1
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Bersch K, DeMeester KE, Zagani R, Chen S, Wodzanowski KA, Liu S, Mashayekh S, Reinecker HC, Grimes CL. Bacterial Peptidoglycan Fragments Differentially Regulate Innate Immune Signaling. ACS CENTRAL SCIENCE 2021; 7:688-696. [PMID: 34056099 PMCID: PMC8155477 DOI: 10.1021/acscentsci.1c00200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/07/2023]
Abstract
The human innate immune system responds to both pathogen and commensal bacteria at the molecular level using bacterial peptidoglycan (PG) recognition elements. Traditionally, synthetic and commercially accessible PG monosaccharide units known as muramyl dipeptide (MDP) and N-glycolyl MDP (ng-MDP) have been used to probe the mechanism of innate immune activation of pattern recognition receptors, such as NOD-like receptors. However, bacterial PG is a dynamic and complex structure, with various chemical modifications and trimming mechanisms that result in the production of disaccharide-containing elements. These molecules pose as attractive targets for immunostimulatory screening; however, studies are limited because of their synthetic accessibility. Inspired by disaccharide-containing compounds produced from the gut microbe Lactobacillus acidophilus, a robust and scalable chemical synthesis of PG-based disaccharide ligands was implemented. Together with a monosaccharide PG library, compounds were screened for their ability to stimulate proinflammatory genes in bone-marrow-derived macrophages. The data reveal distinct gene induction patterns for monosaccharide and disaccharide PG units, suggesting that PG innate immune signaling is more complex than a one activator-one pathway program, as biologically relevant fragments induce transcriptional programs to different degrees. These disaccharide molecules will serve as critical immunostimulatory tools to more precisely define specialized innate immune regulatory mechanisms that distinguish between commensal and pathogenic bacteria residing in the microbiome.
Collapse
Affiliation(s)
- Klare
L. Bersch
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kristen E. DeMeester
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Rachid Zagani
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shuyuan Chen
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Shuzhen Liu
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Siavash Mashayekh
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Hans-Christian Reinecker
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Wang J, Alvarez L, Bulgheresi S, Cava F, den Blaauwen T. PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics (Basel) 2021; 10:antibiotics10030274. [PMID: 33803189 PMCID: PMC7999549 DOI: 10.3390/antibiotics10030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Silvia Bulgheresi
- Environmental Cell Biology, University of Vienna, Althanstrasse 14 (UZA I), 1090 Vienna, Austria;
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
5
|
Espinosa J, Lin TY, Estrella Y, Kim B, Molina H, Hang HC. Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity. Biochemistry 2020; 59:4470-4480. [PMID: 33136372 DOI: 10.1021/acs.biochem.0c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.
Collapse
Affiliation(s)
- Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Ti-Yu Lin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Yadyvic Estrella
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Byungchul Kim
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States.,Departments of Immunology & Microbiology and Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Porfírio S, Carlson RW, Azadi P. Elucidating Peptidoglycan Structure: An Analytical Toolset. Trends Microbiol 2019; 27:607-622. [DOI: 10.1016/j.tim.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
|
7
|
Chang JD, Wallace AG, Foster EE, Kim SJ. Peptidoglycan Compositional Analysis of Enterococcus faecalis Biofilm by Stable Isotope Labeling by Amino Acids in a Bacterial Culture. Biochemistry 2018; 57:1274-1283. [PMID: 29368511 DOI: 10.1021/acs.biochem.7b01207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptidoglycan (PG) is a major component of the cell wall in Enterococcus faecalis. Accurate analysis of PG composition provides crucial insights into the bacterium's cellular functions and responses to external stimuli, but this analysis remains challenging because of various chemical modifications to PG-repeat subunits. We characterized changes to the PG composition of E. faecalis grown as planktonic bacteria and biofilm by developing "stable isotope labeling by amino acids in bacterial culture" (SILAB), optimized for bacterial cultures with incomplete amino acid labeling. This comparative analysis by mass spectrometry was performed by labeling E. faecalis in biofilm with heavy Lys (l-[13C6,2D9,15N2]Lys) and planktonic bacteria with natural abundance l-Lys, then mixing equal amounts of bacteria from each condition, and performing cell wall isolation and mutanolysin digestion necessary for liquid chromatography and mass spectrometry. An analytical method was developed to determine muropeptide abundances using correction factors to compensate for incomplete heavy Lys isotopic enrichment (98.33 ± 0.05%) and incorporation (83.23 ± 1.16%). Forty-seven pairs of PG fragment ions from isolated cell walls of planktonic and biofilm samples were selected for SILAB analysis. We found that the PG in biofilm showed an increased level of PG cross-linking, an increased level of N-deacetylation of GlcNAc, a decreased level of O-acetylation of MurNAc, and an increased number of stem modifications by d,d- and l,d-carboxypeptidases.
Collapse
Affiliation(s)
- James D Chang
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Ashley G Wallace
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Erin E Foster
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
8
|
Chang JD, Foster EE, Wallace AG, Kim SJ. Peptidoglycan O-acetylation increases in response to vancomycin treatment in vancomycin-resistant Enterococcus faecalis. Sci Rep 2017; 7:46500. [PMID: 28406232 PMCID: PMC5390252 DOI: 10.1038/srep46500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Vancomycin resistance is conferred upon vancomycin-resistant enterococci (VRE) through the replacement of peptidoglycan (PG) stem terminal d-Ala-d-Ala with d-Ala-d-Lac. The d-Ala-d-Lac incorporation can affect both the fitness and virulence of VRE. Here we comprehensively investigate the changes to PG composition in vancomycin-resistant Enterococcus faecalis following the growth in presence of vancomycin using liquid chromatography-mass spectrometry. Using high-resolution mass spectrometry, 104 unique muropeptides fragments were identified and the relative abundance of each fragment was accurately quantified by integrating the ion current of a selected ion using extracted-ion chromatogram. The analysis indicates reduced PG cross-linking, increased carboxypeptidase activities, increased N-deacetylation, and increased O-acetylation in VRE when grown in the presence of vancomycin. We found that O-acetylation preferentially occurred on muropeptides fragments with reduced cross-linking with a pentapeptide stem that terminated in d-Ala-d-Lac. These findings show that O-acetylation preferentially occurred in regions of the cell wall with reduced PG cross-linking on PG units that have stems terminating in d-Ala-d-Lac, serving as markers to prevent both the PG-stem modification by carboxypeptidases and the cell wall degradation by autolysins. Accurate quantitative PG composition analysis provided compositional insights into altered cell wall biosynthesis and modification processes in VRE that contribute to lysozyme resistance and enhanced virulence for VRE grown in the presence of vancomycin.
Collapse
Affiliation(s)
- James D Chang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Erin E Foster
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Ashley G Wallace
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Chang JD, Foster EE, Yang H, Kim SJ. Quantification of the d-Ala-d-Lac-Terminated Peptidoglycan Structure in Vancomycin-Resistant Enterococcus faecalis Using a Combined Solid-State Nuclear Magnetic Resonance and Mass Spectrometry Analysis. Biochemistry 2017; 56:612-622. [PMID: 28040891 PMCID: PMC6906607 DOI: 10.1021/acs.biochem.6b00774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Induction of vancomycin resistance in vancomycin-resistant enterococci (VRE) involves replacement of the d-Ala-d-Ala terminus of peptidoglycan (PG) stems with d-Ala-d-Lac, dramatically reducing the binding affinity of vancomycin for lipid II. Effects from vancomycin resistance induction in Enterococcus faecalis (ATCC 51299) were characterized using a combined solid-state nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) analysis. Solid-state NMR directly measured the total amounts of d-Lac and l,d-Ala metabolized from [2-13C]pyruvate, accumulated Park's nucleotide, and changes to the PG bridge-linking density during the early exponential growth phase (OD660 = 0.4) in intact whole cells of VRE. A high level of accumulation of depsipeptide-substituted Park's nucleotide consistent with the inhibition of the transglycosylation step of PG biosynthesis during the initial phase of vancomycin resistance was observed, while no changes to the PG bridge-linking density following the induction of vancomycin resistance were detected. This indicated that the attachment of the PG bridge to lipid II by the peptidyl transferases was not inhibited by the d-Ala-d-Lac-substituted PG stem structure in VRE. Compositions of mutanolysin-digested isolated cell walls of VRE grown with and without vancomycin resistance induction were determined by LC-MS. Muropeptides with PG stems terminating in d-Ala-d-Lac were found only in VRE grown in the presence of vancomycin. Percentages of muropeptides with a pentapeptide stem terminating in d-Ala-d-Lac for VRE grown in the presence of vancomycin were 26% for the midexponential phase (OD660 = 0.6) and 57% for the stationary growth phase (OD660 = 1.0). These high percentages indicate that d-Ala-d-Lac-substituted lipid II was efficiently utilized for PG biosynthesis in VRE.
Collapse
Affiliation(s)
- James D. Chang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Erin E. Foster
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Hao Yang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
10
|
Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U S A 2017; 114:E781-E790. [PMID: 28096373 DOI: 10.1073/pnas.1613422114] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.
Collapse
|
11
|
Towards an automated analysis of bacterial peptidoglycan structure. Anal Bioanal Chem 2016; 409:551-560. [PMID: 27520322 PMCID: PMC5203844 DOI: 10.1007/s00216-016-9857-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
Peptidoglycan (PG) is an essential component of the bacterial cell envelope. This macromolecule consists of glycan chains alternating N-acetylglucosamine and N-acetylmuramic acid, cross-linked by short peptides containing nonstandard amino acids. Structural analysis of PG usually involves enzymatic digestion of glycan strands and separation of disaccharide peptides by reversed-phase HPLC followed by collection of individual peaks for MALDI-TOF and/or tandem mass spectrometry. Here, we report a novel strategy using shotgun proteomics techniques for a systematic and unbiased structural analysis of PG using high-resolution mass spectrometry and automated analysis of HCD and ETD fragmentation spectra with the Byonic software. Using the PG of the nosocomial pathogen Clostridium difficile as a proof of concept, we show that this high-throughput approach allows the identification of all PG monomers and dimers previously described, leaving only disambiguation of 3–3 and 4–3 cross-linking as a manual step. Our analysis confirms previous findings that C. difficile peptidoglycans include mainly deacetylated N-acetylglucosamine residues and 3–3 cross-links. The analysis also revealed a number of low abundance muropeptides with peptide sequences not previously reported. The bacterial cell envelope includes plasma membrane, peptidoglycan, and surface layer. Peptidoglycan is unique to bacteria and the target of the most important antibiotics; here it is analyzed by mass spectrometry. ![]()
Collapse
|
12
|
Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:350-62. [PMID: 24915020 PMCID: PMC4258515 DOI: 10.1016/j.bbamem.2014.05.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Peptidoglycan is an essential component of cell wall in Gram-positive bacteria with unknown architecture. In this review, we summarize solid-state NMR approaches to address some of the unknowns in the Gram-positive bacteria peptidoglycan architecture: 1) peptidoglycan backbone conformation, 2) PG-lattice structure, 3) variations in the peptidoglycan architecture and composition, 4) the effects of peptidoglycan bridge-length on the peptidoglycan architecture in Fem mutants, 5) the orientation of glycan strands with respect to the membrane, and 6) the relationship between the peptidoglycan structure and the glycopeptide antibiotic mode of action. Solid-state NMR analyses of Staphylococcus aureus cell wall show that peptidoglycan chains are surprisingly ordered and densely packed. The peptidoglycan disaccharide backbone adopts 4-fold screw helical symmetry with the disaccharide unit periodicity of 40Å. Peptidoglycan lattice in the S. aureus cell wall is formed by cross-linked PG stems that have parallel orientations. The structural characterization of Fem-mutants of S. aureus with varying lengths of bridge structures suggests that the PG-bridge length is an important determining factor for the PG architecture.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA.
| | - James Chang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
14
|
Kim SJ, Singh M, Sharif S, Schaefer J. Cross-link formation and peptidoglycan lattice assembly in the FemA mutant of Staphylococcus aureus. Biochemistry 2014; 53:1420-7. [PMID: 24517508 PMCID: PMC3985804 DOI: 10.1021/bi4016742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/09/2014] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus FemA mutant grown in the presence of an alanine-racemase inhibitor was labeled with d-[1-(13)C]alanine, l-[3-(13)C]alanine, [2-(13)C]glycine, and l-[5-(19)F]lysine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance (REDOR) NMR of isolated cell walls was used to measure internuclear distances between (13)C-labeled alanines and (19)F-labeled lysine incorporated in the peptidoglycan. The alanyl (13)C labels were preselected for REDOR measurement by their proximity to the glycine label using (13)C-(13)C spin diffusion. The observed (13)C-(13)C and (13)C-(19)F distances are consistent with a tightly packed, hybrid architecture containing both parallel and perpendicular stems in a repeating structural motif within the peptidoglycan.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Manmilan Singh
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Shasad Sharif
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Jacob Schaefer
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| |
Collapse
|
15
|
Shaik MM, Cendron L, Percudani R, Zanotti G. The structure of Helicobacter pylori HP0310 reveals an atypical peptidoglycan deacetylase. PLoS One 2011; 6:e19207. [PMID: 21559431 PMCID: PMC3084791 DOI: 10.1371/journal.pone.0019207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/22/2011] [Indexed: 12/16/2022] Open
Abstract
Peptidoglycan deacetlyase (HP0310, HpPgdA) from the gram-negative pathogen Helicobacter pylori, has been indicated as the enzyme responsible for a peptidoglycan modification that counteracts the host immune response. HpPgdA has been cloned, purified and expressed in good yield in E. coli. It has been crystallized, its structure determined and activity tests in vitro performed. The enzyme, which belongs to the polysaccharide deacetylases protein family, is a homo-tetramer. The four polypeptide chains, each folded into a single domain characterized by a non-canonical TIM-barrel fold, are arranged around a four-fold symmetry axis. The active site, one per monomer, contains a heavy ion coordinated in a way similar to other deacetylases. However, the enzyme showed no in vitro activity on the typical polysaccharide substrates of peptidoglycan deacetylases. In striking contrast with the known peptidoglycan deacetylases, HpPgdA does not exhibit a solvent-accessible polysaccharide binding groove, suggesting that the enzyme binds a small molecule at the active site.
Collapse
Affiliation(s)
- Md Munan Shaik
- Department of Biological Chemistry, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
16
|
Reid CW, Fulton KM, Twine SM. Never take candy from a stranger: the role of the bacterial glycome in host–pathogen interactions. Future Microbiol 2010; 5:267-88. [DOI: 10.2217/fmb.09.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the comprehensive study and complete sequencing of the Haemophilus influenzae genome in 1995 came the term ‘genomics’ and the beginning of the ‘omics’ era. Since this time, several analogous fields, such as transcriptomics and proteomics, have emerged. While growth and advancement in these fields have increased understanding of microbial virulence, the study of bacterial glycomes is still in its infancy and little is known concerning their role in host–pathogen interactions. Bacterial glycomics is challenging owing to the diversity of glyco-conjugate molecules, vast array of unusual sugars and limited number of analytical approaches available. However, recent advances in glycomics technologies offer the potential for exploration and characterization of both the structures and functions of components of bacterial glycomes in a systematic manner. Such characterization is a prerequisite for discerning the role of bacterial glycans in the interaction between host defences and bacterial virulence factors.
Collapse
Affiliation(s)
- Christopher W Reid
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| | - Kelly M Fulton
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| | - Susan M Twine
- National Research Council – Institute for Biological Science, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
17
|
Garimella R, Halye JL, Harrison W, Klebba PE, Rice CV. Conformation of the phosphate D-alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy. Biochemistry 2009; 48:9242-9. [PMID: 19746945 PMCID: PMC4196936 DOI: 10.1021/bi900503k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformation of d-alanine (d-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The d-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH(3)(+) group with the ability to form a contact ion pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the d-Ala cation; thus the ion pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing (15)N d-Ala and beta-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling, and the results demonstrate (1) the metal-free amine-to-phosphate distance is 4.4 A and (2) the amine-to-phosphate distance increases to 5.4 A in the presence of Mg(2+) ions. As a result, the zwitterion exists in a nitrogen-oxygen ion pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of d-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies.
Collapse
Affiliation(s)
- Ravindranath Garimella
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019
| | - Jeffrey L. Halye
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019
| | - William Harrison
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019
| | - Phillip E. Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019
| |
Collapse
|
18
|
Patti GJ, Kim SJ, Yu TY, Dietrich E, Tanaka KSE, Parr TR, Far AR, Schaefer J. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol 2009; 392:1178-91. [PMID: 19576226 DOI: 10.1016/j.jmb.2009.06.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/20/2009] [Accepted: 06/24/2009] [Indexed: 02/03/2023]
Abstract
The increasing frequency of Enterococcus faecium isolates with multidrug resistance is a serious clinical problem given the severely limited number of therapeutic options available to treat these infections. Oritavancin is a promising new alternative in clinical development that has potent antimicrobial activity against both staphylococcal and enterococcal vancomycin-resistant pathogens. Using solid-state NMR to detect changes in the cell-wall structure and peptidoglycan precursors of whole cells after antibiotic-induced stress, we report that vancomycin and oritavancin have different modes of action in E. faecium. Our results show the accumulation of peptidoglycan precursors after vancomycin treatment, consistent with transglycosylase inhibition, but no measurable difference in cross-linking. In contrast, after oritavancin exposure, we did not observe the accumulation of peptidoglycan precursors. Instead, the number of cross-links is significantly reduced, showing that oritavancin primarily inhibits transpeptidation. We propose that the activity of oritavancin is the result of a secondary binding interaction with the E. faecium peptidoglycan. The hypothesis is supported by results from (13)C{(19)F} rotational-echo double-resonance (REDOR) experiments on whole cells enriched with l-[1-(13)C]lysine and complexed with desleucyl [(19)F]oritavancin. These experiments establish that an oritavancin derivative with a damaged d-Ala-d-Ala binding pocket still binds to E. faecium peptidoglycan. The (13)C{(19)F} REDOR dephasing maximum indicates that the secondary binding site of oritavancin is specific to nascent and template peptidoglycan. We conclude that the inhibition of transpeptidation by oritavancin in E. faecium is the result of the large number of secondary binding sites relative to the number of primary binding sites.
Collapse
Affiliation(s)
- Gary J Patti
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Patti GJ, Chen J, Gross ML. Method revealing bacterial cell-wall architecture by time-dependent isotope labeling and quantitative liquid chromatography/mass spectrometry. Anal Chem 2009; 81:2437-45. [PMID: 19281243 PMCID: PMC2715431 DOI: 10.1021/ac802587r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular details of the biosynthesis and resulting architecture of the bacterial cell wall remain unclear but are essential to understanding the activity of glycopeptide antibiotics, the recognition of pathogens by hosts, and the processes of bacterial growth and division. Here we report a new strategy to elucidate bacterial cell-wall architecture based on time-dependent isotope labeling of bacterial cells quantified by liquid chromatography/accurate mass measurement mass spectrometry. The results allow us to track the fate of cell-wall precursors (which contain the vancomycin-binding site) in Enterococcus faecium, a leading antibiotic-resistant pathogen. By comparing isotopic enrichments of postinsertionally modified cell-wall precursors, we find that tripeptides and species without aspartic acid/asparagine (Asp/Asn, Asx) bridges are specific to mature cell wall. Additionally, we find that the sequence of cell-wall maturation varies throughout a cell cycle. We suggest that actively dividing E. faecium cells have three zones of unique peptidoglycan processing. Our results reveal new organizational characteristics of the bacterial cell wall that are important to understanding tertiary structure and designing novel drugs for antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|