1
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
2
|
Daly M, Huang X, Nitride C, Tranquet O, Rogers A, Shewry PR, Gethings LA, Mills ENC. A chromatographic and immunoprofiling approach to optimising workflows for extraction of gluten proteins from flour. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123554. [PMID: 36584432 DOI: 10.1016/j.jchromb.2022.123554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/12/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Ingestion of gluten proteins from wheat, and related prolamin proteins from barley, rye, and oats, can cause adverse reactions in individuals with coeliac disease and IgE-mediated allergies. As there is currently no cure for these conditions, patients must practice avoidance of gluten-containing foods. In order to support patients in making safe food choices, foods making a "gluten-free" claim must contain no more than 20 mg/Kg of gluten. Mass spectrometry methods have the potential to provide an alternative method for confirmatory analysis of gluten that is complementary to analysis currently undertaken by immunoassay. As part of the development of such methodology the effectiveness of two different extraction procedures was investigated using wholemeal wheat flour before and after defatting with water-saturated butan-1-ol. A single step extraction with 50 % (v/v) propan-2-ol containing 2 M urea and reducing agent (buffer 1) was compared with a two-step extraction using 60 % (v/v) aqueous ethanol (buffer 2) followed by re-extraction of the pellet using buffer 1, using either wheel mixing under ambient conditions (19 °C) or sonication at 60 °C. The procedures were compared based on total protein extraction efficiency and the composition of the extracts determined using a combination of HPLC, SDS-PAGE and immunoblotting with a panel of four gluten-specific monoclonal antibodies. Defatting generally had a detrimental effect on extraction efficiency and sonication at 60 °C only improved extraction efficiency with buffer 2. Although the single-step and two-step procedures were equally effective at extracting protein from the samples, analysis of extracts showed that the two-step method gave a more complete extraction of gluten proteins. Future studies will compare the effectiveness of these procedures when applied in the sample workflows for mass spectrometry based methods for determination of gluten in food.
Collapse
Affiliation(s)
- Matthew Daly
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xin Huang
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Department of Food and Nutrition, University of Helsinki, Agnes Sjöberginkatu 2, PL 66, FI-00014 Helsinki, Finland
| | - Chiara Nitride
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olivier Tranquet
- UR1268 BIA, Rue de la Géraudière, BP 71627, 44316 Nantes, France; INRAE, Aix Marseille University, UMR1163 Biodiversité Et Biotechnologie Fongiques, (BBF), UMR1163, 13009 Marseille, France
| | | | | | - Lee A Gethings
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - E N Clare Mills
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; School of Biosciences and Medicine, The University of Surrey, Guildford, UK.
| |
Collapse
|
3
|
Bacala R, Hatcher DW, Perreault H, Fu BX. Challenges and opportunities for proteomics and the improvement of bread wheat quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153743. [PMID: 35749977 DOI: 10.1016/j.jplph.2022.153743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Wheat remains a critical global food source, pressured by climate change and the need to maximize yield, improve processing and nutritional quality and ensure safety. An enormous amount of research has been conducted to understand gluten protein composition and structure in relation to end-use quality, yet progress has become stagnant. This is mainly due to the need and inability to biochemically characterize the intact functional glutenin polymer in order to correlate to quality, necessitating reduction to monomeric subunits and a loss of contextual information. While some individual gluten proteins might have a positive or negative influence on gluten quality, it is the sum total of these proteins, their relative and absolute expression, their sub-cellular trafficking, the amount and size of glutenin polymers, and ratios between gluten protein classes that define viscoelasticity of gluten. The sub-cellular trafficking of gluten proteins during seed maturation is still not completely clear and there is evidence of dual pathways and therefore different destinations for proteins, either constitutively or temporally. The trafficking of proteins is also unclear in endosperm cells as they undergo programmed cell death; Golgi disappear around 12 DPA but protein filling continues at least to 25 DPA. Modulation of the timing of cellular events will invariably affect protein deposition and therefore gluten strength and function. Existing and emerging proteomics technologies such as proteoform profiling and top-down proteomics offer new tools to study gluten protein composition as a whole system and identify compositional patterns that can modify gluten structure with improved functionality.
Collapse
Affiliation(s)
- Ray Bacala
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Dave W Hatcher
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada
| | - Héléne Perreault
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Bin Xiao Fu
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; Department of Food and Human Nutritional Sciences, 209 - 35 Chancellor's Circle, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
4
|
Marín-Sanz M, Sánchez-León S, León E, Barro F. Comparative characterization of the gluten and fructan contents of breads from industrial and artisan bakeries: a study of food products in the Spanish market. Food Nutr Res 2022; 66:8472. [PMID: 35757438 PMCID: PMC9199834 DOI: 10.29219/fnr.v66.8472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Background The consumption of wheat/gluten is associated with adverse reactions for human health. Gluten and fructans are identified as the major compounds triggering and worsening adverse reactions to wheat, which are increasing, and as a consequence, avoidance of gluten/wheat is the common strategy of many individuals of the western population. Although bread is a product of daily consumption, there is a lack of information on the gluten and fructan contents and the influence of artisanal or industrial processes. Objective The aim of this study is to carry out a comparative characterization between artisan bakeries and hypermarkets in Spain for gluten and fructan contents in daily sold breads. Design A total of 48 types of bread highly consumed in Spain sold in artisan bakeries (long fermentation) and hypermarkets (short fermentations) were selected for comparing the gluten and fructan contents. Methods such as reverse phase-high performance liquid chromatography (RP-HPLC), R5 monoclonal antibody (moAb), and fructans protocols were used for the quantification of these compounds. Results Great variation for the content of gluten and fructans has been found between all bread categories. Although breads produced using long fermentation (artisan bakeries) contain significantly lower gluten, they have higher fructans than those using short fermentations (hypermarkets). Durum wheat breads had the lowest content of gluten. Moreover, spelt breads from artisan bakeries had the lowest content of fructans but not those from hypermarkets. Discussion In this study, we report the comparative characterizarion of the breads of the Spanish market. These food products presented variation in the amount of gluten and fructans, ligated in most of the cases to the nature of the providers: artisan bakeries against hypermarkets. Depending on the type of bread, the differences for the daily consumption of gluten and fructan can be 4.5 and 20 times, respectively. Conclusions We found strong differences for gluten and fructan contents among breads. These information may contribute to designing strategies to improve the management of gluten and fructans in bread.
Collapse
Affiliation(s)
- Miriam Marín-Sanz
- Department of Plant Breeding, Institute of Sustainable Agriculture (IAS), Spanish Council for Scientific Research (CSIC), Córdoba, Spain
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute of Sustainable Agriculture (IAS), Spanish Council for Scientific Research (CSIC), Córdoba, Spain
| | | | - Francisco Barro
- Department of Plant Breeding, Institute of Sustainable Agriculture (IAS), Spanish Council for Scientific Research (CSIC), Córdoba, Spain
| |
Collapse
|
5
|
Momeni A, Rostami-Nejad M, Salarian R, Rabiee M, Aghamohammadi E, Zali MR, Rabiee N, Tay FR, Makvandi P. Gold-based nanoplatform for a rapid lateral flow immunochromatographic test assay for gluten detection. BMC Biomed Eng 2022; 4:5. [PMID: 35596200 PMCID: PMC9121606 DOI: 10.1186/s42490-022-00062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gluten, a food allergen, is available in foods derived from wheat, rye and barley. It damages the small intestine and causes celiac disease. Herein, we designed a rapid immunochromatographic lateral flow test assay for detecting the gluten contents of raw materials. In this rapid test, the presence of gluten was screened through the capturing of gliadin (a toxic component of gluten) by two identical gliadin monoclonal antibodies. One of the antibodies was immobilized on the membrane in the test zone as a capture reagent. The other antibody was labeled with gold nanoparticles (AuNPs) as a detector reagent. RESULTS Gold nanoparticles with a size of about 20 nm were synthesized and conjugated to the gliadin monoclonal antibodies. The detection limit of the experimental assay was 20 ppm and positive results were visualized after 15 min using only 40 μL of the extracted sample for each test. Analysis of different flour samples identified the best sensitivity and specificity of the lateral flow test strip (LFTS). CONCLUSION The experimental LFTS is an easy-to-use and rapid method for the screening of gluten level in raw materials. The LFTS may be employed to ensure the safety of foods.
Collapse
Affiliation(s)
- Arefe Momeni
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Royan, Iran.
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Elham Aghamohammadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
6
|
Ndlovu PF, Magwaza LS, Tesfay SZ, Mphahlele RR. Rapid spectroscopic method for quantifying gluten concentration as a potential biomarker to test adulteration of green banana flour. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120081. [PMID: 34175755 DOI: 10.1016/j.saa.2021.120081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The demand for gluten-free banana flour has led manufactures to enforce strict measures for quality control. A need has arisen for the development of more sensitive and reliable methods to test the quality of green banana flour (GBF). The objective of this study was to develop rapid visible to near-infrared (Vis-NIR) based spectroscopic models to detect gluten concentration, as a biomarker to detect wheat flour adulteration in green banana flour (GBF). Spectroscopic data were acquired using a desktop (FOSS®) Vis-NIR spectroscopy ranging from 400 to 2500 nm of the electromagnetic spectrum. The spectral and reference data were submitted to principal component analysis (PCA) and partial least squares regression (PLSR) for the development of gluten adulteration detection models. Calibration models were constructed based on a full cross-validation approach, consisting of 51 samples for the calibration set and 21 samples for the test set. PCA scores plot discriminated gluten adulterated and unadulterated GBF samples with 100% accuracy for the first two principal components (PCs). The optimal prediction model was obtained after a combination of baseline (offset and baseline linear correlation) and standard normal variate (SNV) pre-processing technique. This model showed a 94% coefficient of determination of cross-validation (R2cv) and prediction (R2p); root mean square error of cross-validation (RMSECV) of 3.7 mg/kg, root mean square error of prediction (RMSEP) of 3.9 mg/kg; and RPD value of 4. This work has demonstrated that Vis-NIRS method is a robust and feasible technology that may be used to ensure the safety of banana flour and that this product stays gluten-free by providing good and reliable gluten detection and quantification prediction models.
Collapse
Affiliation(s)
- Phindile Faith Ndlovu
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa
| | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa.
| | - Samson Zeray Tesfay
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3201, Pietermaritzburg, South Africa
| | - Rebogile Ramaesele Mphahlele
- Postharvest Laboratory, Agricultural Research Council, Institute of Tropical and Subtropical Crops, Nelspruit 1200, South Africa
| |
Collapse
|
7
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2021; 21:4263. [PMID: 34206344 PMCID: PMC8271379 DOI: 10.3390/s21134263] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| | | | | | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| |
Collapse
|
8
|
Grujić R, Cvjetković VG, Marjanović-Balaban Ž. Separation of gliadins from wheat flour by capillary gel electrophoresis: optimal conditions. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-411-421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Gliadin proteins are one of the gluten fractions. They are soluble in alcoholic solution and divided into four groups (α + β, γ, ω1.2, and ω5-gliadins). In this paper gliadins were extracted from wheat flour, and optimal conditions for their separation were determined.
Study objects and methods. The separation was performed by capillary gel electrophoresis on Agilent apparatus, CE 7100 (a capillary with an inner diameter of 50 μm, a total length of 33 cm, and an effective length of 23.50 cm). In order to determine the optimal conditions, different solvent concentrations (50, 60, and 70% ethanol), capillary temperatures (20, 25, 30, 35, and 40°C), and electrode voltages (–14.5, –16.5, –17.5 and –18.5 kV) were applied. Migration time and relative concentration of each protein molecules within gliadin fractions in the electrophoregram were analysed using Agilent ChemStation Software.
Results and discussion. The optimal conditions for gliadin separation were: solvent 70% (v/v) ethanol, capillary temperature of 25°C, and electrode voltage of –16.5 kV. Under these conditions, the total proteins were indetified as Xav = 23.50, including α + β gliadin fraction (Xav = 7.50 and relative concentration RC = 28.29%), γ-gliadins (Xav = 5.00, RC = 26.66%), ω1.2-gliadins (Xav = 4.33, RC = 14.93%), and ω5-gliadins (Xav = 6.67, RC = 30.98%).
Conclusion. The results of the research can be of fundamental importance in the study of gluten proteins and the influence of technological procedures on their change and the possibility of reducing the allergic effect of gluten during processing.
Collapse
|
9
|
Meineri G, Candellone A, Dal Bello F, Gastaldi D, Medana C, Peiretti PG. Gluten contamination of canned and dry grain-free commercial pet foods determined by HPLC-HRMS. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2019.1705190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Giorgia Meineri
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | - Alessia Candellone
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Italy
| | - Federica Dal Bello
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Daniela Gastaldi
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Claudio Medana
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Pier Giorgio Peiretti
- Istituto di Scienze delle Produzioni Animali, Consiglio Nazionale delle Ricerche, Grugliasco, Italy
| |
Collapse
|
10
|
Mass spectrometry of in-gel digests reveals differences in amino acid sequences of high-molecular-weight glutenin subunits in spelt and emmer compared to common wheat. Anal Bioanal Chem 2020; 412:1277-1289. [PMID: 31927602 DOI: 10.1007/s00216-019-02341-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
High-molecular-weight glutenin subunits (HMW-GS) play an important role for the baking quality of wheat. The ancient wheats emmer and spelt differ in their HMW-GS pattern compared to modern common wheat and this might be one reason for their comparatively poor baking quality. The aim of this study was to elucidate similarities and differences in the amino acid sequences of two 1Bx HMW-GS of common wheat, spelt and emmer. First, the sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) system was optimized to separate common wheat, spelt and emmer Bx6 and Bx7 from other HMW-GS (e.g., 1Ax and 1By) in high concentrations. The in-gel digests of the Bx6 and Bx7 bands were analyzed by untargeted LC-MS/MS experiments revealing different UniProtKB accessions in spelt and emmer compared to common wheat. The HMW-GS Bx6 and Bx7, respectively, of emmer and spelt showed differences in the amino acid sequences compared to those of common wheat. The identities of the peptide variations were confirmed by targeted LC-MS/MS. These peptides can be used to differentiate between Bx6 and Bx7 of spelt and emmer and Bx6 and Bx7 of common wheat. The findings should help to increase the reliability and curation status of wheat protein databases and to understand the effects of protein structure on the functional properties. Graphical abstract.
Collapse
|
11
|
Comparison of rheological properties of wet gluten: Creep-recovery and biaxial compression. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
White SP, Frisbie CD, Dorfman KD. Detection and Sourcing of Gluten in Grain with Multiple Floating-Gate Transistor Biosensors. ACS Sens 2018; 3:395-402. [PMID: 29411606 DOI: 10.1021/acssensors.7b00810] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a chemically tunable electronic sensor for quantitation of gluten based on a floating-gate transistor (FGT) architecture. The FGTs are fabricated in parallel and each one is functionalized with a different chemical moiety designed to preferentially bind a specific grain source of gluten. The resulting set of FGT sensors can detect both wheat and barley gluten below the gluten-free limit of 20 ppm (w/w) while providing a source-dependent signature for improved accuracy. This label-free transduction method does not require any secondary binding events, resulting in a ca. 45 min reduction in analysis time relative to state-of-the-art ELISA kits with a simple and easily implemented workflow.
Collapse
Affiliation(s)
- Scott P. White
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Katzka DA. Eosinophilic Esophagitis: Leaky Gullet or Leaky Gut? Am J Gastroenterol 2017; 112:1072-1073. [PMID: 28725075 DOI: 10.1038/ajg.2017.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
Eosinophilic esophagitis (EoE) is a food allergen disorder driven by antigen recognition in the gastrointestinal tract. The study by Warners et al., strongly supports the esophageal epithelium as the area of disturbed permeability and primary target for initiation of the TH2-induced allergic pathway. In contrast, small bowel assessment reveals a lack of clear change in aspects of permeability compared to controls. It is not clear, however, if the available testing used for this purpose accurately assesses the mechanisms by which antigen recognition may occur in this organ. As a result, the role of the small bowel in EoE remains unclear.
Collapse
Affiliation(s)
- David A Katzka
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Janssen F, Pauly A, Rombouts I, Jansens KJA, Deleu LJ, Delcour JA. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): A Food Science and Technology Perspective. Compr Rev Food Sci Food Saf 2016; 16:39-58. [PMID: 33371541 DOI: 10.1111/1541-4337.12240] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Abstract
There is currently much interest in the use of pseudocereals for developing nutritious food products. Amaranth, buckwheat, and quinoa are the 3 major pseudocereals in terms of world production. They contain high levels of starch, proteins, dietary fiber, minerals, vitamins, and other bioactives. Their proteins have well-balanced amino acid compositions, are more sustainable than those from animal sources, and can be consumed by patients suffering from celiac disease. While pseudocereal proteins mainly consist of albumins and globulins, the predominant cereal proteins are prolamins and glutelins. We here discuss the structural properties, denaturation and aggregation behaviors, and solubility, as well as the foaming, emulsifying, and gelling properties of amaranth, buckwheat, and quinoa proteins. In addition, the technological impact of incorporating amaranth, buckwheat, and quinoa in bread, pasta, noodles, and cookies and strategies to affect the functionality of pseudocereal flour proteins are discussed. Literature concerning pseudocereal proteins is often inconsistent and contradictory, particularly in the methods used to obtain globulins and glutelins. Also, most studies on protein denaturation and techno-functional properties have focused on isolates obtained by alkaline extraction and subsequent isoelectric precipitation at acidic pH, even if the outcome of such studies is not necessarily relevant for understanding the role of the native proteins in food processing. Finally, even though establishing in-depth structure-function relationships seems challenging, it would undoubtedly be of major help in the design of tailor-made pseudocereal foods.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Anneleen Pauly
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Koen J A Jansens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
15
|
Identification of metal-binding to proteins in seed samples using RF-HPLC-UV, GFAAS and MALDI-TOF-MS. Food Chem 2016; 211:910-5. [DOI: 10.1016/j.foodchem.2016.05.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 02/09/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
16
|
Berky R, Sipkó E, Balázs G, Harasztos AH, Kemény S, Fekete J. Coupled-Column RP-HPLC in Combination with Chemometrics for the Characterization and Classification of Wheat Varieties. Chromatographia 2016. [DOI: 10.1007/s10337-016-3091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Czaja T, Mazurek S, Szostak R. Quantification of gluten in wheat flour by FT-Raman spectroscopy. Food Chem 2016; 211:560-3. [PMID: 27283667 DOI: 10.1016/j.foodchem.2016.05.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
Abstract
A procedure for the quantitative determination of gluten in wheat flour based on partial least squares (PLS) treatment of FT-Raman data is described. Results of similar quality were found using a PLS model derived from NIR (near infrared) spectra obtained in DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) mode and of slightly worse quality from the model constructed based on IR (infrared) spectra registered using a single reflection ATR (attenuated total reflection) diamond accessory. The relative standard errors of prediction (RSEP) were calculated for the calibration, validation and analysed data sets. These errors amounted to 3.2-3.6%, 3.5-3.8% and 4.8-5.7% for the three techniques applied, respectively. The proposed procedures can be used as simple, fast and accurate methods for the quantitative analysis of gluten in flour.
Collapse
Affiliation(s)
- Tomasz Czaja
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Sylwester Mazurek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Roman Szostak
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
18
|
Villegas-Torres MF, Ward JM, Lye GJ. The protein fraction from wheat-based dried distiller's grain with solubles (DDGS): extraction and valorization. N Biotechnol 2015; 32:606-11. [PMID: 25644639 PMCID: PMC4571995 DOI: 10.1016/j.nbt.2015.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 11/16/2022]
Abstract
Wheat DDGS is a major by-product from first generation bioethanol facilities. Variability in feedstocks and processing generates inconsistent batches of wheat DDGS impeding protein prediction. We described possible methods for extraction of gluten from wheat DDGS. We discuss options for valorization of the protein fraction from wheat DDGS into chemicals or biomaterials.
Nowadays there is worldwide interest in developing a sustainable economy where biobased chemicals are the lead actors. Various potential feedstocks are available including glycerol, rapeseed meal and municipal solid waste (MSW). For biorefinery applications the byproduct streams from distilleries and bioethanol plants, such as wheat-based dried distiller's grain with solubles (DDGS), are particularly attractive, as they do not compete for land use. Wheat DDGS is rich in polymeric sugars, proteins and oils, making it ideal as a current animal feed, but also a future substrate for the synthesis of fine and commodity chemicals. This review focuses on the extraction and valorization of the protein fraction of wheat DDGS as this has received comparatively little attention to date. Since wheat DDGS production is expected to increase greatly in the near future, as a consequence of expansion of the bioethanol industry in the UK, strategies to valorize the component fractions of DDGS are urgently needed.
Collapse
Affiliation(s)
- M F Villegas-Torres
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, WC1H 0AH London, UK
| | - J M Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, WC1H 0AH London, UK
| | - G J Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, WC1H 0AH London, UK.
| |
Collapse
|
19
|
Wang X, Lu F, Zhang C, Lu Y, Bie X, Xie Y, Lu Z. Effects of recombinated Anabaena sp. lipoxygenase on the protein component and dough property of wheat flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9885-9892. [PMID: 25247399 DOI: 10.1021/jf503238h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The improvement effect of recombinated Anabaena sp. lipoxygenase (ana-rLOX) on the rheological property of dough was investigated with a farinograph and an extensograph. When 30 U/g ana-rLOX was added to wheat flour, the dough stability time extended from 7 to 9.5 min, the degree of softening increased about 31.1%, and the farinograph index also ascended. The dough with added ana-rLOX showed stronger resistance to extension throughout 135 min of resting time as compared to the dough without ana-rLOX. In addition, the protein component in the dough was varied with ana-rLOX. The glutenin in the dough was increased, whereas the gliadin, albumin, and globulin were decreased after the additino of ana-rLOX to the flours. Ana-rLOX could make globulin-3A, globulin 1a, and S48186 grain softness protein cross-link with gliadin and low-molecular-weight (LMW) glutenin, leading to the formation of the protein polymer. These results based on proteomic analysis might provide evidence that ana-rLOX could affect the gluten protein component and explain why it improved the farinograph and extensograph parameters of wheat flour.
Collapse
Affiliation(s)
- Xiaoming Wang
- College of Food Science and Technology, Nanjing Agriculture University , Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Ribeiro M, Nunes-Miranda JD, Branlard G, Carrillo JM, Rodriguez-Quijano M, Igrejas G. One Hundred Years of Grain Omics: Identifying the Glutens That Feed the World. J Proteome Res 2013; 12:4702-16. [DOI: 10.1021/pr400663t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Miguel Ribeiro
- Department
of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Institute
for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Júlio D. Nunes-Miranda
- Department
of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Institute
for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Gérard Branlard
- Institut National de la Recherche Agronomique GDEC/UBP, UMR 1095, 234 av du Brezet, 63100 Clermont-Ferrand, France
| | - Jose Maria Carrillo
- Unidad
de Genética y Mejora de plantas Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos Universidad Politécnica de Madrid, Madrid, España
| | - Marta Rodriguez-Quijano
- Unidad
de Genética y Mejora de plantas Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos Universidad Politécnica de Madrid, Madrid, España
| | - Gilberto Igrejas
- Department
of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Institute
for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
21
|
Ribeiro M, Bancel E, Faye A, Dardevet M, Ravel C, Branlard G, Igrejas G. Proteogenomic Characterization of Novel x-Type High Molecular Weight Glutenin Subunit 1Ax1.1. Int J Mol Sci 2013; 14:5650-67. [PMID: 23478438 PMCID: PMC3634431 DOI: 10.3390/ijms14035650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022] Open
Abstract
Analysis of Portuguese wheat (Triticum aestivum L.) landrace 'Barbela' revealed the existence of a new x-type high molecular weight-glutenin subunit (HMW-GS) encoded at the Glu-A1 locus, which we named 1Ax1.1. Using one-dimensional and two-dimensional electrophoresis and mass spectrometry, we compared subunit 1Ax1.1 with other subunits encoded at the Glu-A1 locus. Subunit 1Ax1.1 has a theoretical molecular weight of 93,648 Da (or 91,508 Da for the mature protein) and an isoelectric point (pI) of about 5.7, making it the largest and most acidic HMW-GS known to be encoded at Glu-A1. Specific primers were designed to amplify and sequence 2601 bp of the Glu-A1 locus from the 'Barbela 28' wheat genome. A very high level of identity was found between the sequence encoding 1Ax1.1 and those encoding other alleles of the locus. The major difference found was an insertion of 36 amino acids in the central repetitive domain.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; E-Mail:
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Emmanuelle Bancel
- INRA UMR1095 UBP Génétique Diversité et Ecophysiologie des Céréales, 63039 Clermont-Ferrand, France; E-Mails: (E.B.); (A.F.); (M.D.); (C.R.); (G.B.)
| | - Annie Faye
- INRA UMR1095 UBP Génétique Diversité et Ecophysiologie des Céréales, 63039 Clermont-Ferrand, France; E-Mails: (E.B.); (A.F.); (M.D.); (C.R.); (G.B.)
| | - Mireille Dardevet
- INRA UMR1095 UBP Génétique Diversité et Ecophysiologie des Céréales, 63039 Clermont-Ferrand, France; E-Mails: (E.B.); (A.F.); (M.D.); (C.R.); (G.B.)
| | - Catherine Ravel
- INRA UMR1095 UBP Génétique Diversité et Ecophysiologie des Céréales, 63039 Clermont-Ferrand, France; E-Mails: (E.B.); (A.F.); (M.D.); (C.R.); (G.B.)
| | - Gérard Branlard
- INRA UMR1095 UBP Génétique Diversité et Ecophysiologie des Céréales, 63039 Clermont-Ferrand, France; E-Mails: (E.B.); (A.F.); (M.D.); (C.R.); (G.B.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; E-Mail:
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
22
|
Lagrain B, Brunnbauer M, Rombouts I, Koehler P. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry. PLoS One 2013; 8:e58682. [PMID: 23520527 PMCID: PMC3592795 DOI: 10.1371/journal.pone.0058682] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/05/2013] [Indexed: 11/25/2022] Open
Abstract
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.
Collapse
Affiliation(s)
- Bert Lagrain
- German Research Center for Food Chemistry, Freising, Germany.
| | | | | | | |
Collapse
|
23
|
Quintieri L, Monteverde A, Caputo L. Changes in prolamin and high resistant starch composition during the production process of Boza, a traditional cereal-based beverage. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1795-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Di Stefano V, Avellone G, Bongiorno D, Cunsolo V, Muccilli V, Sforza S, Dossena A, Drahos L, Vékey K. Applications of liquid chromatography–mass spectrometry for food analysis. J Chromatogr A 2012; 1259:74-85. [DOI: 10.1016/j.chroma.2012.04.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
|
25
|
Comino I, Real A, Gil-Humanes J, Pistón F, de Lorenzo L, Moreno MDL, López-Casado MÁ, Lorite P, Cebolla A, Torres MI, Barro F, Sousa C. Significant differences in coeliac immunotoxicity of barley varieties. Mol Nutr Food Res 2012; 56:1697-707. [PMID: 22968973 DOI: 10.1002/mnfr.201200358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 12/24/2022]
Abstract
SCOPE The only treatment available for coeliac disease (CD) is a strict diet in which the intake of wheat, barley, rye, or oats is avoided. Barley is a major cereal crop, grown mainly for its use in brewing, and it has high nutritional value. The identification of varieties with a reduced toxicity profile may contribute to improve the diet, the quality of life and health of CD patients. METHODS AND RESULTS Searching for harmless barleys, we investigated accessions of malting and wild barley, used for developing new cultivated cereals. The CD toxicity profile of barleys was screened using G12 antibody and cell proliferation and IFN-γ release from peripheral blood mononuclear cells and intestinal biopsies from CD patients. We found a direct correlation between the reactivity with G12 and the immunogenicity of the different barleys. CONCLUSION The malting barleys were less immunogenic, with reduced levels of toxic gluten, and were possibly less harmful to CD patients. Our findings could raise the prospect of breeding barley species with low levels of harmful gluten, and the attractive goal of developing nontoxic barley cultivars, always taking into account the Codex standard for foods for special dietary use for persons intolerant to gluten.
Collapse
Affiliation(s)
- Isabel Comino
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garofalo C, Zannini E, Aquilanti L, Silvestri G, Fierro O, Picariello G, Clementi F. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7719-7728. [PMID: 22794119 DOI: 10.1021/jf301173u] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two hundred and sixteen LAB cultures from sourdoughs and dough for bread and panettone production were screened for in vitro antifungal properties against three indicator cultures ascribed to Aspergillus japonicus , Eurotium repens , and Penicillium roseopurpureum , isolated from bakery environment and moldy panettone. Nineteen preselected isolates were subjected to minimum inhibitory concentration determination against the indicator cultures. Sourdoughs prepared with the two most promising strains, identified as Lactobacillus rossiae LD108 and Lactobacillus paralimentarius PB127, were characterized. The sourdough extracts were subjected to HPLC analysis coupled with a microtiter plate bioassay against A. japonicus to identify the active fractions. MALDI-TOF MS analysis revealed the occurrence of a series of peptides corresponding to wheat α-gliadin proteolysis fragments in the active fraction from L. rossiae LD108 sourdough. The ability to prevent mold growth on bread was demonstrated for both strains, whereas L. rossiae LD108 also inhibited mold growth on panettone.
Collapse
Affiliation(s)
- Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Cunsolo V, Muccilli V, Saletti R, Foti S. Mass spectrometry in the proteome analysis of mature cereal kernels. MASS SPECTROMETRY REVIEWS 2012; 31:448-465. [PMID: 22711440 DOI: 10.1002/mas.20347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 06/01/2023]
Abstract
In the last decade, the improved performance and versatility of the mass spectrometers together with the increasing availability of gene and genomic sequence database, led the mass spectrometry to become an indispensable tool for either protein and proteome analyses in cereals. Mass spectrometric works on prolamins have rapidly evolved from the determination of the molecular masses of proteins to the proteomic approaches aimed to a large-scale protein identification and study of functional and regulatory aspects of proteins. Mass spectrometry coupled with electrophoresis, chromatographic methods, and bioinformatics tools is currently making significant contributions to a better knowledge of the composition and structure of the cereal proteins and their structure-function relationships. Results obtained using mass spectrometry, including characterization of prolamins, investigation of the gluten toxicity for coeliac patients, identification of proteins responsible of cereal allergies, determination of the protein pattern and its modification under environmental or stress effects, investigation of genetically modified varieties by proteomic approaches, are summarized here, to illustrate current trends, analytical troubles and challenges, and suggest possible future perspectives.
Collapse
Affiliation(s)
- Vincenzo Cunsolo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Italy
| | | | | | | |
Collapse
|
28
|
Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 2011; 9:10. [PMID: 21314956 PMCID: PMC3238214 DOI: 10.1186/1477-5956-9-10] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. RESULTS Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. CONCLUSIONS This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression.
Collapse
Affiliation(s)
- Frances M Dupont
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - William H Vensel
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - Charlene K Tanaka
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - William J Hurkman
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - Susan B Altenbach
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| |
Collapse
|
29
|
Fæste CK, Rønning HT, Christians U, Granum PE. Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 2011; 74:316-45. [PMID: 21333155 DOI: 10.4315/0362-028x.jfp-10-336] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy is an important issue in the field of food safety because of the hazards for affected persons and the hygiene requirements and legal regulations imposed on the food industry. Consumer protection and law enforcement require suitable analytical techniques for the detection of allergens in foods. Immunological methods are currently preferred; however, confirmatory alternatives are needed. The determination of allergenic proteins by liquid chromatography and mass spectrometry has greatly advanced in recent years, and gel-free allergenomics is becoming a routinely used approach for the identification and quantitation of food allergens. The present review provides a brief overview of the principles of proteomic procedures, various chromatographic set ups, and mass spectrometry instrumentation used in allergenomics. A compendium of published liquid chromatography methods, proteomic analyses, typical marker peptides, and quantitative assays for 14 main allergy-causing foods is also included.
Collapse
Affiliation(s)
- Christiane Kruse Fæste
- Section of Chemistry, Department of Feed and Food Safety, National Veterinary Institute, P.O. Box 750 Sentrum, Oslo N-0106, Norway.
| | | | | | | |
Collapse
|
30
|
Mamone G, De Caro S, Di Luccia A, Addeo F, Ferranti P. Proteomic-based analytical approach for the characterization of glutenin subunits in durum wheat. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1709-23. [PMID: 19830788 DOI: 10.1002/jms.1680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the main objectives of wheat glutenin subunit (GS) analysis is the identification of protein components linked to wheat quality. The proteomic characterization of glutenin has to consider the relatively low levels of arginine and lysine residues and the close sequence similarity among the different groups of these subunits, which hinders or even prevents the identification of the GS. In this study, a proteomic approach has been applied to resolve the heterogeneity of wheat glutenin components. Proteins extracted from Triticum durum flour were first analyzed by two-dimensional gel electrophoresis, which greatly reduced glutenin complexity. The identity of each spot was confirmed by nano liquid chromatography tandem mass spectrometry analysis of tryptic peptides. In parallel, measurements of the high mass range by matrix-assisted laser desorption/ionization time-of-flight analysis allowed detection of the large tryptic peptides. Gathering all data from search engine interrogation, very high sequence coverage was obtained for high molecular weight GS, including Bx7 and By8, in agreement with the known genetic profile of durum wheat. In addition, a truncated form of By8, never detected before, was also found. Low molecular weight GS (LMW-GS) B-type was identified with reasonable sequence coverage, while a clear identification of LWM-GS C- and D-type was hindered by the incompleteness of the wheat DNA databases. This study represents the first comprehensive analysis of the glutenin proteome and provides a reliable method for classifying wheat varieties according to their glutenin profile.
Collapse
|
31
|
Mamone G, Picariello G, Caira S, Addeo F, Ferranti P. Analysis of food proteins and peptides by mass spectrometry-based techniques. J Chromatogr A 2009; 1216:7130-42. [DOI: 10.1016/j.chroma.2009.07.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/19/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|