccone I, Magli E, Frecentese F, Gatto B. Multiple in Vitro Inhibition of HIV-1 Proteins by 2,6-Dipeptidyl-anthraquinone Conjugates Targeting the PBS RNA. ACS Med Chem Lett 2020; 11:949-955. [PMID: 32435410 DOI: 10.1021/acsmedchemlett.9b00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/23/2020] [Indexed: 11/28/2022] Open
Abstract
We recently reported a series of 2,6-dipeptidyl-anthraquinone conjugates (AQs) as Trans-Activation Response element (TAR) RNA-binding agents able to inhibit in vitro the HIV-1 nucleocapsid (NC) protein-mediated processes. Because NC is a highly adaptable nucleic acid chaperone assisting several crucial steps along reverse transcription, in this study we investigate the ability of AQs to interact with other virus-derived nucleic acid structures thus potentially inhibiting multiple NC functions. Focusing on the HIV-1 Primer Binding Site (PBS) RNA sequence, we demonstrate that properly substituted dipeptidyl-anthraquinone conjugates efficiently inhibit the NC-mediated primer annealing in the low micromolar range. Similarly, we extended the analysis to the HIV-1 trans-activator of transcription (Tat) peptide, which has been recently shown to mimic the annealer functions of NC upon interacting with the same nucleic acid regulatory sequences. Our results highlight how RNA-targeting agents can act as multimode inhibitors of key viral proteins affecting their chaperone activity in reverse transcription processes.
Collapse
Affiliation(s)
- Elia Gamba
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Alice Sosic
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Irene Saccone
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Elisa Magli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Barbara Gatto
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
13
|
Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S, Song K, Hase WL, Spezia R. Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2-24. [PMID: 32881516 DOI: 10.1021/jasms.9b00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.
Collapse
Affiliation(s)
- Ana Martin Somer
- Departamento de Química, Facultad de Ciencias, Módulo 13 Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Subha Pratihar
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Kihyung Song
- Department of Chemistry, Korea National University of Education, Chungbuk 28644, Republic of Korea
| | - William L Hase
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4, Place Jussieu, Paris, 75252 Cedex 05, France
| |
Collapse
|
14
|
Fuchs E, Falschlunger C, Micura R, Breuker K. The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry. Nucleic Acids Res 2019; 47:7223-7234. [PMID: 31276590 PMCID: PMC6698743 DOI: 10.1093/nar/gkz574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5'-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.
Collapse
Affiliation(s)
- Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Falschlunger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Glasner H, Riml C, Micura R, Breuker K. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res 2017; 45:8014-8025. [PMID: 28549193 PMCID: PMC5570050 DOI: 10.1093/nar/gkx470] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 01/28/2023] Open
Abstract
Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site.
Collapse
Affiliation(s)
- Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Schürch S. Characterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequences. MASS SPECTROMETRY REVIEWS 2016; 35:483-523. [PMID: 25288464 DOI: 10.1002/mas.21442] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:483-523, 2016.
Collapse
Affiliation(s)
- Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| |
Collapse
|
17
|
Hari Y, Dugovič B, Istrate A, Fignolé A, Leumann CJ, Schürch S. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1186-1196. [PMID: 27080005 DOI: 10.1007/s13361-016-1391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yvonne Hari
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Branislav Dugovič
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Annabel Fignolé
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
18
|
Gaston KW, Limbach PA. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 2015; 11:1568-85. [PMID: 25616408 PMCID: PMC4615682 DOI: 10.4161/15476286.2014.992280] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.
Collapse
Affiliation(s)
- Kirk W Gaston
- a Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry ; University of Cincinnati ; Cincinnati , OH USA
| | | |
Collapse
|
19
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Sample PJ, Gaston KW, Alfonzo JD, Limbach PA. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids. Nucleic Acids Res 2015; 43:e64. [PMID: 25820423 PMCID: PMC4446411 DOI: 10.1093/nar/gkv145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 11/14/2022] Open
Abstract
Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined 'variable sequencing', which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing.
Collapse
Affiliation(s)
- Paul J Sample
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kirk W Gaston
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
21
|
Abstract
Recent findings have elucidated numerous novel biological functions for oligonucleotides. Current standard methods for the study of oligonucleotides (i.e., hybridization and PCR) are not fully equipped to deal with the experimental needs arising from these new discoveries. More importantly, as the intracellular capacity of oligonucleotides is being harnessed for biomedical applications, alternative bioanalytical techniques become indispensable in order to comply with ever-increasing regulatory requirements. Owing to its ability to detect oligonucleotides independent of their sequence, LC-MS is emerging as the analytical method of choice for oligonucleotides. In this article, the current applications of LC-MS in the analysis of oligonucleotides, with an emphasis on RNA therapeutics and biomarkers, will be examined. In addition, the theoretical framework of oligonucleotide ESI is carefully inspected with the purpose of identifying the contributing factors to MS signal intensity.
Collapse
|
22
|
Li S, Limbach PA. Identification of RNA sequence isomer by isotope labeling and LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1191-1198. [PMID: 25395135 DOI: 10.1002/jms.3449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/04/2023]
Abstract
Recently, we developed a method for modified ribonucleic acid (RNA) analysis based on the comparative analysis of RNA digests (CARD). Within this CARD approach, sequence or modification differences between two samples are identified through differential isotopic labeling of two samples. Components present in both samples will each be labeled, yielding doublets in the CARD mass spectrum. Components unique to only one sample should be detected as singlets. A limitation of the prior singlet identification strategy occurs when the two samples contain components of unique sequence but identical base composition. At the first stage of mass spectrometry, these sequence isomers cannot be differentiated and would appear as doublets rather than singlets. However, underlying sequence differences should be detectable by collision-induced dissociation tandem mass spectrometry (CID MS/MS), as y-type product ions will retain the original enzymatically incorporated isotope label. Here, we determine appropriate instrumental conditions that enable CID MS/MS of isotopically labeled ribonuclease T1 (RNase T1) digestion products such that the original isotope label is maintained in the product ion mass spectrum. Next, we demonstrate how y-type product ions can be used to differentiate singlets and doublets from isomer sequences. We were then able to extend the utility of this approach by using CID MS/MS for the confirmation of an expected RNase T1 digestion product within the CARD analysis of an Escherichia coli mutant strain even in the presence of interfering and overlapping digestion products from other transfer RNAs.
Collapse
Affiliation(s)
- Siwei Li
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, 45221-0172, USA
| | | |
Collapse
|
23
|
Mauger F, Tabet JC, Gut IG. A revisit of high collision energy effects on collision-induced dissociation spectra using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-LIFT-TOF/TOF): application to the sequencing of RNA/DNA chimeras. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1433-1443. [PMID: 24861592 DOI: 10.1002/rcm.6913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE High-energy collision-induced dissociation (CID) spectra of isomeric RNA/DNA chimeras using matrix-assisted laser desorption/ionization time-of-flight LIFT mass spectrometry (MALDI-LIFT-TOF/TOF) can potentially be applied for an exhaustive fragment characterization in a nucleic acid sequencing scheme. These chimeras contain deoxynucleotides and at the 3'-end a ribonucleotide with a 3'-phosphate group. METHODS Deprotonated RNA/DNA chimeras of 4-, 5-, 7- and 10-mers are analyzed by CID. This enhances consecutive dissociations from both the precursor and prompt product anions generated by MALDI and metastable fragmentations prior to entering the LIFT cell. RESULTS Gas-phase fragmentations of 4- and 5-mers produced many fragment ions, from base release prior to consecutive cleavage of the nucleotide phosphate bond linkage phosphate. The unusual a4(-) product ion is a specific and diagnostic dissociation of the 4-mer if the ribonucleotide contains cytosine. As the size of RNA/DNA chimeras increase, several abundant product ions are generated mainly from zwitterionic forms (deprotonated phosphate ester and protonated base sites): [(M-H)-BiH](-), [ai-BiH](-), wj(-), [wj, (ai-BiH)](-) (if Bi ≠ T) as internal product ion, and more rarely [wj-BiH](-). The absence of the majority of the [ai-BiH](-) series although the wj (-) series suggested that the higher critical energy processes with a loose transition state are favored yielding the wj(-) series. A large number of abundant fragment ions are detected which enable each isomer to be sequenced. CONCLUSIONS This sequencing method is high-throughput, accurate and could be used to sequence isomers of up to 10-mers and also oligonucleotides of unknown sequence. However, RNA/DNA chimeras without thymine must be sufficiently concentrated to reach desorption of deprotonated molecular species to be selected in LIFT to produce all fragment ions within measurable abundances.
Collapse
Affiliation(s)
- Florence Mauger
- CEA/Institut de Génomique/Centre National de Génotypage, Bâtiment G2, 2 rue Gaston Crémieux, 91057, Evry Cedex, France
| | | | | |
Collapse
|
24
|
Nyakas A, Eberle RP, Stucki SR, Schürch S. More than charged base loss--revisiting the fragmentation of highly charged oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1155-1166. [PMID: 24802162 DOI: 10.1007/s13361-014-0873-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO(-)), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO(-) ion by MS(3) revealed a so far unreported consecutive excision of a metaphosphate (PO3 (-))-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 (-) loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO(-) and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.
Collapse
Affiliation(s)
- Adrien Nyakas
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
25
|
Fragmentation Reactions of Nucleic Acid Ions in the Gas Phase. PHYSICAL CHEMISTRY IN ACTION 2014. [DOI: 10.1007/978-3-642-54842-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Stucki SR, Désiron C, Nyakas A, Marti S, Leumann CJ, Schürch S. Gas-phase dissociation of homo-DNA oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1997-2006. [PMID: 24043521 DOI: 10.1007/s13361-013-0729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS(3) of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.
Collapse
Affiliation(s)
- Silvan R Stucki
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Quinn R, Basanta-Sanchez M, Rose RE, Fabris D. Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:703-12. [PMID: 23722961 PMCID: PMC3767442 DOI: 10.1002/jms.3207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 05/14/2023]
Abstract
The challenges posed by the analysis of mono-nucleotide mixtures by direct infusion electrospray ionization were examined in the context of recent advances of mass spectrometry (MS) technologies. In particular, we evaluated the merits of high-resolution mass analysis, multistep gas-phase dissociation, and ion mobility determinations for the characterization of species with very similar or identical elemental composition. The high resolving power afforded by a linear trap quadrupole-orbitrap allowed the complete differentiation of overlapping isotopic distributions produced by nucleotides that differed by a single mass unit. Resolving (12)C signals from nearly overlapped (13)C contributions provided the exact masses necessary to calculate matching elemental compositions for unambiguous formulae assignment. However, it was the ability to perform sequential steps of gas-phase dissociation (i.e. MS(n)-type analysis) that proved more valuable for discriminating between truly isobaric nucleotides, such as the AMP/dGMP and UMP/ΨMP couples, which were differentiated in the mixture from their unique fragmentation patterns. The identification of diagnostic fragments enabled the deconvolution of dissociation spectra containing the products of coexisting isobars that could not be individually isolated in the mass-selection step. Approaches based on ion mobility spectrometry-MS provided another dimension upon which isobaric nucleotides could be differentiated according to their distinctive mobility behaviors. Subtle structural variations, such as the different positions of an oxygen atom in AMP/dGMP or the glycosidic bond in UMP/ΨMP, produced detectable differences in the respective ion mobility profiles, which enabled the differentiation of the isobaric couples in the mixture. Parallel activation of all ions emerging from the ion mobility element provided an additional dimension for differentiating these analytes on the basis of both mobility and fragmentation properties.
Collapse
Affiliation(s)
| | | | | | - Daniele Fabris
- Corresponding author: The RNA Institute, University at Albany (SUNY), Life Sciences Research Building room 1109, 1200 Washington Ave., Albany, NY 12222, Ph. (518) 437-3364, Fax (518) 442-3462,
| |
Collapse
|
28
|
Gao Y, Yang J, Cancilla MT, Meng F, McLuckey SA. Top-down interrogation of chemically modified oligonucleotides by negative electron transfer and collision induced dissociation. Anal Chem 2013; 85:4713-20. [PMID: 23534847 DOI: 10.1021/ac400448t] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two sets of synthetic 21-23mer oligonucleotides with various types of 2'-position modifications have been studied with tandem mass spectrometry using ion trap collision-induced dissociation (IT-CID) and negative electron transfer (NET)-CID. A systematic study has been conducted to define the limitations of IT-CID in sequencing such 2'-chemically modified oligonucleotides. We found that IT-CID is sufficient in characterizing oligonucleotide sequences that do not contain DNA residues, where high sequence coverage can be achieved by performing IT-CID on multiple charge states. However, oligonucleotides containing DNA residues gave limited backbone fragmentation with IT-CID, largely due to dominant fragmentation at the DNA residue sites. To overcome this limitation, we employed the negative electron transfer to strip an electron from the multiply charged oligonucleotide anion. Then, the radical anion species formed in this reaction can fragment via an alternative radical-directed dissociation mechanism. Unlike IT-CID, NET-CID mainly generates a noncomplementary d/w ion series. Furthermore, we found that NET-CID did not show preferential dissociations at the DNA residue sites and thus generated higher sequence coverage for the studied oligonucleotide. Information from NET-CID of different charge states is not fully redundant such that the examination of multiple charge states can lead to more extensive sequence confirmation. This work demonstrates that the NET-CID is a valuable tool to provide high sequence coverage for chemically modified oligonucleotides, and such detailed characterization can serve as an important assay to control the quality of therapeutic oligonucleotides that are produced under the good manufacture practice (GMP) regulations.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, United States
| | | | | | | | | |
Collapse
|
29
|
Nyakas A, Blum LC, Stucki SR, Reymond JL, Schürch S. OMA and OPA--software-supported mass spectra analysis of native and modified nucleic acids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:249-256. [PMID: 23264149 DOI: 10.1007/s13361-012-0529-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated double-stranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.
Collapse
Affiliation(s)
- Adrien Nyakas
- Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | | | | | | | | |
Collapse
|
30
|
Gao Y, McLuckey SA. Electron transfer followed by collision-induced dissociation (NET-CID) for generating sequence information from backbone-modified oligonucleotide anions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:249-257. [PMID: 23239339 DOI: 10.1002/rcm.6428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Oligonucleotides with 2'-modifications and/or phosphorothioate (PS) backbones are prone to undergo limited backbone fragmentation upon ion trap collision-induced dissociation (CID). For better identification and characterization of chemically modified oligonucleotides, a more universal fragmentation method is desirable. METHODS Gas-phase dissociation of various 2'-position-modified oligonucleotides and mixed-backbone oligonucleotides (MBOs) has been studied by ion trap CID of the radical anion species formed via electron transfer ion/ion reactions. RESULTS For 2'-modified mix-mer radical anions, complete sequence information was generated with non-complementary d/w-ion series, while a/z-ions were observed randomly with relatively low intensity. The 2'-position modification, which has been observed to affect CID patterns of oligonucleotide anions, did not exhibit any observable influence on the dissociation patterns of oligonucleotide radical anions. For MBOs comprised of DNA nucleotides, ion trap CID of even-electron species generated complementary a-B/w-type ions and multiple fragment types at the phosphorothioate (PS) linkages. For MBOs comprised of 2'-OMe-modified nucleotides, only PS bond cleavage was observed for ion trap CID of doubly deprotonated precursor ions. Negative electron transfer reaction with or without supplemental activation of MBOs gave rise to a/d/w-type fragments similar to those of the 2'-modified mix-mers. PS bonds were observed to be more fragile under the electron detachment process, and phosphodiester (PO) bond cleavages were noted upon further collisional activation. CONCLUSIONS NET-CID proved to be an efficient method of generating full sequence information for 2'-modifications and/or mixed-backbone oligonucleotides.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | |
Collapse
|
31
|
Taucher M, Breuker K. Characterization of modified RNA by top-down mass spectrometry. Angew Chem Int Ed Engl 2012; 51:11289-92. [PMID: 23042528 PMCID: PMC3532624 DOI: 10.1002/anie.201206232] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 11/11/2022]
Abstract
Characteristic mass differences between fragment ions from backbone cleavage of RNA by electron detachment (d, w) and fragment ions from collisionally activated dissociation (c, y) provide extensive sequence information. Structure analysis by this approach should be especially useful for the detailed characterization of synthetic or post-transcriptionally modified RNA.
Collapse
Affiliation(s)
- Monika Taucher
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI), Universität InnsbruckInnrain 80–82, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI), Universität InnsbruckInnrain 80–82, 6020 Innsbruck (Austria)
| |
Collapse
|
32
|
Taucher M, Breuker K. Characterization of Modified RNA by Top-Down Mass Spectrometry. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Hagan NA, Smith CA, Antoine MD, Lin JS, Feldman AB, Demirev PA. Enhanced in-source fragmentation in MALDI-TOF-MS of oligonucleotides using 1,5-diaminonapthalene. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:773-777. [PMID: 22311728 DOI: 10.1007/s13361-011-0333-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 05/31/2023]
Abstract
The capability to rapidly and confidently determine or confirm the sequences of short oligonucleotides, including native and chemically-modified DNA and RNA, is important for a number of fields. While matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been used previously to sequence short oligonucleotides, the typically low fragmentation efficiency of in-source or post-source decay processes necessitates the accumulation of a large number of spectra, thus limiting the throughput of these methods. Here we introduce a novel matrix, 1,5-diaminonapthalene (DAN), for facile in-source decay (ISD) of DNA and RNA molecular anions, which allows for rapid sequence confirmation. d-, w-, and y-series ions are prominent in the spectra, complementary to the (a-B)- and w- ions that are typically produced by MALDI post-source decay (PSD). Results are shown for several model DNA and RNA oligonucleotides, including combinations of DAN-induced fragmentation with true tandem TOF MS (MS/MS) for pseudo-MS(3) and "activated-ion PSD."
Collapse
Affiliation(s)
- Nathan A Hagan
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Gao Y, McLuckey SA. Collision-induced dissociation of oligonucleotide anions fully modified at the 2'-position of the ribose: 2'-F/-H and 2'-F/-H/-OMe mix-mers. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:364-369. [PMID: 22431464 DOI: 10.1002/jms.2044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gas-phase dissociation of various 2'-position modified oligonucleotide anions has been studied as a function of precursor ion charge state using ion trap and low energy beam-type collision-induced dissociation (CID). For a completely 2'-O-methyl modified 6-mer, all possible dissociation channels along the phosphodiester linkage, generating complementary (a-B)/w-, b/x-, c/y-, d/z-ion series, were observed with no single dominant type of dissociation pathway. Full sequence information was generated from each charge state via ion trap CID. More sequential fragmentation was noted under beam-type CID conditions. Comparison with model DNA, in which all 2'-OH groups are converted to 2'-H, and RNA anions suggests that the 2'-OMe substitution stabilizes the phosphodiester linkage with respect to fragmentation relative to both DNA and RNA oligomers. For modified mix-mer anions, comprised of DNA nucleotides and 2'-F substituted nucleotides or a mixture of DNA nucleotides and 2'-O-methyl (2'-OMe) and 2'-F substituted nucleotides, 3'-side backbone cleavage was found to be inhibited by the 2'-OMe or 2'-F modification on the nucleotides under ion trap CID conditions. Thus, the sequence information was limited to the a-Base/w-fragments from the cleavage of the 3' C-O bond of the 2'-H (DNA) nucleotides. Under beam-type CID conditions, limited additional cleavage adjacent to 2'-OMe substituted nucleotides was noted but 2'-F modified residues remained resistant to cleavage.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | |
Collapse
|
35
|
Krivos KL, Addepalli B, Limbach PA. Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3609-3616. [PMID: 22095510 DOI: 10.1002/rcm.5266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RNase mapping by nucleobase-specific endonucleases combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS) is a powerful analytical method for characterizing ribonucleic acids (RNAs). Endonuclease digestion of RNA yields products that contain a 3'-terminal phosphate group. MS/MS via collision-induced dissociation (CID) of these digestion products on a linear ion trap generates fragmentation pathways that include the loss of phosphoric acid (-H(3)PO(4); -98 u), which does not provide information about the sequence of the digestion products and can reduce ion abundance from other pathways that provide sequence information. Here we investigate the use of bacterial alkaline phosphatase (BAP) after RNase digestion to remove the 3'-terminal phosphate from all RNase digestion products prior to LC/MS/MS analysis. RNase digestion products lacking the 3'-phosphate were found to produce CID spectra with more consistent, high-abundance c- and y-type fragment ions as well as significantly more a-Base and w-type ions than digestion products retaining the 3'-phosphate. In this manner, RNase mapping with LC/MS/MS can provide more complete RNA sequence information from fragment ions of higher abundance that are easier to interpret and identify.
Collapse
Affiliation(s)
- Kady L Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, P.O. Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | | | | |
Collapse
|
36
|
Nakayama H, Takahashi N, Isobe T. Informatics for mass spectrometry-based RNA analysis. MASS SPECTROMETRY REVIEWS 2011; 30:1000-1012. [PMID: 21328601 DOI: 10.1002/mas.20325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS) allows the sensitive and direct characterization of biological macromolecules and therefore has the potential to complement the more conventional genetic and biochemical methods used for RNA characterization. Although MS has been used much less frequently for RNA research than it has been for protein research, recent technical improvements in both instrumentation and software make MS a powerful tool for RNA analysis because it can now be used to sequence, quantify, and chemically analyze RNAs. Mass spectrometry is particularly well suited for the characterization of RNAs associated with ribonucleoprotein complexes. This review focuses on the software and databases that can be used for MS-based RNA studies. Software for the processing of raw mass spectra, the identification and characterization of RNAs by mass mapping, de novo sequencing, and tandem MS-based database searching are available.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
37
|
Beverly MB. Applications of mass spectrometry to the study of siRNA. MASS SPECTROMETRY REVIEWS 2011; 30:979-998. [PMID: 20201110 DOI: 10.1002/mas.20260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has quickly become a well-established laboratory tool for regulating gene expression and is currently being explored for its therapeutic potential. The design and use of double-stranded RNA oligonucleotides as therapeutics to trigger the RNAi mechanism and a greater effort to understand the RNAi pathway itself is driving the development of analytical techniques that can characterize these oligonucleotides. Electrospray (ESI) and MALDI have been used routinely to analyze oligonucleotides and their ability to provide mass and sequence information has made them ideal for this application. Reviewed here is the work done to date on the use of ESI and MALDI for the study of RNAi oligonucleotides as well as the strategies and issues associated with siRNA analysis by mass spectrometry. While there is not a large body of literature on the specific application of mass spectrometry to RNAi, the work done in this area is a good demonstration of the range of experiments that can be conducted and the value that ESI and MALDI can provide to the RNAi field.
Collapse
Affiliation(s)
- Michael B Beverly
- RNA Therapeutics Department, Merck and Co., Inc., Boulder, CO 80301, USA.
| |
Collapse
|
38
|
Taucher M, Ganisl B, Breuker K. Identification, localization, and relative quantitation of pseudouridine in RNA by tandem mass spectrometry of hydrolysis products. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 304:91-97. [PMID: 21960742 PMCID: PMC3180913 DOI: 10.1016/j.ijms.2010.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The constitutional isomers uridine (U) and pseudouridine (Ψ) cannot be distinguished from each other by simple mass measurements of RNA or its fragments because the conversion of U into Ψ is a "mass-silent" post-transcriptional modification. Here we propose a new mass spectrometry based method for identification, localization, and relative quantitation of Ψ in RNA consisting of ∼20 nucleotides that does not require chemical labeling. Our approach takes advantage of the different fragmentation behavior of uridine (N-glycosidic bond) and pseudouridine (C-glycosidic bond) residues in RNA upon collisionally activated dissociation.
Collapse
Affiliation(s)
| | | | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
39
|
Waghmare SP, Dickman MJ. Characterization and quantification of RNA post-transcriptional modifications using stable isotope labeling of RNA in conjunction with mass spectrometry analysis. Anal Chem 2011; 83:4894-901. [PMID: 21539333 DOI: 10.1021/ac200547y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry has emerged as an increasingly powerful tool for the identification and characterization of nucleic acids, in particular RNA post-transcriptional modifications. High mass accuracy instrumentation is often required to discriminate between compositional isomers of oligonucleotides. We have used stable isotope labeling ((15)N) of E. coli RNA in conjunction with mass spectrometry analysis of the combined heavy- and light-labeled RNA for the identification and quantification of oligoribonucleotides and post-transcriptional modifications. The number of nitrogen atoms in the oligoribonucleotide and fragment ions can readily be determined using this approach, enabling the discrimination between potential compositional isomers without the requirement of high mass accuracy mass spectrometers. In addition, the identification of specific fragment ions in both the unlabeled and labeled oligoribonucleotides can be used to gain further confidence in the assignment of RNA post-transcriptional modifications. Using this approach we have identified a range of post-transcriptional modifications of E. coli 16S rRNA. Furthermore, this method facilitates the rapid and accurate quantification of oligoribonucleotides, including cyclic phosphate intermediates and missed cleavages often generated from RNase digestions.
Collapse
Affiliation(s)
- Sakharam P Waghmare
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S3 1JD, UK
| | | |
Collapse
|
40
|
Nyakas A, Stucki SR, Schürch S. Tandem mass spectrometry of modified and platinated oligoribonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:875-887. [PMID: 21472522 DOI: 10.1007/s13361-011-0106-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
Therapeutic approaches for treatment of various diseases aim at the interruption of transcription or translation. Modified oligonucleotides, such as 2'-O-methyl- and methylphosphonate-derivatives, exhibit high resistance against cellular nucleases, thus rendering application for, e.g., antigene or antisense purposes possible. Other approaches are based on administration of cross-linking agents, such as cis-diamminedichloroplatinum(II) (cisplatin, DDP), which is still the most widely used anticancer drug worldwide. Due to the formation of 1,2-intrastrand cross links at adjacent guanines, replication of the double-strand is disturbed, thus resulting in significant cytotoxicity. Evidence for the gas-phase dissociation mechanism of platinated RNA is given, based on nano-electrospray ionization high-resolution multistage tandem mass spectrometry (MS(n)). Confirmation was found by investigating the fragmentation pattern of platinated and unplatinated 2'-methoxy oligoribonucleotide hexamers and their corresponding methylphosphonate derivatives. Platinated 2'-methoxy oligoribonucleotides exhibit a similar gas-phase dissociation behavior as the corresponding DNA and RNA sequences, with the 3'-C-O bond adjacent to the vicinal guanines being cleaved preferentially, leading to w(x)-ion formation. By examination of the corresponding platinated methylphosphonate derivatives of the 2'-methoxy oligoribonucleotides, the key role of the negatively charged phosphate oxygen atoms in direct proximity to the guanines was proven. The significant alteration of fragmentation due to platination is demonstrated by comparison of the fragment ion patterns of unplatinated and platinated 2'-O-methyl- and 2'-O-methyl methylphosphonate oligoribonucleotides, and the results obtained by H/D exchange experiments.
Collapse
Affiliation(s)
- Adrien Nyakas
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
41
|
Smith M. Characterisation of a modified oligonucleotide together with its synthetic impurities using accurate mass measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:511-525. [PMID: 21259360 DOI: 10.1002/rcm.4886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oligonucleotide-based drugs are beginning to establish themselves within the pharmaceutical industry as important agents in the treatment of various disease states with the potential of exhibiting high specificity with gene targeted therapies. Recent studies regarding RNA interference has stimulated interest in this field. There are now an increasing number of oligonucleotide-based pharmaceutical products in various stages of clinical development for the treatment of life-threatening diseases. As a result, the production of synthetic oligonucleotides has become increasingly important, with both antisense and RNAi-related oligonucleotides under development as therapeutic agents. One potential drug candidate currently under development at GlaxoSmithKline, is a 2'-O-methyl phosphorothioate in which the non-bridging oxygens of the phosphate diester are replaced with sulphur. Oligonucleotides are polymeric sequences made from an array of nucleotides (RNA, DNA and their respective analogs) usually ranging from 20-100 nucleotides. The polar nature, low thermal stability, complexity and large molecular weights of oligonucleotides have posed a challenge for the analysis of oligonucleotides by mass spectrometry. This paper demonstrates the use of negative ion electrospray with a combination of high resolution and high mass accuracy for the characterisation of oligonucleotides with the intention of supporting an evidence of structure document for a regulatory submission. This is a new area within the mass spectrometry field and as such there is limited software amongst the instrument companies for the data processing for the analysis of these compounds. Therefore, many of the examples in the literature only use mass spectrometry to generate average molecular weights by deconvoluting the multiple charged states observed to give an average molecular weight; under-utilizing the capability of high-resolution instruments.
Collapse
Affiliation(s)
- Marco Smith
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
42
|
Abstract
Hybrid tandem mass spectrometry (MS/MS) techniques combining electron transfer (ET) and collision activated dissociation (CAD), infrared multiphoton dissociation (IRMPD), or ultraviolet photodissociation (UVPD) were implemented and evaluated for the characterization of a series of oligonucleotides and oligoribonucleotides, including both native single strands and single strands containing platinated, phosphorothioated, and 2'-O-methylated modification sites. ET-IRMPD and ET-UVPD of oligodeoxynucleotides and oligoribonucleotides resulted in rich fragmentation with respect to production of w, a, z, and d ions for DNA, and c, y, w, a-B, d, and z ions for RNA, with many product ions retaining the modification and thus allowing site specific identification. ET-IRMPD caused more extensive secondary dissociation of the ions, in addition to a broader distribution of detectable sequence ions attributed to using a lower mass cutoff. ET-UVPD promoted higher energy fragmentation pathways and created the most diverse MS/MS spectra. The numerous products generated by the hybrid MS/MS techniques resulted in specific and extensive backbone cleavages which allowed the modification sites of multiply modified oligonucleotides to be elucidated.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | |
Collapse
|
43
|
Ivleva VB, Yu YQ, Gilar M. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) and UPLC/MS(E) analysis of RNA oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2631-2640. [PMID: 20740540 DOI: 10.1002/rcm.4683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fast and efficient ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence-related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MS(E) (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MS(E) technique is as efficient as the traditional MS/MS method, yet MS(E) is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2'-ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MS(E) approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MS(E). Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time-of-flight (QTOF) MS/MS and MS(E) methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures.
Collapse
Affiliation(s)
- Vera B Ivleva
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | | |
Collapse
|
44
|
Taoka M, Ikumi M, Nakayama H, Masaki S, Matsuda R, Nobe Y, Yamauchi Y, Takeda J, Takahashi N, Isobe T. In-Gel Digestion for Mass Spectrometric Characterization of RNA from Fluorescently Stained Polyacrylamide Gels. Anal Chem 2010; 82:7795-803. [DOI: 10.1021/ac101623j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Maki Ikumi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Hiroshi Nakayama
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Shunpei Masaki
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Ryozo Matsuda
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Jun Takeda
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Nobuhiro Takahashi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Biomolecular Characterization Team, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, and Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of
| |
Collapse
|
45
|
Krivos KL, Limbach PA. Sequence analysis of peptide:oligonucleotide heteroconjugates by electron capture dissociation and electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1387-1397. [PMID: 20435485 PMCID: PMC3638748 DOI: 10.1016/j.jasms.2010.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 05/29/2023]
Abstract
Mass spectrometry analysis of protein-nucleic acid cross-links is challenging due to the dramatically different chemical properties of the two components. Identifying specific sites of attachment between proteins and nucleic acids requires methods that enable sequencing of both the peptide and oligonucleotide component of the heteroconjugate cross-link. While collision-induced dissociation (CID) has previously been used for sequencing such heteroconjugates, CID generates fragmentation along the phosphodiester backbone of the oligonucleotide preferentially. The result is a reduction in peptide fragmentation within the heteroconjugate. In this work, we have examined the effectiveness of electron capture dissociation (ECD) and electron-transfer dissociation (ETD) for sequencing heteroconjugates. Both methods were found to yield preferential fragmentation of the peptide component of a peptide:oligonucleotide heteroconjugate, with minimal differences in sequence coverage between these two electron-induced dissociation methods. Sequence coverage was found to increase with increasing charge state of the heteroconjugate, but decreases with increasing size of the oligonucleotide component. To overcome potential intermolecular interactions between the two components of the heteroconjugate, supplemental activation with ETD was explored. The addition of a supplemental activation step was found to increase peptide sequence coverage over ETD alone, suggesting that electrostatic interactions between the peptide and oligonucleotide components are one limiting factor in sequence coverage by these two approaches. These results show that ECD/ETD methods can be used for the tandem mass spectrometry sequencing of peptide:oligonucleotide heteroconjugates, and these methods are complementary to existing CID methods already used for sequencing of protein-nucleic acid cross-links.
Collapse
Affiliation(s)
| | - Patrick A. Limbach
- To whom correspondence should be addressed. Phone (513) 556-1871, Fax (513) 556-9239,
| |
Collapse
|
46
|
Huang TY, Liu J, McLuckey SA. Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:890-898. [PMID: 20080046 DOI: 10.1016/j.jasms.2009.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 05/28/2023]
Abstract
Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74-95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecules. The mass of the most abundant component of the mixture was not consistent with that of the nominal identity of the tRNA from the supplier, viz., tRNA(Phe); rather, the mass was consistent with tRNA(Phe) bearing an incomplete 3'-terminus. Multiply-charged anions from the major components were isolated in the gas phase and subjected to ion trap collision-induced dissociation without subsequent ion/ion reactions. Abundant fragments from the 5'- and 3'-termini of the molecule could be used to identify the major component as tRNA(Phe)-3'adenosine (without 3'-phosphorylation). Roughly 15% of the primary sequence of the intact tRNA was unambiguously reflected in the product ion spectrum. The existence of a possible tRNA(Phe) variant and the intact tRNA(Phe) was also supported by ion trap CID data. The multiply-charged fragment ions derived from tRNA(Phe)-3'adenosine were further charge-reduced to mostly singly- and doubly-charged species via proton transfer ion/ion reactions with benzoquinoline cations. The resulting reduction in spectral overlap and charge state ambiguity simplified interpretation of the product ion spectrum and allowed for the identification of product ions from roughly 60% of the sequence.
Collapse
Affiliation(s)
- Teng-Yi Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | | |
Collapse
|
47
|
Gardner MW, Li N, Ellington AD, Brodbelt JS. Infrared multiphoton dissociation of small-interfering RNA anions and cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:580-91. [PMID: 20129797 PMCID: PMC2847665 DOI: 10.1016/j.jasms.2009.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 05/13/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5' P-O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for approximately 25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5' P-O bonds began to populate the product ion mass spectra as well as higher abundances of [a - Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a - Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H](+), [A + H](+), and [C + H](+), which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | |
Collapse
|
48
|
Taucher M, Rieder U, Breuker K. Minimizing base loss and internal fragmentation in collisionally activated dissociation of multiply deprotonated RNA. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:278-85. [PMID: 19932627 DOI: 10.1016/j.jasms.2009.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/28/2009] [Accepted: 10/14/2009] [Indexed: 05/25/2023]
Abstract
In recent years, new classes of nonprotein-coding ribonucleic acids (ncRNAs) with important cellular functions have been discovered. Of particular interest for biomolecular research and pharmaceutical developments are small ncRNAs that are involved in gene regulation, such as small interfering RNAs (21-28 nt), pre-microRNAs (70-80 nt), or riboswitches (34-200 nt). De novo sequencing of RNA by top-down mass spectrometry has so far been limited to RNA consisting of up to approximately 20 nt. We report here complete sequence coverage for 34 nt RNA (10.9 kDa), along with 30 out of 32 possible complementary ion pairs from collisionally activated dissociation (CAD) experiments. The key to minimizing undesired base loss and internal fragmentation is to minimize the internal energy of fragment ions from primary backbone cleavage. This can be achieved by collisional cooling of primary fragment ions and selection of precursor ions of relatively low negative net charge (about -0.2/nt).
Collapse
Affiliation(s)
- Monika Taucher
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
49
|
Taoka M, Yamauchi Y, Nobe Y, Masaki S, Nakayama H, Ishikawa H, Takahashi N, Isobe T. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes. Nucleic Acids Res 2010; 37:e140. [PMID: 19740761 PMCID: PMC2790879 DOI: 10.1093/nar/gkp732] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang TY, McLuckey SA. Gas-phase chemistry of multiply charged bioions in analytical mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:365-85. [PMID: 20636047 PMCID: PMC3017717 DOI: 10.1146/annurev.anchem.111808.073725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ion chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized.
Collapse
Affiliation(s)
- Teng-Yi Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084
| |
Collapse
|