1
|
Peters-Clarke TM, Riley NM, Westphall MS, Coon JJ. Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:100-110. [PMID: 34874726 PMCID: PMC10291708 DOI: 10.1021/jasms.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion-ion reactions are valuable tools in mass-spectrometry-based peptide and protein sequencing. To boost the generation of sequence-informative fragment ions from low charge-density precursors, supplemental activation methods, via vibrational and photoactivation, have become widely adopted. However, long-lived radical peptide cations undergo intramolecular hydrogen atom transfer from c-type ions to z•-type ions. Here we investigate the degree of hydrogen transfer for thousands of unique peptide cations where electron transfer dissociation (ETD) was performed and was followed by beam-type collisional activation (EThcD), resonant collisional activation (ETcaD), or concurrent infrared photoirradiation (AI-ETD). We report on the precursor charge density and the local amino acid environment surrounding bond cleavage to illustrate the effects of intramolecular hydrogen atom transfer for various precursor ions. Over 30% of fragments from EThcD spectra comprise distorted isotopic distributions, whereas over 20% of fragments from ETcaD have distorted distributions and less than 15% of fragments derived from ETD and AI-ETD reveal distorted isotopic distributions. Both ETcaD and EThcD give a relatively high degree of hydrogen migration, especially when D, G, N, S, and T residues were directly C-terminal to the cleavage site. Whereas all postactivation methods boost the number of c- and z•-type fragment ions detected, the collision-based approaches produce higher rates of hydrogen migration, yielding fewer spectral identifications when only c- and z•-type ions are considered. Understanding hydrogen rearrangement between c- and z•-type ions will facilitate better spectral interpretation.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
2
|
Morgan TE, Kerr A, Wootton CA, Barrow MP, Bristow AW, Perrier S, O’Connor PB. Electron Capture Dissociation of Trithiocarbonate-Terminated Acrylamide Homo- and Copolymers: A Terminus-Directed Mechanism? Anal Chem 2020; 92:12852-12859. [DOI: 10.1021/acs.analchem.0c01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tomos E. Morgan
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | - Andrew Kerr
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | | | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| | - Anthony W.T. Bristow
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, Cheshire SK10 2NA, U.K
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, Midlands CV4 7AL, U.K
| |
Collapse
|
3
|
Lermyte F, Everett J, Lam YPY, Wootton CA, Brooks J, Barrow MP, Telling ND, Sadler PJ, O'Connor PB, Collingwood JF. Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2123-2134. [PMID: 31350722 PMCID: PMC6805827 DOI: 10.1007/s13361-019-02283-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Native top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid β (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods-collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation-all yielding consistent results. Amyloid β is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer's disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons. Those metals which exhibited the strongest binding to the peptide (Cu2+, Co2+, Ni2+) all shared a very similar binding region containing two of the histidine residues near the N-terminus (His6, His13). Notably, Fe3+ bound to the peptide only when stabilized toward hydrolysis, aggregation, and precipitation by a chelating ligand, binding in the region between Ser8 and Gly25. We also identified two additional binding regions near the flexible, hydrophobic C-terminus, where other metals (Mg2+, Ca2+, Mn2+, Na+, and K+) bound more weakly-one centered on Leu34, and one on Gly38. Unexpectedly, collisional activation of the complex formed between the peptide and [CoIII(NH3)6]3+ induced gas-phase reduction of the metal to CoII, allowing the peptide to fragment via radical-based dissociation pathways. This work demonstrates how native mass spectrometry can provide new insights into the interactions between amyloid β and metal cations.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil D Telling
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
4
|
Straus RN, Jockusch RA. Hydrogen-Deuterium Exchange and Electron Capture Dissociation to Interrogate the Conformation of Gaseous Melittin Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:864-875. [PMID: 30834508 DOI: 10.1007/s13361-019-02150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
There is a need in the field of biological mass spectrometry for structural tools which can report on regional, rather than solely global, structure of gaseous protein ions. Site-specific hydrogen-deuterium (H/D) exchange has shown promise in fulfilling this need, but requires additional method development to prove its utility. In this study, we use H/D exchange and electron capture dissociation (ECD) to probe the gaseous structure of two peptides which are α-helical in solution and which differ by a single point mutation. Global H/D exchange levels, ECD fragmentation profiles, and region specific H/D exchange profiles are compared between wild type (WT) melittin, which adopts a hinged helix conformation in solution, and a mutant P14A melittin which folds into a single helix in solution. High protection from H/D exchange by both peptides is consistent with retention of secondary structure in the gas phase (or refolding into some other compact structure). The P14A mutant melittin exhibits lower ECD fragmentation efficiency than WT melittin, suggesting that it contains more secondary structure in the gas phase, which may indicate that these peptides retain some memory of their solution-phase structures. Examination of the isotopic distributions of fragment ions derived from H/D exchange with subsequent ECD reveals that the C-terminus of these peptides adopts multiple conformations. The results reported here offer insight into the stability of alpha helices in the gas phase, and also highlight the value of combining gas-phase H/D exchange with electron capture dissociation to interrogate gaseous peptide conformation.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
5
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
7
|
Mistarz UH, Rand KD. Installation, validation, and application examples of two instrumental setups for gas-phase HDX-MS analysis of peptides and proteins. Methods 2018; 144:113-124. [PMID: 29753788 DOI: 10.1016/j.ymeth.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
Gas-phase hydrogen/deuterium exchange measured by mass spectrometry in a millisecond timeframe after ESI (gas-phase HDX-MS) is a fast and sensitive, yet unharnessed method to analyze the primary- and higher-order structure, intramolecular and intermolecular interactions, surface properties, and charge location of peptides and proteins. During a gas-phase HDX-MS experiment, heteroatom-bound non-amide hydrogens are made to exchange with deuterium during a millisecond timespan after electrospray ionization (ESI) by reaction with the highly basic reagent ND3, enabling conformational analysis of protein states that are pertinent to the native solution-phase. Here, we describe two different instrumental approaches to enable gas-phase HDX-MS for analysis of peptides and proteins on high-resolution Q-TOF mass spectrometers. We include a description of the procedure and equipment required for successful installation as well as suggested procedures for testing, validation, and troubleshooting of a gas-phase HDX-MS setup. In the two described approaches, gas-phase HDX-MS are performed either immediately after ESI in the cone exit region by leading N2-gas over a deuterated ND3/D2O solution, or by leading purified ND3-gas into different traveling wave ion guides (TWIG) of the mass spectrometer. We envision that a detailed description of the two gas-phase HDX-MS setups and their practical implementation and validation can pave the way for gas-phase HDX-MS to become a more routinely used MS technique for structural analysis of peptides and proteins.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Tang Y, Pu Y, Gao J, Hong P, Costello CE, Lin C. De Novo Glycan Sequencing by Electronic Excitation Dissociation and Fixed-Charge Derivatization. Anal Chem 2018; 90:3793-3801. [PMID: 29443510 DOI: 10.1021/acs.analchem.7b04077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detailed glycan structural characterization is frequently achieved by collisionally activated dissociation (CAD) based sequential tandem mass spectrometry (MS n) analysis of permethylated glycans. However, it is challenging to implement MS n ( n > 2) during online glycan separation, and this has limited its application to analysis of complex glycan mixtures from biological samples. Further, permethylation can reduce liquid chromatographic (LC) resolution of isomeric glycans. Here, we studied the electronic excitation dissociation (EED) fragmentation behavior of native glycans with a reducing-end fixed charge tag and identified key spectral features that are useful for topology and linkage determination. We also developed a de novo glycan sequencing software that showed remarkable accuracy in glycan topology elucidation based on the EED spectra of fixed charge-derivatized glycans. The ability to obtain glycan structural details at the MS2 level, without permethylation, via a combination of fixed charge derivatization, EED, and de novo spectral interpretation, makes the present approach a promising tool for comprehensive and rapid characterization of glycan mixtures.
Collapse
Affiliation(s)
- Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Yi Pu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
9
|
Straus RN, Jockusch RA. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:358-369. [PMID: 27943124 DOI: 10.1007/s13361-016-1528-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
10
|
Qi Y, Volmer DA. Electron-based fragmentation methods in mass spectrometry: An overview. MASS SPECTROMETRY REVIEWS 2017; 36:4-15. [PMID: 26445267 DOI: 10.1002/mas.21482] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Tandem mass spectrometry (MS/MS) provides detailed information for structural characterization of biomolecules. The combination of electron capture dissociation (ECD) techniques with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) often provides unique ion-electron reactions and fragmentation channels in MS/MS. ECD is often a complimentary, sometimes even a superior tool to conventional MS/MS techniques. This article is aimed at providing a short overview of ECD-based fragmentation techniques (ExD) and optimization of ECD experiments for FTICR mass analyzers. Most importantly, it is meant to pique the interest of potential users for this exciting research field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:4-15, 2017.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| |
Collapse
|
11
|
Asakawa D, Smargiasso N, De Pauw E. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:323-327. [PMID: 27194516 DOI: 10.1002/jms.3748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Metrology Institute of Japan (NMIJ), Reserch Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nicolas Smargiasso
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Takahashi H, Sekiya S, Nishikaze T, Kodera K, Iwamoto S, Wada M, Tanaka K. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry. Anal Chem 2016; 88:3810-6. [DOI: 10.1021/acs.analchem.5b04888] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hidenori Takahashi
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Sadanori Sekiya
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takashi Nishikaze
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kei Kodera
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Motoi Wada
- Graduate
School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koichi Tanaka
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
13
|
Tsybin YO, Vvorobyev A, Zhurov KO, Laskay ÜA. On the use of electron capture rate constants to describe electron capture dissociation mass spectrometry of peptides. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:451-458. [PMID: 26307726 DOI: 10.1255/ejms.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electron capture dissociation (ECD) tandem mass spectrometry (MS/MS) is a powerful analytical tool for peptide and protein structure analysis. The product ion abundance (PIA) distribution in ECD MS/MS is known to vary as a function of electron irradiation period. This variation complicates the development of a method of peptide identification by correlation of ECD MS/MS data with experimental and theoretical mass spectra. Here, we first develop a kinetic model to describe primary electron capture by peptide dications leading to product ion formation and secondary electron capture resulting in product ion neutralization. We apply the developed kinetic model to calculate product ion formation rate constants and electron capture rate constants of product ions from ECD mass spectra acquired using various electron irradiation periods. Contrary to ECD PIA distributions, the product ion formation rate constants are shown to be independent of electron irradiation period and, thus, may be employed to characterize ECD product ion formation more universally. The electron capture rate constants of product ions in ECD Fourier transform ion cyclotron resonance MS were found to correlate (with a correlation factor, R(2), of ca 0.9) with ion mobility cross sections of product ions in electron transfer dissociation. Finally, we demonstrate that the electron irradiation period influences the ratio of radical and even-electron c and z product ions.
Collapse
Affiliation(s)
- Yury O Tsybin
- Bi omolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Aleksey Vvorobyev
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Konstantin O Zhurov
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ünige A Laskay
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Bythell BJ. Cα hydrogen atom transfer in post-cleavage radical-cation complexes: short and steep versus long winding road. J Phys Chem A 2014; 118:10797-803. [PMID: 25329622 DOI: 10.1021/jp507865h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, I explored structurally straightforward pathways to Cα hydrogen atom, H(•), transfer reactions in the radical cation complex following electron capture/transfer of a series of polyprotonated peptides (J. Phys. Chem. A 2013, 117, 1189-1196). Here, I extend my analysis to incorporate detailed rearrangement processes potentially occurring prior to H(•) transfer. This comprises intracomplex isomerization of the initial iminol-terminated (-C(OH)═NH) form of the cn' species to the energetically more favorable, amide-terminated form (-C(O)-NH2) prior to Cα H(•) abstraction by the zm(•) species. The data indicate that the previously published H(•) transfer barriers are more energetically demanding than those of this multistep alternative. The rate-determining step is typically the intracomplex iminol isomerization, consistent with the substantial energetic favorability of the amide form of the cn species. The barriers to H(•) transfer still rise steeply as a function of the charge state. In agreement with experiment, evidence for product separation without H(•) transfer at a higher charge state is also provided.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , St. Louis, Missouri 63121, United States
| |
Collapse
|
15
|
Antoine R, Lemoine J, Dugourd P. Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. MASS SPECTROMETRY REVIEWS 2014; 33:501-22. [PMID: 24285407 DOI: 10.1002/mas.21402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
Tandem mass spectrometry (MS-MS) is a generic term evoking techniques dedicated to structural analysis, detection or quantification of molecules based on dissociation of a precursor ion into fragments. Searching for the most informative fragmentation patterns has led to the development of a vast array of activation modes that offer complementary ion reactivity and dissociation pathways. Collisional activation of ions using atoms, molecules or surface resulting in unimolecular dissociation of activated ions still plays a key role in tandem mass spectrometry. The discovery of electron capture dissociation (ECD) and then the development of other electron-ion or ion/ion reaction methods, constituted a significant breakthrough, especially for structural analysis of large biomolecules. Similarly, photon activation opened promising new frontiers in ion fragmentation owing to the ability of tightly controlled internal energy deposition and easy implementation on commercial instruments. Ion activation by photons includes slow heating methods such as infrared multiple photon dissociation (IRMPD) and black-body infrared radiative dissociation (BIRD) and higher energy methods like ultra-violet photodissociation (UVPD) and electron photo detachment dissociation (EPD). EPD occurs after UV irradiation of multiply negatively charged ions resulting in the formation of oxidized radical anions. The present paper reviews the hypothesis regarding the mechanisms of electron photo-detachment, radical formation and direct or activated dissociation pathways that support the observation of odd and even electron product ions. Finally, the value of EPD as a complementary structural analysis tool is illustrated through selected examples of synthetic polymers, oligonucleotides, polypeptides, lipids, and polysaccharides.
Collapse
Affiliation(s)
- Rodolphe Antoine
- University of Lyon, F-69622, Lyon, France; CNRS et Université Lyon 1, UMR5306, Institut Lumière Matière, Villeurbanne, France
| | | | | |
Collapse
|
16
|
Qi Y, O'Connor PB. Data processing in Fourier transform ion cyclotron resonance mass spectrometry. MASS SPECTROMETRY REVIEWS 2014; 33:333-352. [PMID: 24403247 DOI: 10.1002/mas.21414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/12/2013] [Accepted: 09/25/2013] [Indexed: 06/03/2023]
Abstract
The Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer intricately couples advanced physics, instrumentation, and electronics with chemical and particularly biochemical research. However, general understanding of the data processing methodologies used lags instrumentation, and most data processing algorithms we are familiar with in FT-ICR are not well studied; thus, professional skill and training in FT-ICR operation and data analysis is still the key to achieve high performance in FT-ICR. This review article is focused on FT-ICR data processing, and explains the procedures step-by-step for users with the goal of maximizing spectral features, such as mass accuracy, resolving power, dynamic range, and detection limits.
Collapse
Affiliation(s)
- Yulin Qi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | |
Collapse
|
17
|
Asakawa D, Takeuchi T, Yamashita A, Wada Y. Influence of metal-peptide complexation on fragmentation and inter-fragment hydrogen migration in electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1029-1039. [PMID: 24671694 DOI: 10.1007/s13361-014-0855-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K(+) and Ca(2+) were used as charge carriers to form multiply-charged metal-peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z• fragment complex, in which the c' and z• fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z• fragment complex, eventually generating c• and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of "proton-removed" precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan,
| | | | | | | |
Collapse
|
18
|
Lopez-Clavijo AF, Duque-Daza CA, Romero Canelon I, Barrow MP, Kilgour D, Rabbani N, Thornalley PJ, O'Connor PB. Study of an unusual advanced glycation end-product (AGE) derived from glyoxal using mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:673-683. [PMID: 24470193 DOI: 10.1007/s13361-013-0799-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/01/2013] [Accepted: 11/03/2013] [Indexed: 06/03/2023]
Abstract
Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.
Collapse
Affiliation(s)
- Andrea F Lopez-Clavijo
- Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lopez-Clavijo AF, Duque-Daza CA, O'Connor PB. Tandem mass spectrometry for the study of glyoxal-derived advanced glycation end-products (AGEs) in peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:25-32. [PMID: 24285387 DOI: 10.1002/rcm.6753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The post-translational modification known as glycation affects the physiological properties of peptides and proteins. Glycation is particularly important during hyperglycaemia where α-dicarbonyl compounds are generated. These compounds react with proteins to generate α-dicarbonyl-derived glycation products, which are correlated with diabetic complications such as nephropathy, retinopathy, and neuropathy, among others. One of these α-dicarbonyl compounds is ethanedial, also known as glyoxal. Thereby, glyoxal binding to protein/peptides is studied by electron capture dissociation (ECD) and collisionally activated dissociation (CAD). METHODS Acetylated and non-acetylated undecapeptides containing one lysine and one arginine susceptible of glycation were reacted with glyoxal under pseudo-physiological and MeOH/H2O (50:50) conditions. Two types of glyoxal-derived AGEs were fragmented by ECD and CAD using 12 Tesla Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). RESULTS Reaction with glyoxal under different reaction conditions showed the addition of C2O and C2H2O2, which corresponded to a net increase on the peptide mass of 39.9949 Da and 58.0055 Da, respectively. The binding site was assigned within an error <1 ppm, using ECD and CAD. The results indicated that both types of glyoxal-derived AGEs are formed at the side chain of arginine located in position 3. CONCLUSIONS Types and binding sites of glyoxal-derived AGEs were investigated in peptides containing one arginine-one lysine using FTICRMS. Two net mass additions to the mass of the peptide were assigned as C2O and C2H2O2, which were located at the arginine side chain. In addition, these mass additions (C2O and C2H2O2) observed in the peptides were unaffected by different reaction conditions.
Collapse
Affiliation(s)
- Andrea F Lopez-Clavijo
- Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
20
|
Le TN, Poully JC, Lecomte F, Nieuwjaer N, Manil B, Desfrançois C, Chirot F, Lemoine J, Dugourd P, van der Rest G, Grégoire G. Gas-phase structure of amyloid-β (12-28) peptide investigated by infrared spectroscopy, electron capture dissociation and ion mobility mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1937-49. [PMID: 24043520 DOI: 10.1007/s13361-013-0722-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 05/11/2023]
Abstract
The gas-phase structures of doubly and triply protonated Amyloid-β12-28 peptides have been investigated through the combination of ion mobility (IM), electron capture dissociation (ECD) mass spectrometry, and infrared multi-photon dissociation (IRMPD) spectroscopy together with theoretical modeling. Replica-exchange molecular dynamics simulations were conducted to explore the conformational space of these protonated peptides, from which several classes of structures were found. Among the low-lying conformers, those with predicted diffusion cross-sections consistent with the ion mobility experiment were further selected and their IR spectra simulated using a hybrid quantum mechanical/semiempirical method at the ONIOM DFT/B3LYP/6-31 g(d)/AM1 level. In ECD mass spectrometry, the c/z product ion abundance (PIA) has been analyzed for the two charge states and revealed drastic differences. For the doubly protonated species, N - Cα bond cleavage occurs only on the N and C terminal parts, while a periodic distribution of PIA is clearly observed for the triply charged peptides. These PIA distributions have been rationalized by comparison with the inverse of the distances from the protonated sites to the carbonyl oxygens for the conformations suggested from IR and IM experiments. Structural assignment for the amyloid peptide is then made possible by the combination of these three experimental techniques that provide complementary information on the possible secondary structure adopted by peptides. Although globular conformations are favored for the doubly protonated peptide, incrementing the charge state leads to a conformational transition towards extended structures with 310- and α-helix motifs.
Collapse
Affiliation(s)
- Thi Nga Le
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, CNRS UMR 7538, F-93430, Villetaneuse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
22
|
Pérot-Taillandier M, Zirah S, Enjalbert Q, Antoine R, Lemoine J, Dugourd P, Rebuffat S, Tabet JC, Afonso C. Prompt and Slow Electron-Detachment-Dissociation/Electron-Photodetachment-Dissociation of a 21-Mer Peptide. Chemistry 2013. [DOI: 10.1002/chem.201202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Tan L, Durand KL, Ma X, Xia Y. Radical cascades in electron transfer dissociation (ETD) – implications for characterizing peptide disulfide regio-isomers. Analyst 2013; 138:6759-65. [DOI: 10.1039/c3an01333b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Lopez-Clavijo AF, Barrow MP, Rabbani N, Thornalley PJ, O'Connor PB. Determination of types and binding sites of advanced glycation end products for substance P. Anal Chem 2012; 84:10568-75. [PMID: 23163806 DOI: 10.1021/ac301583d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycation by endogenous dicarbonyl metabolites such as glyoxal is an important spontaneous post-translational (PTM) modification of peptides and proteins associated with structural and functional impairment. The aim of this study was to investigate types and site of PTM of glyoxal-derived advanced glycation end-products-in the neuropeptide substance P by ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR), mass spectrometry, and tandem mass spectrometry (MS/MS) experiments. The main site of PTM by glyoxal was the side chain guanidine moiety of the arginine residue. Binding site identification has been achieved by electron capture dissociation, double-resonance electron capture dissociation, and collision-activated dissociation, with assignment of the modified amino acid residue with mass error <1 ppm.
Collapse
Affiliation(s)
- Andrea F Lopez-Clavijo
- Warwick Centre for Analytical Science, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Abstract
Peptide and protein characterization by mass spectrometry (MS) relies on their dissociation in the gas phase into specific fragments whose mass values can be aligned as 'mass ladders' to provide sequence information and to localize possible post-translational modifications. The most common dissociation method involves slow heating of even-electron (M+nH) n+ ions from electrospray ionization by energetic collisions with inert gas, and cleavage of amide backbone bonds. More recently, dissociation methods based on electron capture or transfer were found to provide far more extensive sequence coverage through unselective cleavage of backbone N-Cα bonds. As another important feature of electron capture dissociation (ECD) and electron transfer dissociation (ETD), their unique unimolecular radical ion chemistry generally preserves labile posttranslational modifications such as glycosylation and phosphorylation. Moreover, it was postulated that disulfide bond cleavage is preferred over backbone cleavage, and that capture of a single electron can break both a backbone and a disulfide bond, or even two disulfide bonds between two peptide chains. However, the proposal of preferential disulfide bond cleavage in ECD or ETD has recently been debated. The experimental data presented here reveal that the mechanism of protein disulfide bond cleavage is much more intricate than previously anticipated.
Collapse
Affiliation(s)
- Barbara Ganisl
- Institute for Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institute for Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| |
Collapse
|
26
|
Bythell BJ. To Jump or Not To Jump? Cα Hydrogen Atom Transfer in Post-cleavage Radical-Cation Complexes. J Phys Chem A 2012; 117:1189-96. [DOI: 10.1021/jp305277v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Bythell
- Ion Cyclotron Resonance
Program, National High Magnetic Field Laboratory, Florida State University,
1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United
States
| |
Collapse
|
27
|
Pérot-Taillandier M, Zirah S, Rebuffat S, Linne U, Marahiel MA, Cole RB, Tabet JC, Afonso C. Determination of Peptide Topology through Time-Resolved Double-Resonance under Electron Capture Dissociation Conditions. Anal Chem 2012; 84:4957-64. [DOI: 10.1021/ac300607y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Madsen JA, Cheng RR, Kaoud TS, Dalby KN, Makarov DE, Brodbelt JS. Charge-site-dependent dissociation of hydrogen-rich radical peptide cations upon vacuum UV photoexcitation. Chemistry 2012; 18:5374-83. [PMID: 22431222 DOI: 10.1002/chem.201103534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Indexed: 11/06/2022]
Abstract
Here, 193 nm vacuum ultraviolet photodissociation (VUVPD) was used to investigate the fragmentation of hydrogen-rich radical peptide cations generated by electron transfer reactions. VUVPD offers new insight into the factors that drive radical- and photon-directed processes. The location of a basic Arg site influences photon-activated C(α)-C(O) bond cleavages of singly charged peptide radical cations, an outcome attributed to the initial conformation of the peptide as supported by molecular dynamics simulated annealing and the population of excited states upon UV excitation. This hybrid ETD/VUVPD method was employed to identify phosphorylation sites of the kinase domain of human TRPM7/ChaK1.
Collapse
Affiliation(s)
- James A Madsen
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
29
|
Moss CL, Liang W, Li X, Tureček F. The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:446-459. [PMID: 22187160 DOI: 10.1007/s13361-011-0283-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N-C(α) bond dissociation in (AR + 2H)(+•). The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)(+•) follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground (X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.
Collapse
Affiliation(s)
- Christopher L Moss
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, USA
| | | | | | | |
Collapse
|
30
|
Rand KD, Pringle SD, Morris M, Brown JM. Site-Specific Analysis of Gas-Phase Hydrogen/Deuterium Exchange of Peptides and Proteins by Electron Transfer Dissociation. Anal Chem 2012; 84:1931-40. [DOI: 10.1021/ac202918j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kasper D. Rand
- The Department of
Pharmaceutics
and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Steven D. Pringle
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Michael Morris
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| | - Jeffery M. Brown
- Waters
MS Technologies Centre, Micromass U.K. Ltd., Floats Rd, Wythenshawe, Manchester
M23 9LZ, U.K
| |
Collapse
|
31
|
Dong J, Vachet RW. Coordination sphere tuning of the electron transfer dissociation behavior of Cu(II)-peptide complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:321-9. [PMID: 22161629 PMCID: PMC3265685 DOI: 10.1007/s13361-011-0299-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/15/2011] [Indexed: 05/21/2023]
Abstract
In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)-peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.
Collapse
Affiliation(s)
| | - Richard W. Vachet
- Corresponding author address: Department of Chemistry, LGRT 701, 710 N. Pleasant St., University of Massachusetts, Amherst, MA 01003, Fax: 413-545-4490,
| |
Collapse
|
32
|
Yoo HJ, Wang N, Zhuang S, Song H, Håkansson K. Negative-Ion Electron Capture Dissociation: Radical-Driven Fragmentation of Charge-Increased Gaseous Peptide Anions. J Am Chem Soc 2011; 133:16790-3. [DOI: 10.1021/ja207736y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ning Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Shuyi Zhuang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hangtian Song
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
33
|
van der Rest G, Hui R, Frison G, Chamot-Rooke J. Dissociation channel dependence on peptide size observed in electron capture dissociation of tryptic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1631-1644. [PMID: 21953266 DOI: 10.1007/s13361-011-0166-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of a series of five residue peptides led to the observation that these small peptides did not lead to the formation of the usual c/z ECD fragments, but to a, b, y, and w fragments. In order to determine how general this behavior is for small sized peptides, the effect of peptide size on ECD fragments using a complete set of ECD spectra from the SwedECD spectra database was examined. Analysis of the database shows that b and w fragments are favored for small peptide sizes and that average fragment size shows a linear relationship to parent peptide size for most fragment types. From these data, it appears that most of the w fragments are not secondary fragments of the major z ions, in sharp contrast with the proposed mechanism leading to these ions. These data also show that c fragment distributions depend strongly on the nature of C-terminal residue basic site: arginine leads to loss of short neutral fragments, whereas lysine leads to loss of longer neutral fragments. It also appears that b ions might be produced by two different mechanisms depending on the parent peptide size. A model for the fragmentation pathways in competition is proposed. These relationships between average fragment size and parent peptide size could be further exploited also for CID fragment spectra and could be included in fragmentation prediction algorithms.
Collapse
Affiliation(s)
- Guillaume van der Rest
- Laboratoire des Mécanismes Réactionnels, Department of Chemistry, Ecole Polytechnique and CNRS, 91128, Palaiseau Cedex, France.
| | | | | | | |
Collapse
|
34
|
Zirah S, Afonso C, Linne U, Knappe TA, Marahiel MA, Rebuffat S, Tabet JC. Topoisomer differentiation of molecular knots by FTICR MS: lessons from class II lasso peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:467-479. [PMID: 21472565 DOI: 10.1007/s13361-010-0028-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/28/2010] [Accepted: 10/31/2010] [Indexed: 05/30/2023]
Abstract
Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminal macrolactam ring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collision-induced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECD spectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c•/z from c/z•) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions (b'/•(n)). We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z• and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture.
Collapse
Affiliation(s)
- Séverine Zirah
- National Museum of Natural History, Communication Molecules and Adaptation of Micro-organisms, FRE 3206 CNRS - MNHN, CP 54, 57 rue Cuvier, F-75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Nishikaze T, Takayama M. Influence of charge state and amino acid composition on hydrogen transfer in electron capture dissociation of peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1979-1988. [PMID: 20869879 DOI: 10.1016/j.jasms.2010.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/15/2010] [Indexed: 05/29/2023]
Abstract
Although conventional N-Cα bond cleavage in electron capture dissociation (ECD) of multiply-charged peptides generates a complementary c' and z(·) fragment pair, the N-Cα cleavage followed by hydrogen transfer from c' to z(·) fragments produces other fragments, namely c(·) and z'. In this study, the influence of charge state and amino acid composition on hydrogen transfer in ECD is described using sets of peptides. Hydrogen transferred ionic species such as c(·) and z' were observed in ECD spectra of doubly-protonated peptides, while the triply-protonated form did not demonstrate hydrogen transfer. The extent of hydrogen transfer in ECD of doubly-protonated peptides was dependent on constituent amino acids. The ECD of doubly-protonated peptides possessing numerous basic sites showed extensive hydrogen transfer compared with ECD of less basic peptides. The extent of hydrogen transfer is discussed from the viewpoints of the structure of peptide ions, the possibility of internal hydrogen bonding and intermediate lifetime of complex [c' + z(·)].
Collapse
Affiliation(s)
- Takashi Nishikaze
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|
36
|
Zhang Z. Prediction of electron-transfer/capture dissociation spectra of peptides. Anal Chem 2010; 82:1990-2005. [PMID: 20148580 DOI: 10.1021/ac902733z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An empirical model, based on classic kinetics, was developed for quantitative prediction of electron-transfer dissociation (ETD) and electron-capture dissociation (ECD) spectra of peptides. The model includes most fragmentation pathways described in the literature plus some additional pathways based on the author's assumptions and observations. The ETD model was trained with more than 7000 ETD spectra, with and without supplemental activation. The ECD model was trained with more than 6000 ECD spectra. The trained ETD and ECD models are able to predict ETD and ECD spectra with reasonable accuracy in ion intensities for peptide precursors up to 4000 u in mass.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| |
Collapse
|
37
|
Li X, Lin C, Han L, Costello CE, O’Connor PB. Charge remote fragmentation in electron capture and electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:646-56. [PMID: 20171118 PMCID: PMC2882803 DOI: 10.1016/j.jasms.2010.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/03/2010] [Accepted: 01/12/2010] [Indexed: 05/04/2023]
Abstract
Secondary fragmentations of three synthetic peptides (human alphaA crystallin peptide 1-11, the deamidated form of human betaB2 crystallin peptide 4-14, and amyloid beta peptide 25-35) were studied in both electron capture dissociation (ECD) and electron-transfer dissociation (ETD) mode. In ECD, in addition to c and z. ion formations, charge remote fragmentations (CRF) of z. ions were abundant, resulting in internal fragment formation or partial/entire side-chain losses from amino acids, sometimes several residues away from the backbone cleavage site, and to some extent multiple side-chain losses. The internal fragments were observed in peptides with basic residues located in the middle of the sequences, which was different from most tryptic peptides with basic residues located at the C-terminus. These secondary cleavages were initiated by hydrogen abstraction at the alpha-, beta-, or gamma-position of the amino acid side chain. In comparison, ETD generates fewer CRF fragments than ECD. This secondary cleavage study will facilitate ECD/ETD spectra interpretation, and help de novo sequencing and database searching.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Liang Han
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
38
|
Sargaeva NP, Lin C, O’Connor PB. Identification of aspartic and isoaspartic acid residues in amyloid beta peptides, including Abeta1-42, using electron-ion reactions. Anal Chem 2009; 81:9778-86. [PMID: 19873993 PMCID: PMC3114306 DOI: 10.1021/ac901677t] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amyloid beta peptides are the major components of the vascular and plaque amyloid filaments in individuals with Alzheimer's disease (AD). Although it is still unclear what initiates the disease, isomerization of aspartic acid residues in Abeta peptides is directly related to the pathology of AD. The detection of isomerization products is analytically challenging, due to their similar chemical properties and identical molecular mass. Different methods have been applied to differentiate and quantify the isomers, including immunology, chromatography, and mass spectrometry. Typically, those methods require comparative analysis with the standard peptides and involve many sample preparation steps. To understand the role of Abeta isomerization in AD progression, a fast, simple, accurate, and reproducible method is necessary. In this work, electron capture dissociation (ECD) Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) was applied to detect isomerization in Abeta peptides. ECD generated diagnostic fragment ions for the two isomers of Abeta17-28, [M + 2H - 60]+* and z6*-44 when aspartic acid was present and z6*-57 when isoaspartic acid was present. Additionally, the z(n)-57 diagnostic ion was also observed in the electron ionization dissociation (EID) spectra of the modified Abeta17-28 fragment. ECD was further applied toward Abeta1-40 and Abeta1-42. The diagnostic ion c6 + 57 was observed in the ECD spectra of the Abeta1-42 peptide, demonstrating isomerization at residue 7. In conclusion, both ECD and EID can clearly determine the presence and the position of isoaspartic acid residues in amyloid beta peptides. The next step, therefore, is to apply this method to analyze samples of Alzheimer's patients and healthy individuals in order to generate a better understanding of the disease.
Collapse
Affiliation(s)
- Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
39
|
Tureček F, Panja S, Wyer JA, Ehlerding A, Zettergren H, Nielsen SB, Hvelplund P, Bythell B, Paizs B. Carboxyl-Catalyzed Prototropic Rearrangements in Histidine Peptide Radicals upon Electron Transfer: Effects of Peptide Sequence and Conformation. J Am Chem Soc 2009; 131:16472-87. [DOI: 10.1021/ja9050229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Subhasis Panja
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jean A. Wyer
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Anneli Ehlerding
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Henning Zettergren
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Steen Brøndsted Nielsen
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Preben Hvelplund
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Benjamin Bythell
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Béla Paizs
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| |
Collapse
|
40
|
Bushey JM, Baba T, Glish GL. Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation. Anal Chem 2009; 81:6156-64. [PMID: 19572558 PMCID: PMC3141179 DOI: 10.1021/ac900627n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method of performing collision induced dissociation (CID) on the charge-reduced parent ion as it is formed during electron capture dissociation (ECD), called ECD+CID, is described. In ECD+CID, the charge-reduced parent ion is selectively activated using resonant excitation and collisions with the helium bath gas inside a linear quadrupole ion trap ECD device (ECD(LIT)). It has been observed that ECD+CID can improve the sequence coverage for beta-endorphin over performing ECD alone (i.e., from 72 to 97%). Perhaps just as important, ECD+CID can be used to reduce the extent of multiple electron capture events observed when performing ECD in the ECD(LIT). Consequently, the abundance of mass-to-charge ratios corresponding to ECD product ions that contain neutralized protons is decreased, simplifying the interpretation of the product ion spectrum.
Collapse
Affiliation(s)
- Jared M. Bushey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Takashi Baba
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
- Biosystem Research Development, Life Science Research Laboratory in Central Research Laboratory, Hitachi Ltd., 1-280, Higashi-Koigakubo, Kokubunji 185-8601, Japan
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
41
|
Ben Hamidane H, He H, Tsybin OY, Emmett MR, Hendrickson CL, Marshall AG, Tsybin YO. Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1182-92. [PMID: 19297190 DOI: 10.1016/j.jasms.2009.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/14/2009] [Accepted: 02/08/2009] [Indexed: 05/11/2023]
Abstract
The rules for product ion formation in electron capture dissociation (ECD) mass spectrometry of peptides and proteins remain unclear. Random backbone cleavage probability and the nonspecific nature of ECD toward amino acid sequence have been reported, contrary to preferential channels of fragmentation in slow heating-based tandem mass spectrometry. Here we demonstrate that for amphipathic peptides and proteins, modulation of ECD product ion abundance (PIA) along the sequence is pronounced. Moreover, because of the specific primary (and presumably secondary) structure of amphipathic peptides, PIA in ECD demonstrates a clear and reproducible periodic sequence distribution. On the one hand, the period of ECD PIA corresponds to periodic distribution of spatially separated hydrophobic and hydrophilic domains within the peptide primary sequence. On the other hand, the same period correlates with secondary structure units, such as alpha-helical turns, known for solution-phase structure. Based on a number of examples, we formulate a set of characteristic features for ECD of amphipathic peptides and proteins: (1) periodic distribution of PIA is observed and is reproducible in a wide range of ECD parameters and on different experimental platforms; (2) local maxima of PIA are not necessarily located near the charged site; (3) ion activation before ECD not only extends product ion sequence coverage but also preserves ion yield modulation; (4) the most efficient cleavage (e.g. global maximum of ECD PIA distribution) can be remote from the charged site; (5) the number and location of PIA maxima correlate with amino acid hydrophobicity maxima generally to within a single amino acid displacement; and (6) preferential cleavage sites follow a selected hydrogen spine in an alpha-helical peptide segment. Presently proposed novel insights into ECD behavior are important for advancing understanding of the ECD mechanism, particularly the role of peptide sequence on PIA. An improved ECD model could facilitate protein sequencing and improve identification of unknown proteins in proteomics technologies. In structural biology, the periodic/preferential product ion yield in ECD of alpha-helical structures potentially opens the way toward de novo site-specific secondary structure determination of peptides and proteins in the gas phase and its correlation with solution-phase structure.
Collapse
Affiliation(s)
- Hisham Ben Hamidane
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Sohn CH, Chung CK, Yin S, Ramachandran P, Loo JA, Beauchamp JL. Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J Am Chem Soc 2009; 131:5444-59. [PMID: 19331417 PMCID: PMC2765496 DOI: 10.1021/ja806534r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via beta-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from -1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = -1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron-dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide pi* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed.
Collapse
Affiliation(s)
- Chang Ho Sohn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheol K. Chung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Prasanna Ramachandran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - J. L. Beauchamp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
43
|
Ben Hamidane H, Chiappe D, Hartmer R, Vorobyev A, Moniatte M, Tsybin YO. Electron capture and transfer dissociation: Peptide structure analysis at different ion internal energy levels. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:567-575. [PMID: 19112028 DOI: 10.1016/j.jasms.2008.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/24/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.
Collapse
Affiliation(s)
- Hisham Ben Hamidane
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Voinov VG, Deinzer ML, Barofsky DF. Radio-frequency-free cell for electron capture dissociation in tandem mass spectrometry. Anal Chem 2009; 81:1238-43. [PMID: 19117494 DOI: 10.1021/ac802084w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A radio frequency-free (RFF), analyzer-independent cell has been devised for electron-capture dissociation (ECD) of ions. The device is based on interleaving a series of electrostatic lenses with the periodic structure of magnetostatic lenses commonly found in a traveling wave tube. The RFF electrostatic/magnetostatic ECD cell was installed in a Finnigan TSQ700 ESI triple quadrupole (QqQ) spectrometer, and its performance was evaluated by recording product-ion spectra of doubly protonated substance P, doubly protonated gramicidin S, doubly protonated neurotensin, and triply protonated neurotensin. These spectra were readily obtained without recourse to a buffering gas or synchronizing electron injection with a specific phase of an RF field. The mass spectra produced with the modified instrument appear in all respects (other than resolution and mass accuracy, which were limited by the mass spectrometer used) to be at least as good for purposes of peptide identification as those recorded with Fourier transform ion cyclotron resonance (FT ICR) instruments; however, the effort and time to produce the mass spectra were much less than required to produce their FT ICR counterparts. The cell's design and compact construction should allow it to be incorporated at relatively little cost into virtually any type of tandem mass spectrometer, for example, triple quadrupole, hybrid quadrupole ion trap, hybrid quadrupole time-of-flight, or even FT-ICR.
Collapse
Affiliation(s)
- Valery G Voinov
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | |
Collapse
|
45
|
Yang J, Håkansson K. Characterization of oligodeoxynucleotide fragmentation pathways in infrared multiphoton dissociation and electron detachment dissociation by Fourier transform ion cyclotron double resonance. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:293-304. [PMID: 19423914 DOI: 10.1255/ejms.966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) is a vibrational excitation tandem mass spectrometric fragmentation method valuable for sequencing of oligonucleotides. For oligodeoxynucleotides, typical product ions correspond to sequence-specific 5' (a-base) and their complementary 3' w-type ions from carbon-oxygen bond cleavage at the 3' position of the deoxyribose from which a nucleobase is lost. Such fragmentation patterns are also observed in collision activated dissociation (CAD). The CAD oligodeoxynucleotide fragmentation mechanism has been characterized in detail. By contrast, fragmentation schemes in IRMPD have not been rigorously established. In this paper, we apply, for the first time, Fourier transform ion cyclotron double resonance (DR) experiments to characterize IRMPD fragmentation pathways of oligodeoxynucleotide anions. Our results suggest that neutral base loss precedes backbone fragmentation but that T-rich oligodeoxynucleotides fragment via a different mechanism, similar to the mechanisms proposed for CAD. We also extend the DR approach to characterize intermediates in electron detachment dissociation of hexamer oligodeoxynucleotides. Here, we found that charge reduced radical precursor ions constitute major intermediates for dT(6), d(GCATAC) and d(GCATGC). Furthermore, (a/z-T) ions (z ions correspond to C-O bond cleavage on the other side of a backbone phosphate group as compared to the formation of a ions) mainly originate from secondary fragmentation of a/z radical ions for the oligodeoxynucleotide dT(6).
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
46
|
Li X, Cournoyer JJ, Lin C, O’Connor PB. The effect of fixed charge modifications on electron capture dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1514-26. [PMID: 18657441 PMCID: PMC3116146 DOI: 10.1016/j.jasms.2008.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/20/2008] [Accepted: 06/20/2008] [Indexed: 05/11/2023]
Abstract
Electron capture dissociation (ECD) studies of two modified amyloid beta peptides (20-29 and 25-35) were performed to investigate the role of H* radicals in the ECD of peptide ions and the free-radical cascade (FRC) mechanism. 2,4,6-Trimethylpyridinium (TMP) was used as the fixed charge tag, which is postulated to both trap the originally formed radical upon electron capture and inhibit the H* generation. It was found that both the number and locations of the fixed charge groups influenced the backbone and side-chain cleavages of these peptides in ECD. In general, the frequency and extent of backbone cleavages decreased and those of side-chain cleavages increased with the addition of fixed charge tags. A singly labeled peptide with the tag group farther away from the protonated site experienced a smaller abundance decrease in backbone cleavage fragments than the one with the tag group closer to the protonated site. Despite the nonprotonated nature of all charge carriers in doubly labeled peptide ions, several c and z* ions were still observed in their ECD spectra. Thus, although H* transfer may be important for the NC(alpha) bond cleavage, there also exist other pathways, which would require a radical migration via H* abstraction through space or via an amide superbase mechanism. Finally, internal fragment ions were observed in the ECD of these linear peptides, indicating that the important role of the FRC in backbone cleavages is not limited to the ECD of cyclic peptides.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Jason J. Cournoyer
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
47
|
Peng IX, Ogorzalek Loo RR, Shiea J, Loo JA. Reactive-Electrospray-Assisted Laser Desorption/Ionization for Characterization of Peptides and Proteins. Anal Chem 2008; 80:6995-7003. [DOI: 10.1021/ac800870c] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivory X. Peng
- Department of Chemistry and Biochemistry and Department of Biological Chemistry, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, California 90095, and Department of Chemistry, National Sun Yat-Sen University and National Sun Yat-Sen University—Kaohsiung Medical University Joint Center, Kaohsiung, Taiwan
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry and Department of Biological Chemistry, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, California 90095, and Department of Chemistry, National Sun Yat-Sen University and National Sun Yat-Sen University—Kaohsiung Medical University Joint Center, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry and Biochemistry and Department of Biological Chemistry, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, California 90095, and Department of Chemistry, National Sun Yat-Sen University and National Sun Yat-Sen University—Kaohsiung Medical University Joint Center, Kaohsiung, Taiwan
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry and Department of Biological Chemistry, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, California 90095, and Department of Chemistry, National Sun Yat-Sen University and National Sun Yat-Sen University—Kaohsiung Medical University Joint Center, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Chen X, Hao C. Where Does the Electron Go? Electron Distribution and Reactivity of Peptide Cation Radicals Formed by Electron Transfer in the Gas phase. J Am Chem Soc 2008; 130:8818-33. [DOI: 10.1021/ja8019005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaohong Chen
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700
| | - Changtong Hao
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700
| |
Collapse
|
49
|
Lin C, Cournoyer JJ, O'Connor PB. Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:780-9. [PMID: 18400512 PMCID: PMC3117249 DOI: 10.1016/j.jasms.2008.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 05/02/2023]
Abstract
The effect of infrared (IR) irradiation on the electron capture dissociation (ECD) fragmentation pattern of peptide ions was investigated. IR heating increases the internal energy of the precursor ion, which often amplifies secondary fragmentation, resulting in the formation of w-type ions as well as other secondary fragments. Improved sequence coverage was observed with IR irradiation before ECD, likely due to the increased conformational heterogeneity upon IR heating, rather than faster breakdown of the initially formed product ion complex, as IR heating after ECD did not have similar effect. Although the ECD fragment ion yield of peptide ions does not typically increase with IR heating, in double resonance (DR) ECD experiments, fragment ion yield may be reduced by fast resonant ejection of the charge reduced molecular species, and becomes dependent on the folding state of the precursor ion. In this work, the fragment ion yield was monitored as a function of the delay between IR irradiation and the DR-ECD event to study the gas-phase folding kinetics of the peptide ions. Furthermore, the degree of intracomplex hydrogen transfer of the ECD fragment ion pair was used to probe the folding state of the precursor ion. Both methods gave similar refolding time constants of approximately 1.5 s(-1), revealing that gaseous peptide ions often refold in less than a second, much faster than their protein counterparts. It was also found from the IR-DR-ECD study that the intramolecular H. transfer rate can be an order of magnitude higher than that of the separation of the long-lived c/z product ion complexes, explaining the common observation of c. and z type ions in ECD experiments.
Collapse
Affiliation(s)
- Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
50
|
Hayakawa S, Hashimoto M, Nagao H, Awazu K, Toyoda M, Ichihara T, Shigeri Y. Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:567-572. [PMID: 18229886 DOI: 10.1002/rcm.3399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.
Collapse
Affiliation(s)
- Shigeo Hayakawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | |
Collapse
|