1
|
Brundridge NM, Fritz JM, Dickerhoff J, Yang D, McLuckey SA. Negative Electron Transfer Collision-Induced Dissociation of G-Quadruplexes: Uncovering the Guanine Radical Anion Loss Pathway. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:756-766. [PMID: 38456425 PMCID: PMC11022967 DOI: 10.1021/jasms.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
G-quadruplex (G4) DNA can form highly stable secondary structures in the presence of metal cations, and research has shown its potential as a transcriptional regulator for oncogenes in the human genome. In order to explore the interactions of DNA with metal cations using mass spectrometry, employing complementary fragmentation methods can enhance structural information. This study explores the use of ion-ion reactions for sequential negative electron transfer collision-induced dissociation (nET-CID) as a complement to traditional ion-trap CID (IT-CID). The resulting nET-CID data for G4 anions with and without metal cations show an increase in fragment ion type diversity and yield of structurally informative ions relative to IT-CID. The nET-CID yields greater sequence coverage by virtue of fragmentation at the 3'-side of thymine residues, which is lacking with IT-CID. Potassium adductions to backbone fragments in IT-CID and nET-CID spectra were nearly identical. Of note is a prominent fragment resulting from a loss of a 149 Da anion seen in nET-CID of large, G-rich sequences, proposed to be radical anion guanine loss. Neutral loss of neutral guanine (151 Da) and deprotonated nucleobase loss (150 Da) have been previously reported, but this is the first report of radical anion guanine loss (149 Da). Confirmation of the identity of the 149 Da anion results from the examination of the homonucleobase sequence 5'-GGGGGGGG-3'. Loss of a charged adenine radical anion at much lower relative abundance was also noted for the sequence 5'-AAAAAAAA-3'. DFT modeling indicates that the loss of a nucleobase as a radical anion from odd-electron nucleic acid anions is a thermodynamically favorable fragmentation pathway for G.
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jordan M Fritz
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jonathan Dickerhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W. Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Danzhou Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W. Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Brundridge NM, Dickerhoff J, Yang D, McLuckey SA. Gas-Phase Fragmentation as a Probe of G-Quadruplex Formation. Anal Chem 2023; 95:15057-15067. [PMID: 37774231 PMCID: PMC11022955 DOI: 10.1021/acs.analchem.3c03143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
G-quadruplex (G4) DNA is found in oncogene promoters and human telomeres and is an attractive anticancer target. Stable G4 structures form in guanine-rich sequences in the presence of metal cations and can stabilize further with specific ligand adduction. To explore the preservation and stability of this secondary structure with mass spectrometry, gas-phase collision-induced dissociation kinetics of G4-like and non-G4-like ion structures were determined in a linear quadrupole ion trap. This study focused on a sequence from the promoter of the MYC oncogene, MycG4, and a mutant non-G4-forming sequence, MycNonG4. At relatively high ion activation energies, the backbone fragmentation patterns of the MycG4 and MycNonG4 are similar, while potassium ion-stabilized G4-folded [MycG4 + 2K-7H]5- and counterpart [MycG4-5H]5- ions are essentially indistinguishable, indicating that high-energy fragmentation is not sensitive to the G4 structure. At low energies, the backbone fragmentation patterns of MycG4 and MycNonG4 are significantly different. For MycG4, fragmentation over time differed significantly between the potassium-bound and free structures, reflecting the preservation of the G4 structure in the gas phase. Kinetic measurements revealed the [MycG4 + 2K-7H]5- ions to fragment two to three times more slowly than the [MycG4-5H]5-. Results for the control MycNonG4 indicated that the phenomena noted for [MycG4 + 2K-7H]5- ions are specific to G4-folding. Therefore, our data show that gentle activation conditions can lead to fragmentation behavior that is sensitive to G-quadruplex structure, revealing differences in kinetic stabilities of isomeric structures as well as the regions of the sequence that are directly involved in forming these structures.
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jonathan Dickerhoff
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Danzhou Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
4
|
Sutton JM, Kim J, El Zahar NM, Bartlett MG. BIOANALYSIS AND BIOTRANSFORMATION OF OLIGONUCLEOTIDE THERAPEUTICS BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:334-358. [PMID: 32588492 DOI: 10.1002/mas.21641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, eight new oligonucleotide therapies have been approved which has led to increased interest in oligonucleotide analysis. There is a particular need for powerful bioanalytical tools to study the metabolism and biotransformation of these molecules. This review provides the background on the biological basis of these molecules as currently used in therapies. The article also reviews the current state of analytical methodology including state of the art sample preparation techniques, liquid chromatography-mass spectrometry methods, and the current limits of detection/quantitation. Finally, the article summarizes the challenges in oligonucleotide bioanalysis and provides future perspectives for this emerging field. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo, 11566, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| |
Collapse
|
5
|
Sutton JM, El Zahar NM, Bartlett MG. Oligonucleotide Anion Adduct Formation Using Negative Ion Electrospray Ion-Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:497-508. [PMID: 33476148 DOI: 10.1021/jasms.0c00380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Improving the mobile phase of electrospray oligonucleotides has been a major focus in the field of oligonucleotides. These improved mobile phases should reduce the charge state envelope of oligonucleotides coupled with electrospray ionization, which is key to reducing spectral complexity and increasing sensitivity. Traditional mobile phase compositions with fluorinated alcohol and alkylamine, like hexafluoroisopropanol (HFIP) and triethylamine (TEA), have a large amount of cationic adduction and many charge states. Utilizing different fluorinated alcohol and alkylamine combinations, like nonafluoro-tert-butyl alcohol (NFTB) and octylamine (OA), can selectively reduce the charge states analyzed. Other classes of biomolecules have been analyzed with anionic salts to stabilize complexes, increase the molecular peak detection, and even provide unique structural information about these molecules; however, there have been no studies using anionic salts with oligonucleotides. Our experiments systematically study the stability and binding of ammonium anionic salt. We show that anions selectively bind low charge states of these oligonucleotides. Ion-mobility measurements are made to determine the collision cross section (CCS) of these oligonucleotides with anion adduction. We utilize both a nucleic acid exact hard sphere simulation (EHSS) calibration and a protein calibration. We are able to show that NFTB/OA is a good choice for the study of oligonucleotides with reduced charge states for the binding of anionic salts and the determination of CCS using ion mobility.
Collapse
Affiliation(s)
- J Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai Governorate 46612, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, Georgia 30602-2352, United States
| |
Collapse
|
6
|
Antiparallel RNA G-quadruplex Formed by Human Telomere RNA Containing 8-Bromoguanosine. Sci Rep 2017; 7:6695. [PMID: 28751647 PMCID: PMC5532209 DOI: 10.1038/s41598-017-07050-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, by combining nuclear magnetic resonance (NMR), circular dichroism (CD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and gel electrophoresis, we report an unusual topological structure of the RNA G-quadruplex motif formed by human telomere RNA r(UAGGGU) containing 8-bromoguanosine. Results showed that the RNA sequence formed an antiparallel tetramolecular G-quadruplex, in which each pair of diagonal strands run in opposite directions. Furthermore, guanosines were observed both in syn- and anti-conformations. In addition, two of these G-quadruplex subunits were found to be stacking on top of each other, forming a dimeric RNA G-quadruplex. Our findings provide a new insight into the behavior of RNA G-quadruplex structures.
Collapse
|
7
|
Basiri B, van Hattum H, van Dongen WD, Murph MM, Bartlett MG. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:190-199. [PMID: 27644940 PMCID: PMC5500909 DOI: 10.1007/s13361-016-1500-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Babak Basiri
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA
| | - Hilde van Hattum
- ProQR Therapeutics NV, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | | | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, GA, 30602-2352, USA.
| |
Collapse
|
8
|
Gao S, Cao Y, Yan Y, Guo X. Sequence Effect on the Topology of 3 + 1 Interlocked Bimolecular DNA G-Quadruplexes. Biochemistry 2016; 55:2694-703. [PMID: 27027538 DOI: 10.1021/acs.biochem.5b01190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) combined with fluorescence, circular dichroism, UV spectrophotometer, and native polyacrylamide gel electrophoresis techniques are used to study structural features of interlocked dimers formed by DNA sequence 93del (GGGGTGGGAGGAGGGT) and its derivatives. Herein, we demonstrate that the interlocked dimers can be distinguished from stacked dimers formed by sequences T30923 (GGGTGGGTGGGTGGGT) and T30177 (GTGGTGGGTGGGTGGGT). In addition, loop length, the base at 5'-end, and the isolation of T and TT to the first 4G tract do significantly influence the formation and topologies of interlocked dimers. Furthermore, our results suggest that the 4G tract and the 2G tract in various locations in the 93del derivative sequence can form interlocked structure. This work not only provides new insight into the assembly of 3 + 1 interlocked DNA conformations but also demonstrates that ESI-MS combined with other analytical methods is rapid and useful for DNA structural studies.
Collapse
Affiliation(s)
- Shang Gao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yanwei Cao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yuting Yan
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Xinhua Guo
- College of Chemistry, Jilin University , Changchun, China 130012
| |
Collapse
|
9
|
Li H, Hai J, Zhou J, Yuan G. Exploration of binding affinity and selectivity of brucine with G-quadruplex in the c-myb proto-oncogene by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:407-414. [PMID: 26754134 DOI: 10.1002/rcm.7454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The c-myb gene is a potential therapeutic target for human tumors and leukemias. Active ingredients from natural products may be used as drugs in chemotherapy for human cancers. Here, electrospray ionization mass spectrometry (ESI-MS) was used to probe the formation and recognition of the G-quadruplex structure from the G-rich sequence that is found in the c-myb gene promoter, 5'-GGGCTGGGCTGGGCGGGG-3'. The aim of our study is to evaluate a potential binder for the c-myb gene from natural products, and thereby to modulate c-myb gene expression. METHODS ESI-MS, as an effective method, was utilized not only to characterize the formation of the G-quadruplex in the c-myb oncogene, but also as a tool to probe the binding characteristics of alkaloid molecules with the target G-quadruplex DNA. RESULTS ESI-MS results with the support of circular dichroism (CD) spectra demonstrated the formation of an intramolecular parallel-stranded G-quadruplex in the c-myb oncogene promoter. A screening of six alkaloid molecules showed that brucine (P1) had a strong binding affinity to the c-myb G-quadruplex DNA. It is notable that P1 can bind selectively to the c-myb G-quadruplex with respect to duplex DNAs, as well as to G-quadruplexes in other types of gene sequences. According to ESI-MS results, in which the stability was tested by capillary heating and collision-induced dissociation, the binding of P1 could thermally stabilize the c-myb G-quadruplex DNA. CONCLUSIONS In this work, brucine (P1), an alkaloid molecule, has been found to bind to the intramolecular parallel G-quadruplex in the c-myb oncogene promoter with high affinity and selectivity, and could thermally stabilize the c-myb G-quadruplex DNA, indicating that the binding of P1 has the potential to modulate c-myb gene expression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinhui Hai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Martín-Hidalgo M, García-Arriaga M, González F, Rivera JM. Tuning supramolecular G-quadruplexes with mono- and divalent cations. Supramol Chem 2015; 27:174-180. [PMID: 27708503 DOI: 10.1080/10610278.2014.924626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Supramolecular G-quadruplexes (SGQs) are formed via the cation promoted self-assembly of guanine derivatives into stacks of planar hydrogen-bonded tetramers. Here, we present results on the formation of SGQs made from the 8-(m-acetylphenyl)-2'-deoxyguanosine (mAGi) derivative in the presence of various mono- and divalent cations. NMR and HR ESI-MS data indicate that varying the cation can efficiently tune the molecularity, the fidelity and stability (thermal and kinetic) of the resulting SGQs. The results show that, parallel to the previously reported potassium-templated hexadecamer (mAGi16·3K+), Na+, Rb+ and [Formula: see text] also promote the formation of similar supramolecules with high fidelity and molecularity. In contrast, the divalent cations Pb2+, Sr2+ and Ba2+ template the formation of octamers (mAGi8), with the latter two inducing higher thermal stabilities. Molecular dynamics simulations for the hexadecamers containing monovalent cations enabled critical insights that help explain the experimental observations.
Collapse
Affiliation(s)
- Mariana Martín-Hidalgo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - Marilyn García-Arriaga
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - Fernando González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| | - José M Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras 00931, Puerto Rico
| |
Collapse
|
11
|
Zhou J, Rosu F, Amrane S, Korkut DN, Gabelica V, Mergny JL. Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods 2014; 67:159-68. [DOI: 10.1016/j.ymeth.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
|
12
|
Cui X, Zhang Q, Chen H, Zhou J, Yuan G. ESI mass spectrometric exploration of selective recognition of G-quadruplex in c-myb oncogene promoter using a novel flexible cyclic polyamide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:684-691. [PMID: 24452297 DOI: 10.1007/s13361-013-0802-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
In this research, electrospray ionization mass spectrometry (ESI-MS) was used to probe the binding selectivity of a flexible cyclic polyamide (cβ) to G-quadruplexes from the long G-rich sequences in the c-myb oncogene promoter. The results show that three G-rich sequences, including d[(GGA)3GGTCAC(GGA)4], d[(GGA)4GAA(GGA)4], and d[(GGA)3GGTCAC(GGA)4GAA(GGA)4] species in the c-myb promoter can form parallel G-quadruplexes, and cβ selectively binds towards these G-quadruplexes over both several other G-quadruplexes and the duplex DNA. These properties of cβ have profound implications on future studies of the regulation of c-myb oncogene expression.
Collapse
Affiliation(s)
- Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
13
|
Sánchez-Molina I, Vicente-Arana MJ, Claessens CG, Torres T. On the relative stability of self-assembled metallosupramolecular subphthalocyanine capsules determined by ESI-Q-TOF tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:713-717. [PMID: 23722962 DOI: 10.1002/jms.3209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
A comparative study of the relative stability of subphthalocyanine metallosupramolecular capsules bearing different metals and ligands has been carried out by electrospray ionization quadrupole time-of-flight tandem mass spectrometry experiments. The results highlight the trends in the strength of metal-nitrogen bonds as well as the 'trans effect' of certain ligands.
Collapse
Affiliation(s)
- I Sánchez-Molina
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Sjoberg J. Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1-8. [PMID: 23132414 PMCID: PMC5110665 DOI: 10.1007/s13361-012-0499-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG(4)T(4)G(4))(2), (dG(4)T(3)G(4))(2), and (dG(3)T(4)G(4))(2), and the intramolecular G-quadruplexes dG(4)(T(4)G(4))(3) and dG(2)T(2)G(2)TGTG(2)T(2)G(2) (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.
Collapse
|
15
|
Sjoberg J. Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013. [PMID: 23132414 PMCID: PMC5110665 DOI: 10.1007/s13361-013-0649-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG(4)T(4)G(4))(2), (dG(4)T(3)G(4))(2), and (dG(3)T(4)G(4))(2), and the intramolecular G-quadruplexes dG(4)(T(4)G(4))(3) and dG(2)T(2)G(2)TGTG(2)T(2)G(2) (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.
Collapse
|
16
|
Cui X, Lin S, Zhou J, Yuan G. Investigation of non-covalent interaction of natural flexible cyclic molecules with telomeric RNA G-quadruplexes by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1803-1809. [PMID: 22777782 DOI: 10.1002/rcm.6295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Recently, human telomeric DNA was found to be transcribed into RNA transcripts composing of tandem repeats of r(UUAGGG) which can form G-quadruplex structures. Studies have shown that human telomeric RNA is associated with the telomerase activity in vitro. Finding high affinity small molecule ligands binding to the telomeric RNA G-quadruplex may facilitate the regulation of the telomerase activity. METHODS The 12-mer and 24-mer telomeric RNA sequences, r(UAGGGUUAGGGU) and r(UAGGGUUAGGGUUAGGGUUAGGGU), were synthesized by TaKaRa Biotechnology (Dalian) Co., Ltd. (TaKaRa, Dalian) with high-performance liquid chromatography (HPLC) purification. Electrospray ionization ion-trap mass spectrometry was used to evaluate the binding affinities of three natural flexible cyclic molecules, tetrandrine, fangchinoline and cepharanthine, with the telomeric RNA G-quadruplexes. The fragmentation pathways of the G-quadruplexes and G-quadruplex-ligand complexes were investigated by tandem mass spectrometry. RESULTS the natural flexible cyclic molecules were found to have high binding affinities to the 12-mer and 24-mer RNA G-quadruplexes with stoichiometry of 1:1 to 3:1. Collision-induced dissociation tandem mass spectrometry shows that the G-quadruplex-ligand complexes lose neutral ammoniums first and the small molecule ligand subsequently. Besides, among the three flexible cyclic molecules, cepharanthine binds most tightly to the RNA G-quadruplexes than tetandrine and fangchinoline. CONCLUSIONS Three flexible cyclic small molecules were found to be potential telomeric RNA G-quadruplex ligands, especially cepharanthine, which has high affinity and binds most tightly to the RNA G-quadruplexes. These findings may provide further implications in the regulation of telomeric RNA and telomerase activity.
Collapse
Affiliation(s)
- Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | |
Collapse
|
17
|
Ramos CIV, Tomé JPC, Santana-Marques MG. Charge and substituent effects on the stability of porphyrin/G-quadruplex adducts. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:173-179. [PMID: 22359326 DOI: 10.1002/jms.2048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The adduct ions of two tetramolecular G-quadruplexes formed from the d(TGGGGT) and d(TTGGGGGT) single strands with a group of cationic porphyrins, with different charges and substituents, and one neutral porphyrin, were investigated by ESI-MS and ESI-MS/MS in the negative ion mode. Formation of [Q + nNH(4)(+)+P(p+)-(z + n + p)H(+)](z-) adduct ions (where Q = quadruplex, n = number of quartets minus 1, P = porphyrin and p(+) = 0,1,2,3,4) indicates that the porphyrins are bound outside the quadruplexes providing an additional stabilization to those structures. The fragmentation pathways of the [Q + nNH(4)(+)+P(p+)-(z + n + p)H(+)](z-) adduct ions depend on the number of positive charges (p(+)) of the porphyrins and on the overall complex charge (z(-)), but do not show a significant dependence on the type of the substituent groups in the porphyrins. Formation of the 'unfilled' ions [Q + P(p+)-(z + p)H(+)](z-) predominates for porphyrins with a higher number of positive charges. Strand separation with the formation of [T + P(p+)-(z-2 + p)H(+)]((z-2)-) and (SS-2H(+))(2-) ions, where T = [d(TG(4)T)](3) and [d(T(2)G(5)T)](3) and SS = d(TG(4)T) and d(T(2)G(5)T) is only observed for the complexes with a higher overall negative charge. Porphyrin loss with the formation of [Q + nNH(4)(+)-(z + n)H(+)](z-) ions occurs predominantly for the neutral and monocharged porphyrins. The predominant formation of the 'unfilled' ions, [Q + P(p+)-(z + n)H(+)](z-), for porphyrins with a higher number of charges shows that these porphyrins can prevent strand separation and preserve, at least partially, the quadruplex structure.
Collapse
Affiliation(s)
- Catarina I V Ramos
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | |
Collapse
|
18
|
Stucki SR, Nyakas A, Schürch S. Tandem mass spectrometry of platinated quadruplex DNA. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1288-1297. [PMID: 22223421 DOI: 10.1002/jms.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.
Collapse
Affiliation(s)
- Silvan R Stucki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | | |
Collapse
|
19
|
Yuan G, Zhang Q, Zhou J, Li H. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. MASS SPECTROMETRY REVIEWS 2011; 30:1121-1142. [PMID: 21520218 DOI: 10.1002/mas.20315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 05/30/2023]
Abstract
G-quadruplexes are special secondary structures formed from G-rich sequences of DNA, and have proven to play important roles in a number of biological systems, including the regulation of gene transcription and translation. The highly distinctive nature of G-quadruplex structures and their functions suggest that G-quadruplexes can act as novel targets for drug development. As a highly sensitive analytical tool, mass spectrometry has been widely used for the analysis of G-quadruplex structures. Electrospray-ionization mass spectrometry, in particular, has found captivating applications to probe interactions between small molecules and G-quadruplex DNA. In this review, we will discuss: (1) mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; (2) stabilization and collision-dissociation behavior of G-quadruplex DNA; (3) the exploration of the equilibrium transfer between a G-quadruplex and duplex DNA; and (4) the ESI-MS analysis of the conversion of intramolecular and intermolecular G-quadruplexes. Finally, we will also introduce the application of new techniques in the analysis of G-quadruplex conformation, such as ion-mobility and infrared multiphoton-dissociation mass spectrometry. We believe that, with the new technical developments, mass spectrometry will play an unparalleled role in the analysis of the G-quadruplex structures.
Collapse
Affiliation(s)
- Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
20
|
Cui X, Yuan G. Formation and recognition of G-quadruplex in promoter of c-myb oncogene by electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:849-855. [PMID: 21915947 DOI: 10.1002/jms.1959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, electrospray ionization mass spectrometry (ESI-MS) is used to study the formation of G-quadruplex by d(GGAGGAGGAGGA) which locates at the promoter region of c-myb gene. In addition, a natural small molecule, dehydrocorydaline from a Chinese herb, is found to have the highest binding affinity with the G-quadruplex in nine natural small molecules studied, and the binding selectivity of this natural molecule toward the c-myb G-quadruplex with respect to corresponding duplex DNA is significantly higher than that of the broad-spectrum G-quadruplex-ligand TMPyP4. The result from ESI-MS indicates that the gas-phase kinetic stability of the G-quadruplex can be enhanced by binding of dehydrocorydaline. To further investigate the binding properties of dehydrocorydaline to the G-quadruplex, Autodock3 is used to calculate the docked sites and docked energies of small molecules binding to the G-quadruplex and the result shows that the docked energy of dehydrocorydaline is the biggest in the nine small molecules used, consistent with the result from ESI-MS.
Collapse
Affiliation(s)
- Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
21
|
Fernandes AM, Rocha MAA, Freire MG, Marrucho IM, Coutinho JAP, Santos LMNBF. Evaluation of Cation−Anion Interaction Strength in Ionic Liquids. J Phys Chem B 2011; 115:4033-41. [DOI: 10.1021/jp201084x] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marisa A. A. Rocha
- CIQ, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal
| | | | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica, ITQB2, Universidade Nova de Lisboa, Avenida República, 2780-157 Oeiras, Portugal,
| | | | - Luís M. N. B. F. Santos
- CIQ, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal
| |
Collapse
|
22
|
Pierce SE, Wang J, Jayawickramarajah J, Hamilton AD, Brodbelt JS. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats. Chemistry 2010; 15:11244-55. [PMID: 19746468 DOI: 10.1002/chem.200901047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
23
|
Brodbelt JS. Evaluation of DNA/Ligand interactions by electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:67-87. [PMID: 20636034 DOI: 10.1146/annurev.anchem.111808.073627] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has enabled the detection and characterization of DNA/ligand complexes, including evaluation of both relative binding affinities and selectivities of DNA-interactive ligands. The noncovalent complexes that are transferred from the solution to the gas phase retain the signature of the native species, thus allowing the use of MS to screen DNA/ligand complexes, reveal the stoichiometries of the complexes, and provide insight into the nature of the interactions. Ligands that bind to DNA via metal-mediated modes and those that bind to unusual DNA structures, such as quadruplexes, are amenable to ESI. Chemical probe methods applied to DNA/ligand complexes with ESI-MS detection afford information about ligand-binding sites and conformational changes of DNA that occur upon ligand binding.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, 78712, USA.
| |
Collapse
|
24
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
25
|
Smith S, Guziec FS, Guziec L, Brodbelt JS. Interactions of sulfur-containing acridine ligands with DNA by ESI-MS. Analyst 2009; 134:2058-66. [PMID: 19768213 PMCID: PMC2892893 DOI: 10.1039/b905071j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkylating proficiency of sulfur-containing mustards may be increased by using an acridine moiety to guide the sulfur mustard to its cellular target. In this study, the interactions of a new series of sulfur-containing acridine ligands, some that also function as alkylating mustards, with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/acridine mixtures. The extent of binding observed for the series of sulfur-containing acridines was similar, presumably because the intercalating acridine moiety was identical. Upon infrared multi-photon dissociation (IRMPD) of the resulting oligonucleotide/sulfur-containing acridine complexes, ejection of the ligand was the dominant pathway for most of the complexes. However, for AS4, an acridine sulfide mustard, and AN1, an acridine nitrogen mustard, strand separation with the ligand remaining on one of the single strands was observed. At higher irradiation times, a variety of sequence ions were observed, some retaining the AS4/AN1 ligand, which was indicative of covalent binding.
Collapse
Affiliation(s)
- Suncerae Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | - Frank S. Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Lynn Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
26
|
Buchmann W, Boutorine A, Halby L, Tortajada J, De Pauw E. A new method for the determination of the relative affinity of a ligand against various DNA sequences by electrospray ionization mass spectrometry. Application to a polyamide minor groove binder. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1171-1181. [PMID: 19408249 DOI: 10.1002/jms.1592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new method for the determination of the relative affinity of a ligand against various dsDNA sequences is presented by using electrospray ionization time-of-flight mass spectrometry (ESI-QTOF) mass spectrometry. The principle is described here through the complexation of double-stranded DNA by a polyamide ligand including twelve N-methylpyrrole rings. However this method could be applied to other ligands especially when dissociation constants (Kd) are in nanomolar range. This method does not require knowing the ligand concentration accurately. It allows determination of the relative affinity of a ligand against various dsDNA sequences for 1 : 1 complex stoichiometries in a quick manner without labeling.
Collapse
Affiliation(s)
- William Buchmann
- Université d'Evry val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, (CNRS UMR 8587/CEA), Bâtiment Maupertuis, Bd. François Mitterrand, 91025 Evry, France.
| | | | | | | | | |
Collapse
|
27
|
Pierce SE, Kieltyka R, Sleiman HF, Brodbelt JS. Evaluation of binding selectivities and affinities of platinum-based quadruplex interactive complexes by electrospray ionization mass spectrometry. Biopolymers 2009; 91:233-43. [PMID: 19117031 PMCID: PMC2725001 DOI: 10.1002/bip.21130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The quadruplex binding affinities and selectivities of two large pi-surface Pt(II) phenanthroimidazole complexes, as well as a smaller pi-surface platinum bipyridine complex and a larger Ru(II) complex, were evaluated by electrospray ionization mass spectrometry. Circular dichroism (CD) spectroscopy was used to determine the structures of various quadruplexes and to study the thermal denaturation of the quadruplexes in the absence and presence of the metal complexes. In addition, chemical probe reactions with glyoxal were used to monitor the changes in the quadruplex conformation because of association with the complexes. The platinum phenanthroimidazole complexes show increased affinity for several of the quadruplexes with elongated loops between guanine repeats. Quadruplexes with shorter loops exhibited insubstantial binding to the transition metal complexes. Similarly binding to duplex and single strand oligonucleotides was low overall. Although the ruthenium-based metal complex showed somewhat enhanced quadruplex binding, the Pt(II) complexes had higher quadruplex affinities and selectivities that are attributed to their square planar geometries. The chemical probe reactions using glyoxal indicated increased reactivity when the platinum phenanthroimidazole complexes were bound to the quadruplexes, thus suggesting a conformational change that alters guanine accessibility.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
28
|
Casagrande V, Alvino A, Bianco A, Ortaggi G, Franceschin M. Study of binding affinity and selectivity of perylene and coronene derivatives towards duplex and quadruplex DNA by ESI-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:530-540. [PMID: 19034888 DOI: 10.1002/jms.1529] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we report an extensive electrospray ionization mass spectrometry (ESI-MS) study of the noncovalent interactions between different intermolecular and intramolecular G-quadruplex structures and several perylene and coronene ligands. The selectivity of these compounds toward quadruplex structures with respect to duplex DNA, a fundamental topic for the biological evaluation and the pharmacological application of these ligands as potential chemotherapeutic agents, has also been investigated. After exploring this topic according to the classical approach based on the very simple duplex model of an autocomplementary dodecamer, we extended our analysis reporting for the first time a competition ESI-MS experiment in the presence of genomic DNA fragments. Whereas those ligands showing a high level of selectivity between quadruplex and duplex oligonucleotides, in terms of binding constants and percentage of bound DNA, confirmed their selectivity in the competition experiment, the contrary was not always true: some ligands showing poor selectivity with the autocomplementary dodecamer resulted selective in the presence of genomic DNA fragments. This result suggests that physiologically nonrelevant interactions are possible with a short duplex oligonucleotide. This means that the dodecamer can fail in representing a biologically significant structural model, or, better, that it can be used to quickly screen potentially selective molecules, but bearing in mind the high probability of false negative results.
Collapse
Affiliation(s)
- Valentina Casagrande
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|