1
|
Chen ZZ, Dufresne J, Bowden P, Marshall JG. Comparison of the Human Plasma Peptides from the Fit of Fragmentation Spectra versus Accurate Monoisotopic Precursor Mass. ACS OMEGA 2025; 10:10796-10811. [PMID: 40160755 PMCID: PMC11947786 DOI: 10.1021/acsomega.4c06211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
In nature, ionized peptides with heavy isotopes and hydrogen rearrangements show a broad mass distribution with signals at discrete delta mass values from -3 to +5 Da by mass spectrometry (MS). For many peptides, the intensity of the +1 or +2 Da isotope exceeds the signal from the monoisotopic mass. Therefore, there is a need for a method that improves peptide identification from heavy isotopes or hydrogen rearrangements based on the fit of tandem mass spectra. Peptides may be identified using an accurate monoisotopic precursor mass with ≤0.1 Da. However, many peptides with heavy isotopes and H-loss can be identified and enumerated based on the fit of their MS/MS spectra alone in the absence of an accurate precursor monoisotopic mass (i.e., ± 3 Da) using the X!TANDEM MS/MS fitting algorithm. In this study, human plasma samples were analyzed with a highly resolving axially harmonic orbital ion trap (OIT) and a sensitive linear quadrupole ion trap (LIT). The MS/MS fragmentation spectra from the OIT can be fit to peptides from the monoisotopic (±0.1 Da) as well as all other precursor masses with a wide mass tolerance (±3 Da). The resulting delta mass distribution can then be plotted and compared to the predicted distribution of heavy isotopes and hydrogen rearrangements to provide a direct biophysical prediction and test the validity of the fit determined by accepting the best-fit MS/MS spectra. The OIT instrument, which has greater resolution, was sampled at 30 nL per minute, while the more sensitive LIT was sampled at 200 nL per minute. The MS/MS spectra generated by each instrument were fit to peptides within a wide window (±3 Da) using the rigorous X!TANDEM algorithm. The OIT and LIT results were compared in an SQL Server database and corrected against analytical and statistical controls. The delta mass distribution of the peptides with hydrogen rearrangements and heavy isotopes was determined from the fit MS/MS spectra using the R statistical program. The OIT sampled MS and MS/MS spectra from the high-intensity precursor ions by focusing on E7 to E9 detector counts. In contrast, the LIT sampled a range of precursor ion intensities focused from E4 to E7 and thus reached lower ion intensity values. As expected, the precursor mass [M + H]+ obtained by the OIT exhibited sharp delta mass peaks at -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da due to naturally occurring heavy isotopes and hydrogen rearrangements. The collection of peptides and proteins identified by OIT and LIT was in qualitative and quantitative agreement with one another, with 99.9% overlap on 2726 protein gene symbols from human plasma and a highly significant relationship by regression analysis. The protein p-values, false discovery rate q-values, and comparisons to the noise MS/MS analytical control and random MS/MS statistical control confirmed the high-confidence MS/MS identifications from both instruments. MS/MS fragmentation spectra from the OIT were fit to peptides. The resulting precursor ion delta mass distribution showed a precise match to the predicted isotope distributions and hydrogen rearrangements of natural peptides. Thus, analysis of delta mass plots provided powerful biophysical evidence for the accuracy of plasma peptide identification from the fit of the MS/MS spectra alone. The high level of agreement on proteins and peptides and the proportional enumeration between proteins identified by the OIT and those identified independently using a LIT confirmed that plasma peptides and proteins may be identified and quantified from MS/MS spectra alone without the need for an accurate measure of the precursor mass. The greater sensitivity and low cost of searching MS/MS spectra in the absence of an accurate mass mean that it is possible to identify and quantify more proteins for the discovery of proteins in clinical populations.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
2
|
Chen ZZ, Dufresne J, Bowden P, Celej D, Miao M, Marshall JG. Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS. Anal Biochem 2025; 697:115694. [PMID: 39442602 DOI: 10.1016/j.ab.2024.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Organic precipitation of proteins with acetonitrile demonstrated complete protein recovery and improved chromatography of human plasma proteins. The separation of 25 μL of human plasma into 22 fractions on a QA SAX resin facilitated more effective protein discovery despite the limited sample size. Micro chromatography of plasma proteins over quaternary amine (QA) strong anion exchange (SAX) resins performed best, followed by diethylaminoethyl (DEAE), heparin (HEP), carboxymethyl cellulose (CMC), and propyl sulfate (PS) resins. Two independent statistical methods, Monte Carlo comparison with random MS/MS spectra and the rigorous X!TANDEM goodness of fit algorithm protein p-values corrected to false discovery rate q-values (q ≤ 0.01) agreed on at least 12,000 plasma proteins, each represented by at least three fully tryptic corrected peptide observations. There was qualitative agreement on 9393 protein/gene symbols between the linear quadrupole versus orbital ion trap but also quantitative agreement with a highly significant linear regression relationship between log observation frequency (F value 4,173, p-value 2.2e-16). The use of a QA resin showed nearly perfect replication of all the proteins that were also found using DEAE-, HEP-, CMC-, and PS-based chromatographic methods combined and together estimated the size of the size of the plasma proteome as ≥12,000 gene symbols.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Dominika Celej
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
3
|
Dufresne J, Chen ZZ, Sehajpal P, Bowden P, Ho JA, Hsu CCR, Marshall JG. Selected Ion Extraction of Peptides with Heavy Isotopes and Hydrogen Loss Reduces the Type II Error in Plasma Proteomics. ACS OMEGA 2025; 10:281-293. [PMID: 39829503 PMCID: PMC11739973 DOI: 10.1021/acsomega.4c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da. Human plasma samples were precipitated in acetonitrile, and the resulting proteins were collected over a quaternary amine resin, eluted with NaCl, digested with trypsin, and analyzed by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with an orbital ion trap (OIT). Fragment spectra (MS/MS) generated from the OIT data were fit to human fully tryptic peptides by X!TANDEM, which led to the identification of 3,888 protein gene symbols represented by three or more peptides (n ≥ 3). The peptide counts to plasma proteins from experimental MS/MS spectra were corrected against 29 blank LC-ESI-MS/MS spectra and 30 million random MS/MS control spectra to yield 2,784 true positive proteins (n ≥ 3; q ≤ 0.01). Peptides identified by fragmenting ions with Gaussian heavy isotopes and hydrogen loss that were matched to known plasma proteins, such as albumin (ALB), were shown to be true positives and agreed with the peptide sequences identified in the monoisotopic peak. Accepting the ions from the monoisotopic peak alone (±0.1 Da) yielded only 382 plasma proteins (n ≥ 3; type I error q ≤ 0.01; type II error ∼86%). In contrast, accepting all ions within ±0.1 Da around the hydrogen loss, monoisotopic, and heavy isotopic peaks led to the identification of 963 proteins (n ≥ 3; q ≤ 0.01; type II error ∼60%). Using the power of the OIT to resolve the Gaussian peaks from heavy isotopes and hydrogen loss resulted in the identification of three times more proteins with high confidence and a much lower type II error than analyzing peptides from the monoisotopic peak alone. The resolving power of the OIT may be exploited to increase observation frequencies and provide greater proteomic coverage and statistical power in comparative proteomics studies.
Collapse
Affiliation(s)
- Jaimie Dufresne
- Department
of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Zhuo Zhen Chen
- Department
of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Pallvi Sehajpal
- Department
of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Peter Bowden
- Department
of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Ja-An Ho
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - John G. Marshall
- Department
of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
4
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Trypsin Digestion Conditions of Human Plasma for Observation of Peptides and Proteins from Tandem Mass Spectrometry. ACS OMEGA 2024; 9:41343-41354. [PMID: 39398168 PMCID: PMC11465567 DOI: 10.1021/acsomega.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Previous meta-analysis indicated that plasma or serum proteome groups using various experimental conditions detected different peptides from the same plasma proteins, which is strong evidence for the veracity of blood fluid LC-ESI-MS/MS but also evidences that the trypsin digestion step is a key source of variation in plasma proteomics. Agreement between different digestion conditions and MS/MS algorithms may serve as an independent confirmation of the validity of the LC-ESI-MS/MS analysis of plasma peptides. Plasma contains a high percentage of albumin held together by multiple disulfide bonds; hence, reduction and/or alkylation may greatly enhance the digestion efficiency of albumin. Plasma proteins were precipitated in 90% acetonitrile, collected over quaternary amine resin, and eluted in NaCl prior to digestion treatments. To determine the effect of trypsin digestion methods, the plasma proteins were digested in 600 mM urea and 5% acetonitrile with trypsin alone, or reduced with 2 mM DTT followed by trypsin, or DTT followed by 15 mM iodoacetamide and then trypsin. The resulting peptides were analyzed by LC-ESI-MS/MS with a linear quadrupole ion trap (LIT). The MS/MS spectra were directly fit to peptides by the X!TANDEM and SEQUEST algorithms. Blank noise injections served as the analytical control, and 30 million random MS/MS served as the statistical control. Digesting human plasma with DTT reduction, or reduction and alkylation, resulted in a dramatic increase in the number and observation frequency of albumin peptides. In contrast, digestion with trypsin alone suppressed the observation of albumin, and instead, many low abundance plasma and cellular proteins showed higher observation frequency. Digestion with trypsin alone increased the observation frequency of APOC1, ACAN, ATRN, CPB2, GP2, GPX3, HBA1, PAPD5, PKD1, and many cellular proteins. After correction against noise and random controls, SEQUEST showed good agreement with the true positive plasma proteins identified by X!TANDEM and resulted in an R-squared of 0.5238 with an F-statistic of 10,930 on 9,935 protein gene symbols with a p-value < 2.2e-16. Digestion of plasma with trypsin alone avoids the complete digestion of albumin and permits the enhanced detection of some other cellular proteins from plasma. Different digestion approaches were complimentary and together resulted in a more comprehensive plasma proteome. The protein FDR q-values, the modest effect of background and Monte Carlo correction, and the significant STRING analysis were all consistent with the high fidelity of the rigorous X!TANDEM algorithm. In contrast, SEQUEST required significant correction against noise and statistical controls and selection of high cross correlation (XCorr) scores to show good agreement with X!TANDEM. There was qualitative and quantitative agreement between plasma proteins digested without alkylation from the orbital ion trap (OIT) versus the LIT instrument that showed highly significant regression against the X!TANDEM OIT monoisotopic results, those from heavy isotopes and other masses from X!TANDEM, and with those from MaxQuant. There was significant qualitative and quantitative agreement between the complementary digestion conditions consistent with the good fidelity of plasma analysis by LC-ESI-MS/MS with a sensitive linear ion trap.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Ming Miao
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| |
Collapse
|
5
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Extraction of naturally occurring peptides versus the tryptic digestion of proteins from fetal versus adult bovine serum for LC-ESI-MS/MS. Anal Biochem 2024; 689:115497. [PMID: 38461948 DOI: 10.1016/j.ab.2024.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The naturally occurring peptides and digested proteins of fetal versus adult bovine serum were compared by LC-ESI-MS/MS after correction against noise from blank injections and random MS/MS spectra as statistical controls. Serum peptides were extracted by differential precipitation with mixtures of acetonitrile and water. Serum proteins were separated by partition chromatography over quaternary amine resin followed by tryptic digestion. The rigorous X!TANDEM goodness of fit algorithm that has a low error rate as demonstrated by low FDR q-values (q ≤ 0.01) showed qualitative and quantitative agreement with the SEQUEST cross correlation algorithm on 12,052 protein gene symbols. Tryptic digestion provided a quantitative identification of the serum proteins where observation frequency reflected known high abundance. In contrast, the naturally occurring peptides reflected the cleavage of common serum proteins such as C4A, C3, FGB, HPX, A2M but also proteins in lower concentration such as F13A1, IK, collagens and protocadherins. Proteins associated with cellular growth and development such as actins (ACT), ribosomal proteins like Ribosomal protein S6 (RPS6), synthetic enzymes and extracellular matrix factors were enriched in fetal calf serum. In contrast to the large literature from cord blood, IgG light chains were absent from fetal serum as observed by LC-ESI-MS/MS and confirmed by ELISA.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
6
|
Peters-Clarke TM, Quan Q, Anderson BJ, McGee WM, Lohr E, Hebert AS, Westphall MS, Coon JJ. Phosphorothioate RNA Analysis by NETD Tandem Mass Spectrometry. Mol Cell Proteomics 2024; 23:100742. [PMID: 38401707 PMCID: PMC11047293 DOI: 10.1016/j.mcpro.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Therapeutic RNAs are routinely modified during their synthesis to ensure proper drug uptake, stability, and efficacy. Phosphorothioate (PS) RNA, molecules in which one or more backbone phosphates are modified with a sulfur atom in place of standard nonbridging oxygen, is one of the most common modifications because of ease of synthesis and pharmacokinetic benefits. Quality assessment of RNA synthesis, including modification incorporation, is essential for drug selectivity and performance, and the synthetic nature of the PS linkage incorporation often reveals impurities. Here, we present a comprehensive analysis of PS RNA via tandem mass spectrometry (MS). We show that activated ion-negative electron transfer dissociation MS/MS is especially useful in diagnosing PS incorporation, producing diagnostic a- and z-type ions at PS linkage sites, beyond the standard d- and w-type ions. Analysis using resonant and beam-type collision-based activation reveals that, overall, more intense sequence ions and base-loss ions result when a PS modification is present. Furthermore, we report increased detection of b- and x-type product ions at sites of PS incorporation, in addition to the standard c- and y-type ions. This work reveals that the gas-phase chemical stability afforded by sulfur alters RNA dissociation and necessitates inclusion of additional product ions for MS/MS of PS RNA.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qiuwen Quan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benton J Anderson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Emily Lohr
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander S Hebert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Sharma S, Ali ME. Nonreductive homolytic scission of endoperoxide bond for activation of artemisinin: A parallel mechanism to Heterolytic cleavage. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shikha Sharma
- Institute of Nano Science and Technology Knowledge City India
| | - Md. Ehesan Ali
- Institute of Nano Science and Technology Knowledge City India
| |
Collapse
|
8
|
Peters-Clarke TM, Riley NM, Westphall MS, Coon JJ. Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:100-110. [PMID: 34874726 PMCID: PMC10291708 DOI: 10.1021/jasms.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion-ion reactions are valuable tools in mass-spectrometry-based peptide and protein sequencing. To boost the generation of sequence-informative fragment ions from low charge-density precursors, supplemental activation methods, via vibrational and photoactivation, have become widely adopted. However, long-lived radical peptide cations undergo intramolecular hydrogen atom transfer from c-type ions to z•-type ions. Here we investigate the degree of hydrogen transfer for thousands of unique peptide cations where electron transfer dissociation (ETD) was performed and was followed by beam-type collisional activation (EThcD), resonant collisional activation (ETcaD), or concurrent infrared photoirradiation (AI-ETD). We report on the precursor charge density and the local amino acid environment surrounding bond cleavage to illustrate the effects of intramolecular hydrogen atom transfer for various precursor ions. Over 30% of fragments from EThcD spectra comprise distorted isotopic distributions, whereas over 20% of fragments from ETcaD have distorted distributions and less than 15% of fragments derived from ETD and AI-ETD reveal distorted isotopic distributions. Both ETcaD and EThcD give a relatively high degree of hydrogen migration, especially when D, G, N, S, and T residues were directly C-terminal to the cleavage site. Whereas all postactivation methods boost the number of c- and z•-type fragment ions detected, the collision-based approaches produce higher rates of hydrogen migration, yielding fewer spectral identifications when only c- and z•-type ions are considered. Understanding hydrogen rearrangement between c- and z•-type ions will facilitate better spectral interpretation.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
9
|
Jeanne Dit Fouque K, Wellmann M, Leyva Bombuse D, Santos-Fernandez M, Cintron-Diaz YL, Gomez-Hernandez ME, Kaplan D, Voinov VG, Fernandez-Lima F. Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5216-5223. [PMID: 34698320 PMCID: PMC8596503 DOI: 10.1039/d1ay01461g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present work, four, well-studied, model peptides (e.g., substance P, bradykinin, angiotensin I and AT-Hook 3) were used to correlate structural information provided by ion mobility and ECD/CID fragmentation in a TIMS-q-EMS-ToF MS/MS platform, incorporporating an electromagnetostatic cell (EMS). The structural heterogeneity of the model peptides was observed by (i) multi-component ion mobility profiles (high ion mobility resolving power, R ∼115-145), and (ii) fast online characteristic ECD fragmentation patterns per ion mobility band (∼0.2 min). Particularly, it was demonstrated that all investigated species were probably conformers, involving cis/trans-isomerizations at X-Pro peptide bond, following the same protonation schemes, in good agreement with previous ion mobility and single point mutation experiments. The comparison between ion mobility selected ECD spectra and traditional FT-ICR ECD MS/MS spectra showed comparable ECD fragmentation efficiencies but differences in the ratio of radical (˙)/prime (') fragment species (H˙ transfer), which were associated with the differences in detection time after the electron capture event. The analysis of model peptides using online TIMS-q-EMSToF MS/MS provided complementary structural information on the intramolecular interactions that stabilize the different gas-phase conformations to those obtained by ion mobility or ECD alone.
Collapse
Affiliation(s)
- K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - M Wellmann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - D Leyva Bombuse
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Y L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M E Gomez-Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - D Kaplan
- KapScience LLC, Tewksbury, MA 01876, USA
| | - V G Voinov
- e-MSion Inc., Corvallis, OR 97330, USA
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Nicolardi S, Kilgour DPA, Dolezal N, Drijfhout JW, Wuhrer M, van der Burgt YEM. Evaluation of Sibling and Twin Fragment Ions Improves the Structural Characterization of Proteins by Top-Down MALDI In-Source Decay Mass Spectrometry. Anal Chem 2020; 92:5871-5881. [PMID: 32212639 PMCID: PMC7178258 DOI: 10.1021/acs.analchem.9b05683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Comprehensive determination
of primary sequence and identification
of post-translational modifications (PTMs) are key elements in protein
structural analysis. Various mass spectrometry (MS) based fragmentation
techniques are powerful approaches for mapping both the amino acid
sequence and PTMs; one of these techniques is matrix-assisted laser
desorption/ionization (MALDI), combined with in-source decay (ISD)
fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR)
MS. MALDI-ISD MS protein analysis involves only minimal sample preparation
and does not require spectral deconvolution. The resulting MALDI-ISD
MS data is complementary to electrospray ionization-based MS/MS sequencing
readouts, providing knowledge on the types of fragment ions is available.
In this study, we evaluate the isotopic distributions of z′ ions in protein top-down MALDI-ISD FT-ICR mass spectra and
show why these distributions can deviate from theoretical profiles
as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing
either normal or deuterated alanine residues, were used to confirm
the presence and unravel the identity of isomeric z and y-NH3 fragment ions (“twins”).
Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene
and N-phenyl-p-phenylenediamine
were applied that yield ISD mass spectra with different fragment ion
distributions. This study demonstrates that the relative abundance
of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments
of z′ ions in MALDI-ISD FT-ICR mass spectra.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - David P A Kilgour
- Department of Chemistry, Nottingham Trent University, Nottingham NG11 0JN, United Kingdom
| | - Natasja Dolezal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden 2333, ZA, The Netherlands
| |
Collapse
|
11
|
Jin Y, Diffee GM, Colman RJ, Anderson RM, Ge Y. Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2460-2469. [PMID: 30834509 PMCID: PMC6722035 DOI: 10.1007/s13361-019-02139-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/22/2023]
Abstract
Sarcomeric proteins, including myofilament and Z-disk proteins, play critical roles in regulating muscle contractile properties. A variety of isoforms and post-translational modifications (PTMs) of sarcomeric proteins have been shown to be associated with modulation of muscle functions and the occurrence of muscle diseases. Non-human primates (NHPs) are excellent research models for sarcopenia, a disease associated with alterations in sarcomeric proteins, due to their marked similarities to humans. However, the sarcomeric proteins in NHP skeletal muscle have not been well characterized. To gain a deeper understanding of sarcomeric proteins in NHP skeletal muscle, we employed top-down mass spectrometry (MS) to conduct a comprehensive analysis on isoforms and PTMs of sarcomeric proteins in rhesus macaque skeletal muscle. We identified 23 protein isoforms with 46 proteoforms of sarcomeric proteins, including 6 isoforms with 18 proteoforms from fast skeletal troponin T. Particularly, for the first time, a novel PDZ/LIM domain protein isoform, PDLIM7, was characterized with a newly identified protein sequence. Moreover, we also identified multiple PTMs on these proteins, including deamidation, methylation, acetylation, tri-methylation, phosphorylation, and S-glutathionylation. Most PTM sites were localized, including Asn13 deamidation on MLC-2S; His73 methylation on αactin; N-terminal acetylation on most identified proteins; N-terminal tri-methylation on MLC-1S, MLC-1F, MLC-2S, and MLC-2F; Ser14 phosphorylation on MLC-2S; and Ser15 and Ser16 phosphorylation on MLC-2F. In summary, a comprehensive characterization of sarcomeric proteins including multiple isoforms and PTMs in NHP skeletal muscle was achieved by analyzing intact proteins in the top-down MS approach.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
12
|
Straus RN, Jockusch RA. Hydrogen-Deuterium Exchange and Electron Capture Dissociation to Interrogate the Conformation of Gaseous Melittin Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:864-875. [PMID: 30834508 DOI: 10.1007/s13361-019-02150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
There is a need in the field of biological mass spectrometry for structural tools which can report on regional, rather than solely global, structure of gaseous protein ions. Site-specific hydrogen-deuterium (H/D) exchange has shown promise in fulfilling this need, but requires additional method development to prove its utility. In this study, we use H/D exchange and electron capture dissociation (ECD) to probe the gaseous structure of two peptides which are α-helical in solution and which differ by a single point mutation. Global H/D exchange levels, ECD fragmentation profiles, and region specific H/D exchange profiles are compared between wild type (WT) melittin, which adopts a hinged helix conformation in solution, and a mutant P14A melittin which folds into a single helix in solution. High protection from H/D exchange by both peptides is consistent with retention of secondary structure in the gas phase (or refolding into some other compact structure). The P14A mutant melittin exhibits lower ECD fragmentation efficiency than WT melittin, suggesting that it contains more secondary structure in the gas phase, which may indicate that these peptides retain some memory of their solution-phase structures. Examination of the isotopic distributions of fragment ions derived from H/D exchange with subsequent ECD reveals that the C-terminus of these peptides adopts multiple conformations. The results reported here offer insight into the stability of alpha helices in the gas phase, and also highlight the value of combining gas-phase H/D exchange with electron capture dissociation to interrogate gaseous peptide conformation.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
13
|
Zhao X, Shen Y, Tong W, Wang G, Chen DDY. Deducing disulfide patterns of cysteine-rich proteins using signature fragments produced by top-down mass spectrometry. Analyst 2019; 143:817-823. [PMID: 29362732 DOI: 10.1039/c7an01625e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct mapping of protein disulfide patterns using top-down mass spectrometry (MS) is often hampered by inadequate fragmentation at the disulfide-enclosing region, and insufficient structural information provided by the fragments. Here we used electron-transfer/high energy collision dissociation (EThcD) to improve the fragmentation efficiency, and developed strategies that minimize the false positive identification of fragments and deconvolute the signals representing specific modifications made to the disulfide-cleavage-induced fragments. We observed clear correlations between unique modification (attachment or removal of H or SH) patterns and the number of disulfide bonds that enclose the corresponding region. Using the characteristic signature fragments, we in part localized the Cys-bridging sites in disulfide-scrambled lysozymes, and reduced the number of putative disulfide patterns from 104 to 6. The results demonstrated the feasibility of direct analysis of complex disulfide patterns using top-down MS.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | | | | | | | | |
Collapse
|
14
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
15
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
17
|
Imaoka N, Houferak C, Murphy MP, Nguyen HTH, Dang A, Tureček F. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1768-1780. [PMID: 29340957 DOI: 10.1007/s13361-017-1871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Naruaki Imaoka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Camille Houferak
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Megan P Murphy
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Huong T H Nguyen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Andy Dang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
18
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
19
|
Ma F, Sun R, Tremmel D, Sackett S, Odorico J, Li L. Large-Scale Differentiation and Site Specific Discrimination of Hydroxyproline Isomers by Electron Transfer/Higher-Energy Collision Dissociation (EThcD) Mass Spectrometry. Anal Chem 2018; 90:5857-5864. [PMID: 29624053 PMCID: PMC6481173 DOI: 10.1021/acs.analchem.8b00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3- and 4-Hydroxyprolines (HyP) are regioisomers that play different roles in various species and organs. Despite their distinct functions inside cells, they are generally considered indistinguishable using mass spectrometry due to their identical masses. Here, we demonstrate, for the first time, that characteristic w ions can be produced by electron-transfer/higher energy collision dissociation (EThcD) dual fragmentation technique to confidently discriminate 3-HyP/4-HyP isomers. An integrated and high throughput strategy was developed which combined online LC separation with EThcD for large-scale differentiation of 3-HyP/4-HyP in complex samples. An automated algorithm was developed for charge state dependent characterization of 3-HyP/4-HyP isomers. Using this combined discrimination approach, we identified 108 3-HyP sites and 530 4-HyP sites from decellularized pancreas, allowing more than 5-fold increase of both 3-HyP and 4-HyP identifications compared to previous reports. This approach outperformed ETD and HCD in the analysis of HyP-containing peptides with unique capacity to generate w ions for HyP discrimination, improved fragmentation of precursor ions, as well as unambiguous localization of modifications. A high content of 3-HyP was observed in the C-terminal (GPP)n domain of human CO1A1, which was previously only identified in vertebrate fibrillar collagens from tendon. Unexpectedly, some unusual HyP sites at Xaa position in Gly-HyP-Ala, Gly-HyP-Val, Gly-HyP-Gln, Gly-HyP-Ser, and Gly-HyP-Arg were also confirmed to be 3-hydroxylated, whose functions and enzymes are yet to be discovered. Overall, this novel discrimination strategy can be readily implemented into de novo sequencing or other proteomic search engines.
Collapse
Affiliation(s)
- Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ruixiang Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Daniel Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sara Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Tang Y, Pu Y, Gao J, Hong P, Costello CE, Lin C. De Novo Glycan Sequencing by Electronic Excitation Dissociation and Fixed-Charge Derivatization. Anal Chem 2018; 90:3793-3801. [PMID: 29443510 DOI: 10.1021/acs.analchem.7b04077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detailed glycan structural characterization is frequently achieved by collisionally activated dissociation (CAD) based sequential tandem mass spectrometry (MS n) analysis of permethylated glycans. However, it is challenging to implement MS n ( n > 2) during online glycan separation, and this has limited its application to analysis of complex glycan mixtures from biological samples. Further, permethylation can reduce liquid chromatographic (LC) resolution of isomeric glycans. Here, we studied the electronic excitation dissociation (EED) fragmentation behavior of native glycans with a reducing-end fixed charge tag and identified key spectral features that are useful for topology and linkage determination. We also developed a de novo glycan sequencing software that showed remarkable accuracy in glycan topology elucidation based on the EED spectra of fixed charge-derivatized glycans. The ability to obtain glycan structural details at the MS2 level, without permethylation, via a combination of fixed charge derivatization, EED, and de novo spectral interpretation, makes the present approach a promising tool for comprehensive and rapid characterization of glycan mixtures.
Collapse
Affiliation(s)
- Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Yi Pu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
21
|
Di Stefano LH, Papanastasiou D, Zubarev RA. Size-Dependent Hydrogen Atom Attachment to Gas-Phase Hydrogen-Deficient Polypeptide Radical Cations. J Am Chem Soc 2018; 140:531-533. [PMID: 29292649 DOI: 10.1021/jacs.7b10318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant affinity to carbonyl oxygens, thermal hydrogen atoms attach to unmodified polypeptides at a very low rate, while the hydrogen-hydrogen exchange rate is high. Here, using the novel omnitrap setup, we found that attachment to polypeptides is much more facile when radical site is already present, but the rate decreases for larger radical ions. The likely explanation is the intramolecular hydrogen atom rearrangement in hydrogen-deficient radicals to a more stable or less accessible site.
Collapse
Affiliation(s)
- Luciano H Di Stefano
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelesväg 2, S-171 77 Stockholm, Sweden
| | - Dimitris Papanastasiou
- Fasmatech Science & Technology , Lefkippos TESPA, Demokritos NCSR, Patriarchou Gregoriou & Neapoleos, 153-10 Agia Paraskevi, Athens, Greece
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelesväg 2, S-171 77 Stockholm, Sweden
| |
Collapse
|
22
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
23
|
Jeanne Dit Fouque K, Lavanant H, Zirah S, Hegemann JD, Fage CD, Marahiel MA, Rebuffat S, Afonso C. General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst 2018; 143:1157-1170. [DOI: 10.1039/c7an02052j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked structure in which the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring.
Collapse
Affiliation(s)
| | | | - S. Zirah
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - J. D. Hegemann
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - C. D. Fage
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - M. A. Marahiel
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - S. Rebuffat
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - C. Afonso
- Normandie Univ
- UNIROUEN
- INSA Rouen
- CNRS
- COBRA
| |
Collapse
|
24
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
25
|
Straus RN, Jockusch RA. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:358-369. [PMID: 27943124 DOI: 10.1007/s13361-016-1528-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
26
|
Commodore JJ, Cassady CJ. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1499-509. [PMID: 27294379 PMCID: PMC4974135 DOI: 10.1007/s13361-016-1428-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 05/08/2023]
Abstract
Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H](4+), [M + Met](3+), and [M + Met -H](2+), where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H](4+) leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met](3+) is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ](2+), a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H](2+) and [M + Eu](3+) yields a limited amount of peptide backbone cleavage; however, [M + Eu + H](4+) dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
27
|
Asakawa D. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:535-556. [PMID: 25286767 DOI: 10.1002/mas.21444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.
Collapse
Affiliation(s)
- Daiki Asakawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
28
|
Martens J, Grzetic J, Berden G, Oomens J. Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat Commun 2016; 7:11754. [PMID: 27277826 PMCID: PMC4906228 DOI: 10.1038/ncomms11754] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
Tandem mass spectrometry occupies a principle place among modern analytical methods and drives many developments in the ‘omics' sciences. Electron attachment induced dissociation methods, as alternatives for collision-induced dissociation have profoundly influenced the field of proteomics, enabling among others the top-down sequencing of entire proteins and the analysis of post-translational modifications. The technique, however, produces more complex mass spectra and its radical-driven reaction mechanisms remain incompletely understood. Here we demonstrate the facile structural characterization of electron transfer dissociation generated peptide fragments by infrared ion spectroscopy using the tunable free-electron laser FELIX, aiding the elucidation of the underlying dissociation mechanisms. We apply this method to verify and revise previously proposed product ion structures for an often studied model tryptic peptide, [AlaAlaHisAlaArg+2H]2+. Comparing experiment with theory reveals that structures that would be assigned using only theoretical thermodynamic considerations often do not correspond to the experimentally sampled species. Mass spectrometry is a leading method used for sequencing peptides and proteins by fragmentation followed by analysis of the sequence fragments. Here, the authors use infrared spectroscopy to characterize the structures of peptide fragments formed during electron transfer dissociation.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Josipa Grzetic
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 908, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
29
|
McMillen CL, Wright PM, Cassady CJ. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:847-855. [PMID: 26864792 DOI: 10.1007/s13361-016-1345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.
Collapse
Affiliation(s)
- Chelsea L McMillen
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Patience M Wright
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Chemistry, The University of Georgia, Athens, GA, 30602, USA
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
30
|
Takahashi H, Sekiya S, Nishikaze T, Kodera K, Iwamoto S, Wada M, Tanaka K. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry. Anal Chem 2016; 88:3810-6. [DOI: 10.1021/acs.analchem.5b04888] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hidenori Takahashi
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Sadanori Sekiya
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takashi Nishikaze
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kei Kodera
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Motoi Wada
- Graduate
School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koichi Tanaka
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
31
|
Kostyukevich Y, Kononikhin A, Popov I, Indeykina M, Kozin SA, Makarov AA, Nikolaev E. Supermetallization of peptides and proteins during electrospray ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1079-1087. [PMID: 28338253 DOI: 10.1002/jms.3622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/26/2015] [Accepted: 05/26/2015] [Indexed: 06/06/2023]
Abstract
The formation of metal-peptide complexes during electrospray ionization (ESI) is a widely known phenomenon and is often considered to be undesirable. Such effect considerably limits the use of ESI mass spectrometry for the investigation of biologically relevant metal-peptide compounds that are present in the solution and play critical roles in many bioprocesses such as progression of neurodegenerative diseases. In the article, it is demonstrated that under specific conditions such as high temperature of the desolvating capillary, an interesting effect, which can be called as 'supermetallization', occurs. Using a model peptide Αβ amyloid domain 1-16, it was observed that an increase in the temperature of the desolvating capillary results in multiple substitutions of hydrogen atoms by Zn atoms in this peptide. At high temperatures (T ~ 400 °C), up to 11 zinc atoms can be covalently bound to (1-16) Αβ. It was observed that supermetallization of (1-16) Αβ depends on the solvent composition and pH. Supermetallization was also demonstrated for proteins, such as ubiquitin and cytochrome C. That proves that the supermetallization is a general phenomenon for peptides and proteins. For the structural investigation of supermetallized complexes, electron-capture dissociation (ECD) fragmentation was applied. The effect of hydrogen rearranging during ECD was observed. In addition, quantum chemical calculations were used to estimate the possible structures of different supermetallized complexes. These results allow a more deep understanding of the limitations of the use of ESI mass spectrometry for the investigation of biologically relevant metal-peptide complexes. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow, Russia
| | - Alexey Kononikhin
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow, Russia
| | - Igor Popov
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maria Indeykina
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Novaya St., 100, Skolkovo, 143025, Russia
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr. 38 k.2, 119334, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow, Russia
| |
Collapse
|
32
|
Schennach M, Breuker K. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1059-67. [PMID: 25868904 PMCID: PMC4475247 DOI: 10.1007/s13361-015-1088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Bythell BJ. Cα hydrogen atom transfer in post-cleavage radical-cation complexes: short and steep versus long winding road. J Phys Chem A 2014; 118:10797-803. [PMID: 25329622 DOI: 10.1021/jp507865h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, I explored structurally straightforward pathways to Cα hydrogen atom, H(•), transfer reactions in the radical cation complex following electron capture/transfer of a series of polyprotonated peptides (J. Phys. Chem. A 2013, 117, 1189-1196). Here, I extend my analysis to incorporate detailed rearrangement processes potentially occurring prior to H(•) transfer. This comprises intracomplex isomerization of the initial iminol-terminated (-C(OH)═NH) form of the cn' species to the energetically more favorable, amide-terminated form (-C(O)-NH2) prior to Cα H(•) abstraction by the zm(•) species. The data indicate that the previously published H(•) transfer barriers are more energetically demanding than those of this multistep alternative. The rate-determining step is typically the intracomplex iminol isomerization, consistent with the substantial energetic favorability of the amide form of the cn species. The barriers to H(•) transfer still rise steeply as a function of the charge state. In agreement with experiment, evidence for product separation without H(•) transfer at a higher charge state is also provided.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , St. Louis, Missouri 63121, United States
| |
Collapse
|
34
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic study on electron capture dissociation of the oligosaccharide-Mg²⁺ complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1451-60. [PMID: 24845360 PMCID: PMC4108535 DOI: 10.1007/s13361-014-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 05/04/2023]
Abstract
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg²⁺ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg²⁺ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg²⁺ and the resultant Mg⁺• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg²⁺-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
35
|
Asakawa D, Smargiasso N, Quinton L, De Pauw E. Influences of proline and cysteine residues on fragment yield in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1040-1048. [PMID: 24700120 DOI: 10.1007/s13361-014-0868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.
Collapse
Affiliation(s)
- Daiki Asakawa
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liege, Liege, Belgium,
| | | | | | | |
Collapse
|
36
|
Robb DB, Brown JM, Morris M, Blades MW. Tandem mass spectrometry using the atmospheric pressure electron capture dissociation ion source. Anal Chem 2014; 86:4439-46. [PMID: 24694021 DOI: 10.1021/ac5002959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atmospheric pressure electron capture dissociation (AP-ECD) is an emerging technique capable of being adopted to virtually any electrospray mass spectrometer, without modification of the main instrument. To date, however, because the electron capture reactions occur in the ion source, AP-ECD has been limited by its apparent inability to select precursors prior to fragmentation, i.e., to perform tandem mass spectrometry (MS/MS) experiments. In this paper we demonstrate a novel AP-ECD-MS/MS method using an AP-ECD source on a Xevo G2-S quadrupole time-of-flight (Q-TOF) mass spectrometer from Waters Micromass. The method takes advantage of the tendency for electron capture reactions to generate charge-reduced "ECnoD" products, species that have captured an electron and have had a covalent bond cleaved yet do not immediately dissociate into separate products and so retain the mass of the precursor ion. In the method, ECnoD products from the AP-ECD source are isolated in the quadrupole mass filter and induced to dissociate through supplemental activation in the collision cell, and then the liberated ECD fragment ions are mass analyzed using the high-resolution TOF. In this manner, true MS/MS spectra may be obtained with AP-ECD even though all of the precursors in the source are subjected to electron capture reactions in parallel. Here, using a late-model Q-TOF instrument otherwise incapable of performing electron-based fragmentation, we present AP-ECD-MS/MS results for a group of model peptides and show that informative, high-sequence-coverage spectra are readily attainable with the method.
Collapse
Affiliation(s)
- Damon B Robb
- University of British Columbia , Department of Chemistry, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
37
|
Wodrich MD, Zhurov KO, Corminboeuf C, Tsybin YO. On the viability of heterolytic peptide N-C(α) bond cleavage in electron capture and transfer dissociation mass spectrometry. J Phys Chem B 2014; 118:2985-92. [PMID: 24559292 DOI: 10.1021/jp500512a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While frequently employed as an experimental technique, the mechanistic picture surrounding the gas-phase dissociation of peptides carrying multiple positive charges during electron capture and electron transfer dissociation tandem mass spectrometry remains incomplete. Despite this mechanistic uncertainty, most proposals agree that the peptide backbone N-Cα bond located to the C-terminal (right) side of an aminoketyl radical formed in a peptide backbone during the electron capture process is homolytically cleaved. Recently, we introduced the "enol" mechanism, which proposes that a backbone N-Cα bond located to the N-terminal (left) side of an aminoketyl radical is cleaved heterolytically. Here, we further validate this mechanism using replica-exchange molecular dynamics to create unbiased representative sets of low-energy conformers for several model tryptic peptide systems (H-Alax-Lys-OH(2+), x = 3-5). Transition state barrier enthalpies for the cleavage of N-Cα bonds proceeding via the homolytic (right-side) and heterolytic (left-side) pathways, determined by density functional computations, identify the preferred cleavage route for each conformer. These findings support our original hypothesis that heterolytic N-Cα cleavage can exist in a competitive balance with homolytic cleavages, independent of the relative energy of the precursor dication species. Smaller peptide systems see decreased heterolytic N-Cα cleavage probabilities, likely resulting from an insufficient hydrogen-bonding network needed to stabilize and ultimately annihilate the transition state zwitterion. This observation may explain the early dismissal of left-side cleavage pathways based on computational studies employing small model systems.
Collapse
Affiliation(s)
- Matthew D Wodrich
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Zhurov KO, Wodrich MD, Corminboeuf C, Tsybin YO. Ping-pong protons: how hydrogen-bonding networks facilitate heterolytic bond cleavage in peptide radical cations. J Phys Chem B 2014; 118:2628-37. [PMID: 24555737 DOI: 10.1021/jp412123h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electron capture and electron transfer dissociation (ECD/ETD) tandem mass spectrometry (MS/MS) are commonly employed techniques for biomolecular analysis. The ECD/ETD process predominately cleaves N-Cα peptide backbone bonds, leading to primary sequence information complementary to other mass spectrometry techniques. Despite frequent laboratory use, the mechanistic underpinnings surrounding N-Cα bond cleavage remain debated. While the majority of mechanisms assume a homolytic bond rupture, we recently showed that heterolytic cleavage is also thermodynamically viable. For a cleavage of this type to be feasible, the charge separation created upon breaking of the N-Cα backbone bond must be quickly annihilated. In this work, we show, using density functional computations, that specific hydrogen-bonding motifs and structural rearrangements involving proton transfers stabilize the transition state associated with heterolytic cleavage and eliminate the ensuing charge separation from the final product fragments. The movement of protons can occur either directly from the z- to c-fragment or in a more complex manner including a ping-pong-type mechanism. The nature of these diverse hydrogen-bonding motifs reveals that not only those functional groups proximate to the bond rupture site, but also the entire global chemical environment, play important roles in backbone cleavage characteristic of ECD/ETD MS/MS. For doubly charged systems, both conformation and electron localization site dictate which of the two fragments retains the final positive charge.
Collapse
Affiliation(s)
- Konstantin O Zhurov
- Biomolecular Mass Spectrometry Laboratory and ‡Laboratory for Computational Molecular Design, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
39
|
Sweet SMM, Cooper HJ. Electron capture dissociation in the analysis of protein phosphorylation. Expert Rev Proteomics 2014; 4:149-59. [PMID: 17425452 DOI: 10.1586/14789450.4.2.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a widespread and important post-translational modification. Despite recent advances in phosphoproteomic methods, phosphopeptide identification and site localization remain challenging. Electron capture dissociation has inherent advantages for phosphorylation analysis. The use of electron capture dissociation in this area to date is reviewed and future prospects are outlined.
Collapse
Affiliation(s)
- Steve M M Sweet
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, UK.
| | | |
Collapse
|
40
|
Guthals A, Clauser KR, Frank AM, Bandeira N. Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res 2013; 12:2846-57. [PMID: 23679345 DOI: 10.1021/pr400173d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Full-length de novo sequencing of unknown proteins remains a challenging open problem. Traditional methods that sequence spectra individually are limited by short peptide length, incomplete peptide fragmentation, and ambiguous de novo interpretations. We address these issues by determining consensus sequences for assembled tandem mass (MS/MS) spectra from overlapping peptides (e.g., by using multiple enzymatic digests). We have combined electron-transfer dissociation (ETD) with collision-induced dissociation (CID) and higher-energy collision-induced dissociation (HCD) fragmentation methods to boost interpretation of long, highly charged peptides and take advantage of corroborating b/y/c/z ions in CID/HCD/ETD. Using these strategies, we show that triplet CID/HCD/ETD MS/MS spectra from overlapping peptides yield de novo sequences of average length 70 AA and as long as 200 AA at up to 99% sequencing accuracy.
Collapse
Affiliation(s)
- Adrian Guthals
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | | | | | |
Collapse
|
41
|
Asakawa D. 5-nitrosalicylic Acid as a novel matrix for in-source decay in matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom (Tokyo) 2013; 2:A0019. [PMID: 24860709 DOI: 10.5702/massspectrometry.a0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 11/23/2022] Open
Abstract
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving "hydrogen-deficient" radical precursors. Hydrogen abstraction from peptides resulted in the production of a "hydrogen-deficient" peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα-C bonds. Cleavage at the Cα-C bond leads to the production of an a (•)/x fragment pair and the radical a (•) ions then undergo further hydrogen abstraction to form a ions after Cα-C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα-C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO-N bonds leads to a b (•)/y fragment pair at Xxx-Pro which occurs via hydrogen abstraction from the Cα-H in the Pro residue. In contrast, "hydrogen-deficient" glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of "hydrogen-deficient" glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Chemistry, Mass Spectrometry Laboratory, University of Liège
| |
Collapse
|
42
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
43
|
A Zubarev R. Peptide radical cations: gender determines dissociation chemistry. Mass Spectrom (Tokyo) 2013; 2:S0004. [PMID: 24349923 DOI: 10.5702/massspectrometry.s0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2012] [Indexed: 11/23/2022] Open
Abstract
Peptide radicals play a significant role in biology as well as mass spectrometry. They can be differentiated into two groups: conventional hydrogen-deficient radicals, e.g. M(+•) as in electron ionization, and much more rare hydrogen-abundant radicals, e.g. [M+2H](+•), as in electron capture/transfer dissociation. The dissociation chemistries of these two types of radicals are vastly different. Both types tend to lose small molecules or radical groups, but the overlap between the losses from different radical types is minimal. The backbone cleavage for hydrogen-deficient radicals is dominated by Cα-C cleavage (a (•), x fragments) and for hydrogen-abundant radicals-by N-Cα cleavage (c, z (•) ions). The latter types of fragmentation produces more sequencing information than the former. Therefore, hydrogen-abundant peptide radicals are more valuable in mass spectrometry. The efficiency of the main method of their production, electron capture/transfer dissociation, is however limited by charge reduction. Alternative methods of generation of hydrogen-abundant radicals are needed to improve the sequencing capabilities of mass spectrometry.
Collapse
Affiliation(s)
- Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet ; Science for Life Laboratory
| |
Collapse
|
44
|
Zhurov KO, Fornelli L, Wodrich MD, Laskay ÜA, Tsybin YO. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev 2013; 42:5014-30. [DOI: 10.1039/c3cs35477f] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Tan L, Durand KL, Ma X, Xia Y. Radical cascades in electron transfer dissociation (ETD) – implications for characterizing peptide disulfide regio-isomers. Analyst 2013; 138:6759-65. [DOI: 10.1039/c3an01333b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Kornacki JR, Adamson JT, Håkansson K. Electron detachment dissociation of underivatized chloride-adducted oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2031-2042. [PMID: 22911097 DOI: 10.1007/s13361-012-0459-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Collapse
Affiliation(s)
- James R Kornacki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
47
|
Scionti V, Wesdemiotis C. Electron transfer dissociation versus collisionally activated dissociation of cationized biodegradable polyesters. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1442-1449. [PMID: 23147820 DOI: 10.1002/jms.3097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biodegradable polyesters were ionized by electrospray ionization and characterized by tandem mass spectrometry using collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) as activation methods. The compounds studied include one homopolymer, polylactide and two copolymers, poly(ethylene adipate) and poly(butylene adipate). CAD of [M+2Na](2+) ions from these polyesters proceeds via charge-remote 1,5-H rearrangements over the ester groups, leading to cleavages at the (CO)O-alkyl bonds. ETD of the same precursor ions creates a radical anion at the site of electron attachment, which fragments by radical-induced cleavage of the (CO)O-alkyl bonds and by intramolecular nucleophilic substitution at the (CO)-O bonds. In contrast to CAD, ETD produces fragments in one charge state only and does not cause consecutive fragmentations, which simplifies spectral interpretation and permits conclusive identification of the correct end groups. The radical-site reactions occurring during ETD are very similar with those reported for ETD of protonated peptides. Unlike multiply protonated species, multiply sodiated precursors form ion pairs (salt bridges) after electron transfer, thereby promoting dissociations via nucleophilic displacement in addition to the radical-site dissociations typical in ETD.
Collapse
|
48
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
49
|
Fornelli L, Damoc E, Thomas PM, Kelleher NL, Aizikov K, Denisov E, Makarov A, Tsybin YO. Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation Orbitrap FTMS. Mol Cell Proteomics 2012; 11:1758-67. [PMID: 22964222 DOI: 10.1074/mcp.m112.019620] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure-function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, its extensive fragmentation and subsequent sequence determination by means of tandem mass spectrometry (MS) are challenging. Here, we applied electron transfer dissociation (ETD), implemented on a hybrid Orbitrap Fourier transform mass spectrometer (FTMS), to analyze a commercial recombinant IgG in a liquid chromatography (LC)-tandem mass spectrometry (MS/MS) top-down experiment. The lack of sensitivity typically observed during the top-down MS of large proteins was addressed by averaging time-domain transients recorded in different LC-MS/MS experiments before performing Fourier transform signal processing. The results demonstrate that an improved signal-to-noise ratio, along with the higher resolution and mass accuracy provided by Orbitrap FTMS (relative to previous applications of top-down ETD-based proteomics on IgG), is essential for comprehensive analysis. Specifically, ETD on Orbitrap FTMS produced about 33% sequence coverage of an intact IgG, signifying an almost 2-fold increase in IgG sequence coverage relative to prior ETD-based analysis of intact monoclonal antibodies of a similar subclass. These results suggest the potential application of the developed methodology to other classes of large proteins and biomolecules.
Collapse
Affiliation(s)
- Luca Fornelli
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guthals A, Bandeira N. Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteomics 2012; 11:550-7. [PMID: 22595789 PMCID: PMC3434779 DOI: 10.1074/mcp.r112.018556] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/04/2012] [Indexed: 11/06/2022] Open
Abstract
The high-throughput nature of proteomics mass spectrometry is enabled by a productive combination of data acquisition protocols and the computational tools used to interpret the resulting spectra. One of the key components in mainstream protocols is the generation of tandem mass (MS/MS) spectra by peptide fragmentation using collision induced dissociation, the approach currently used in the large majority of proteomics experiments to routinely identify hundreds to thousands of proteins from single mass spectrometry runs. Complementary to these, alternative peptide fragmentation methods such as electron capture/transfer dissociation and higher-energy collision dissociation have consistently achieved significant improvements in the identification of certain classes of peptides, proteins, and post-translational modifications. Recognizing these advantages, mass spectrometry instruments now conveniently support fine-tuned methods that automatically alternate between peptide fragmentation modes for either different types of peptides or for acquisition of multiple MS/MS spectra from each peptide. But although these developments have the potential to substantially improve peptide identification, their routine application requires corresponding adjustments to the software tools and procedures used for automated downstream processing. This review discusses the computational implications of alternative and alternate modes of MS/MS peptide fragmentation and addresses some practical aspects of using such protocols for identification of peptides and post-translational modifications.
Collapse
Affiliation(s)
- Adrian Guthals
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | | |
Collapse
|