1
|
Hendricks CL, Mellet J, Stivaktas V, Ambele M, Pepper MS. HIV-exposed uninfected umbilical cord blood haematopoietic stem/progenitor cells differ immunophenotypically from those from HIV unexposed umbilical cord blood but have similar expansion and colony-forming properties in vitro. Bone Marrow Transplant 2025:10.1038/s41409-025-02574-6. [PMID: 40195551 DOI: 10.1038/s41409-025-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Affiliation(s)
- Candice Laverne Hendricks
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Melvin Ambele
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Gaafar A, Hamza FN, Yousif R, Shinwari Z, Alotaibi AG, Iqniebi A, Al-Hussein K, Al-Mazrou A, Manogaran PS, Elhassan T, Marquez-Méndez M, Aljurf M, Al-Humaidan H, Alaiya A. Distinct Phenotypic and Molecular Characteristics of CD34 - and CD34 + Hematopoietic Stem/Progenitor Cell Subsets in Cord Blood and Bone Marrow Samples: Implications for Clinical Applications. Diagnostics (Basel) 2025; 15:447. [PMID: 40002599 PMCID: PMC11853955 DOI: 10.3390/diagnostics15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: We aimed to identify the molecular signatures of primitive CD34+ and CD34- hematopoietic stem/progenitor cell (HSC/HPC) subsets in cord blood and bone marrow samples. Methods: CD34+ and CD34- HSC/HPC subsets from cord blood and bone marrow were characterized using flow cytometry, real-time PCR, and proteomic analysis to evaluate their phenotypic and molecular profiles. Results: Our findings revealed a significantly higher percentage of Lin-CD34-CD38Low/- (-/-) cells than of Lin-CD34+CD38Low/- (+/-) cells in cord blood. Aldehyde dehydrogenase levels were significantly lower in (-/-) than in (+/-) cells. Clonogenic ability was lower in (-/-) than in (+/-) cells. However, CD34- cells exhibited potent megakaryocyte/erythrocyte differentiation ability. Importantly, the HSC/HPC subsets expressed pluripotency or stemness genes (SOX2, Nanog, and OCT4); however, OCT4 expression significantly increased in (-/-) compared with (+/-) cells. We identified 304 proteins in the HSC/HPC subsets-85.6% had similar expression patterns in the two subsets; only 14.4% were differentially expressed between (-/-) and (+/-) cells. This implies their comparability at the protein level. Certain proteins were implicated in cellular-development-, gene-expression-, and embryonic-development-related signaling networks. Conclusions: Distinct biological and functional characteristics were observed between (-/-) and (+/-) HSC/HPC subsets. Some of the identified proteins may be novel HSC/HPC subsets markers for clinical applications after validation.
Collapse
Affiliation(s)
- Ameera Gaafar
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fatheia Nabeil Hamza
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rama Yousif
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Aminah Ghazi Alotaibi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Alia Iqniebi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Khalid Al-Hussein
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Amer Al-Mazrou
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Pulicat Subramanian Manogaran
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Tusneem Elhassan
- Biochemistry and Molecular Medicine Department, Alfaisal University, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Cancer Center for Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Marcela Marquez-Méndez
- Medicine Faculty, Universidad Autonoma de Nuevo Leon, Mitras Centro, Monterrey 64460, Mexico
| | - Mahmood Aljurf
- Cancer Center for Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hind Al-Humaidan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ayodele Alaiya
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Mellet J, Hendricks CL, Stivaktas V, Durandt C, Ambele MA, Pepper MS. Extensive immunophenotypic sub-population analysis of StemRegenin1 expanded haematopoietic stem/progenitor cells. Stem Cell Res Ther 2024; 15:317. [PMID: 39304924 DOI: 10.1186/s13287-024-03895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Ex vivo haematopoietic stem/progenitor cell (HSPCs) expansion constitutes an important area of research, and has the potential to improve access to umbilical cord blood (UCB) as a source of stem cells for haematopoietic stem cell transplantation (HSCT). The ability to improve stem cell dose and thereby reduce delayed engraftment times, which has plagued the use of UCB as a stem cell source since inception, is a recognised advantage. The extent to which cluster of differentiation (CD)34 sub-populations are affected by expansion with StemRegenin1 (SR1), and whether a particular subtype may account for better engraftment than others, is currently unknown. The purpose of this study was to determine the impact of SR1-induced HSPC expansion on CD34+ immunophenotypic subsets and gene expression profiles. METHODS UCB-derived CD34+ HSPCs were characterised before (D0) and after expansion (D7) with SR1 using an extensive immunophenotypic panel. In addition, gene expression was assessed and differentially expressed genes were categorised into biological processes. RESULTS A dose-dependent increase in the number of CD34+ HSPCs was observed with SR1 treatment, and unbiased and extensive HSPC immunophenotyping proved to be a powerful tool in identifying unique sub-populations within the HSPC repertoire. In this regard, we found that SR1 promotes the emergence of HSPC subsets which may aid engraftment post expansion. In addition, we observed that SR1 has a minimal effect on the transcriptome of 7-day expanded CD34+ HSPCs when compared to cells expanded without SR1, with only two genes being downregulated in the former. CONCLUSION This study revealed that SR1 selects for potentially novel immunophenotypic HSPC subsets post expansion and has a minimal effect on the transcriptome of 7-day expanded HSPCs when compared to vehicle controls. Whether these distinct immunophenotypic sub-populations possess greater engraftment capacity remains to be tested in animal models.
Collapse
Affiliation(s)
- Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Candice L Hendricks
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Melvin A Ambele
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
5
|
Liu R, Zhu J, Chen A, Fan Y, Li L, Mei Y, Wang Y, Wang X, Liu B, Liu Q. Intra-bone marrow injection with engineered Lactococcus lactis for the treatment of metastatic tumors: Primary report. Biomed Pharmacother 2024; 173:116384. [PMID: 38471270 DOI: 10.1016/j.biopha.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Bone marrow has the capacity to produce different types of immune cells, such as natural killer cells, macrophages, dendritic cells (DCs) and T cells. Improving the activation of immune cells in the bone marrow can enhance the therapy of bone metastases. Previously, we designed an engineered probiotic Lactococcus lactis, capable of expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLactis), and proved that it can induce the activation and differentiation of several immune cells. In this research, we successfully establish mouse models of bone metastasis, lung metastasis and intraperitoneal dissemination, and we are the first to directly inject the probiotics into the bone marrow to inhibit tumor growth. We observe that injecting FOLactis into the bone marrow of mice can better regulate the immune microenvironment of tumor-bearing mice, resulting in a tumor-suppressive effect. Compared to subcutaneous (s.c.) injection, intra-bone marrow (IBM) injection is more effective in increasing mature DCs and CD8+ T cells and prolonging the survival of tumor-bearing mice. Our results confirm that IBM injection of FOLactis reprograms the immune microenvironment of bone marrow and has remarkable effectiveness in various metastatic tumor models.
Collapse
Affiliation(s)
- Rui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Aoxing Chen
- The Clinical Cancer Institute of Nanjing University, Nanjing, China; Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, China
| | - Yue Fan
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, China; Department of Pathology, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Yi Mei
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaonan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Al-Amoodi AS, Kai J, Li Y, Malki JS, Alghamdi A, Al-Ghuneim A, Saera-Vila A, Habuchi S, Merzaban JS. α1,3-fucosylation treatment improves cord blood CD34 negative hematopoietic stem cell navigation. iScience 2024; 27:108882. [PMID: 38322982 PMCID: PMC10845921 DOI: 10.1016/j.isci.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
For almost two decades, clinicians have overlooked the diagnostic potential of CD34neg hematopoietic stem cells because of their limited homing capacity relative to CD34posHSCs when injected intravenously. This has contributed to the lack of appeal of using umbilical cord blood in HSC transplantation because its stem cell count is lower than bone marrow. The present study reveals that the homing and engraftment of CD34negHSCs can be improved by adding the Sialyl Lewis X molecule via α1,3-fucosylation. This unlocks the potential for using this more primitive stem cell to treat blood disorders because our findings show CD34negHSCs have the capacity to regenerate cells in the bone marrow of mice for several months. Furthermore, our RNA sequencing analysis revealed that CD34negHSCs have unique adhesion pathways, downregulated in CD34posHSCs, that facilitate interaction with the bone marrow niche. Our findings suggest that CD34neg cells will best thrive when the HSC resides in its microenvironment.
Collapse
Affiliation(s)
- Asma S. Al-Amoodi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jing Kai
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanyan Li
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jana S. Malki
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdullah Alghamdi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Arwa Al-Ghuneim
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Satoshi Habuchi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen S. Merzaban
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Smart-Health Initiative, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture. Protein Cell 2022; 13:808-824. [PMID: 35230662 PMCID: PMC9237197 DOI: 10.1007/s13238-021-00900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/14/2021] [Indexed: 11/13/2022] Open
Abstract
Although widely applied in treating hematopoietic malignancies, transplantation of hematopoietic stem/progenitor cells (HSPCs) is impeded by HSPC shortage. Whether circulating HSPCs (cHSPCs) in steady-state blood could be used as an alternative source remains largely elusive. Here we develop a three-dimensional culture system (3DCS) including arginine, glycine, aspartate, and a series of factors. Fourteen-day culture of peripheral blood mononuclear cells (PBMNCs) in 3DCS led to 125- and 70-fold increase of the frequency and number of CD34+ cells. Further, 3DCS-expanded cHSPCs exhibited the similar reconstitution rate compared to CD34+ HSPCs in bone marrow. Mechanistically, 3DCS fabricated an immunomodulatory niche, secreting cytokines as TNF to support cHSPC survival and proliferation. Finally, 3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization. Our 3DCS successfully expands rare cHSPCs, providing an alternative source for the HSPC therapy, particularly for the patients/donors who have failed in HSPC mobilization.
Collapse
|
8
|
Muthu S, Jeyaraman M, Ranjan R, Jha SK. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis. World J Biol Chem 2021. [DOI: 10.4331/wjbc.v12.i6.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Muthu S, Jeyaraman M, Ranjan R, Jha SK. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis. World J Biol Chem 2021; 12:114-130. [PMID: 34904049 PMCID: PMC8637617 DOI: 10.4331/wjbc.v12.i6.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell (HSC) transplantation (HSCT) is being accepted as a standard of care in various inflammatory diseases. The treatment of rheumatoid arthritis (RA) has been closely evolving with the understanding of disease pathogenesis. With the rising resistance to the traditional disease-modifying anti-rheumatic drugs and targeted biological therapy, researchers are in pursuit of other methods for disease management. Since the ultimate goal of the ideal treatment of RA is to restore immune tolerance, HSCT attracts much attention considering its reparative, paracrine, and anti-inflammatory effects. However, a systematic review of studies on HSCT in RA is lacking.
AIM To investigate the role of HSCT in the management of RA.
METHODS A detailed search of PubMed, Scopus, EMBASE, Cochrane, and the Web of Science databases was made to identify the relevant articles till September 2020 following Cochrane and PRISMA guidelines. We extracted data including the number of patients, source of hematopoietic stem cells, their mobilization and conditioning regimens, results, and complications from the eligible studies. Results were dichotomized into success (ACR 50/70) and failure (ACR 20) based on the improvement from baseline characteristics. The methodological quality of the included studies was also assessed. Analysis was performed using OpenMeta[Analysis] software.
RESULTS We included 17 studies (1 randomized controlled trial, 11 prospective, and 5 retrospective studies) with 233 patients for analysis. HSCT provided a significantly beneficial overall improvement in the clinical grades of ACR criteria (Z = 11.309, P < 0.001). However, the remission was noted only till 24 mo and later on the significance of the result was lost (Z = 1.737, P = 0.082). A less than 1% treatment-related mortality was noted from the included studies. No major drug-related toxicities were noted in any of the included studies. All patients who underwent allogeneic HSCT received immunosuppression in the conditioning regimen to counteract the graft-vs-host reaction which made them vulnerable to infections. It is noted that the source of hematopoietic stem cells did not play a role in altering the functional outcome and both autologous (Z = 9.972, P < 0.001) and allogenic (Z = 6.978, P < 0.001) sources produced significant improvement in the outcome compared to the pre-operative state despite having a significant heterogeneity among the studies reporting them (I2 = 99.4, P < 0.001).
CONCLUSION Although the available literature is encouraging towards the use of HSCT in refractory cases with significant improvement from baseline till 2 years, the inclusion of HSCT into the standard of care of RA needs further exploration.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Delhi 201306, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Delhi 201306, Uttar Pradesh, India
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Chennai 600095, Tamil Nadu, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Greater Noida 201306, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Delhi 201306, Uttar Pradesh, India
| |
Collapse
|
10
|
Wei YH, He YZ, Guo XY, Lin XY, Zhu HB, Guo XJ. Investigation and Analysis of Iron-Deficiency Anemia Complicated by Splenomegaly. Int J Gen Med 2021; 14:4155-4159. [PMID: 34385835 PMCID: PMC8352643 DOI: 10.2147/ijgm.s324164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022] Open
Abstract
Objective This study aimed to determine the incidence of iron-deficiency anemia (IDA) complicated by splenomegaly in our hospital over the past 6 years and to analyze the possible causes of this result. Methods This is a retrospective study. In total, 668 patients with IDA who were hospitalized in the hematology department of our hospital from 2013 to 2019 were selected as the research subjects and included in the IDA group, and 3201 patients who underwent outpatient physical examinations in our hospital during the same period were included in the control group. The incidences of splenomegaly in the IDA and control groups were calculated, and the difference was analyzed by means of statistical methods. Results Among the 668 IDA patients, 46 (6.9%) had splenomegaly, and among the 3201 patients in the control group, 21 had splenomegaly (0.7%). The incidence of splenomegaly was significantly higher in the IDA group than in the control group, and the severity of anemia in the IDA group was associated with the occurrence of splenomegaly. Specifically, the incidence of splenomegaly was 12.4% among patients with severe anemia and as high as 50% among patients with extremely severe anemia. Conclusion IDA is correlated with the incidence of splenomegaly, and the incidence of splenomegaly significantly increases as the severity of IDA increases. This is considered to be caused by extramedullary hematopoiesis.
Collapse
Affiliation(s)
- Yan-Hui Wei
- Department of Graduate School, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yu-Zhuo He
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan Province, 457000, People's Republic of China
| | - Xiao-Yan Guo
- Department of Graduate School, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Xiao-Yan Lin
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan Province, 457000, People's Republic of China
| | - Hong-Bin Zhu
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan Province, 457000, People's Republic of China
| | - Xue-Jun Guo
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan Province, 457000, People's Republic of China
| |
Collapse
|
11
|
Sonoda Y. Human CD34-negative hematopoietic stem cells: The current understanding of their biological nature. Exp Hematol 2021; 96:13-26. [PMID: 33610645 DOI: 10.1016/j.exphem.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell (HSC) heterogeneity and hierarchy are a current topic of interest, having major implications for clinical HSC transplantation and basic research on human HSCs. It was long believed that the most primitive HSCs in mammals, including mice and humans, were CD34 antigen positive (CD34+). However, 2 decades ago, it was reported that murine long-term multilineage reconstituting HSCs were lineage marker negative (Lin-, i.e., c-kit+Sca-1+CD34low/-), known as CD34low/- KSL cells. In contrast, human CD34- HSCs, a counterpart of murine CD34low/- KSL cells, were hard to identify for a long time mainly because of their rarity. We previously identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method and proposed the new concept that CD34- SRCs (HSCs) reside at the apex of the human HSC hierarchy. Through a series of studies, we identified two positive/enrichment markers: CD133 and GPI-80. The combination of these two markers enabled the development of an ultrahigh-resolution purification method for CD34- as well as CD34+ HSCs and the successful purification of both HSCs at the single-cell level. Cell population purity is a crucial prerequisite for reliable biological and molecular analyses. Clonal analyses of highly purified human CD34- HSCs have revealed their potent megakaryocyte/erythrocyte differentiation potential. Based on these observations, we propose a revised road map for the commitment of human CB-derived CD34- HSCs. This review updates the current understanding of the stem cell nature of human CB-derived primitive CD34- as well as CD34+ HSCs.
Collapse
Affiliation(s)
- Yoshiaki Sonoda
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
12
|
Hughes MR, Canals Hernaez D, Cait J, Refaeli I, Lo BC, Roskelley CD, McNagny KM. A sticky wicket: Defining molecular functions for CD34 in hematopoietic cells. Exp Hematol 2020; 86:1-14. [PMID: 32422232 DOI: 10.1016/j.exphem.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
The CD34 cell surface antigen is widely expressed in tissues on cells with progenitor-like properties and on mature vascular endothelia. In adult human bone marrow, CD34 marks hematopoietic stem and progenitor cells (HSPCs) starting from the bulk of hematopoietic stem cells with long-term repopulating potential (LT-HSCs) throughout expansion and differentiation of oligopotent and unipotent progenitors. CD34 protein surface expression is typically lost as cells mature into terminal effectors. Because of this expression pattern of HSPCs, CD34 has had a central role in the evaluation or selection of donor graft tissue in HSC transplant (HSCT). Given its clinical importance, it is surprising that the biological functions of CD34 are still poorly understood. This enigma is due, in part, to CD34's context-specific role as both a pro-adhesive and anti-adhesive molecule and its potential functional redundancy with other sialomucins. Moreover, there are also critical differences in the regulation of CD34 expression on HSPCs in humans and experimental mice. In this review, we highlight some of the more well-defined functions of CD34 in HSPCs with a focus on proposed functions most relevant to HSCT biology.
Collapse
Affiliation(s)
- Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ido Refaeli
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Calvin D Roskelley
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Zhao Y, Shi Y, Shen H, Xie W. m 6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020; 13:35. [PMID: 32276589 PMCID: PMC7146974 DOI: 10.1186/s13045-020-00872-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
14
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
16
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
17
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
18
|
Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv 2017; 1:2799-2816. [PMID: 29296932 DOI: 10.1182/bloodadvances.2017004317] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.
Collapse
|
19
|
Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sonoda Y. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant 2016; 26:1043-1058. [PMID: 27938494 DOI: 10.3727/096368916x694201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method. In this study, we investigated the roles of the MPL expression in the human primitive HSC compartment. The SRC activities of the highly purified CB-derived 18Lin-CD34+/-MPL+/- cells were analyzed using NOG mice. In the primary recipient mice, nearly all mice that received CD34+/-MPL+/- cells were repopulated with human CD45+ cells. Nearly all of these mice that received CD34+MPL+/- and CD34-MPL- cells showed a secondary repopulation. Interestingly, the secondary recipient mice that received CD34+/-MPL- cells showed a distinct tertiary repopulation. These results clearly indicate that the CD34+/- SRCs not expressing MPL sustain a long-term (LT) (>1 year) human cell repopulation in NOG mice. Moreover, CD34- SRCs generate CD34+CD38-CD90+ SRCs in vitro and in vivo. These findings provide a new concept that CD34-MPL- SRCs reside at the apex of the human HSC hierarchy.
Collapse
|
20
|
GPI-80 expression highly purifies human cord blood-derived primitive CD34-negative hematopoietic stem cells. Blood 2016; 128:2258-2260. [PMID: 27625361 DOI: 10.1182/blood-2016-03-704668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
21
|
Matsuoka Y, Nakatsuka R, Sumide K, Kawamura H, Takahashi M, Fujioka T, Uemura Y, Asano H, Sasaki Y, Inoue M, Ogawa H, Takahashi T, Hino M, Sonoda Y. Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells. Stem Cells 2016; 33:1554-65. [PMID: 25537923 DOI: 10.1002/stem.1941] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a specialized bone marrow (BM) niche, which consists of osteoblasts, endothelial cells, and a variety of mesenchymal stem/stromal cells (MSCs). However, precisely what types of MSCs support human HSCs in the BM remain to be elucidated because of their heterogeneity. In this study, we succeeded in prospectively isolating/establishing three types of MSCs from human BM-derived lineage- and CD45-negative cells, according to their cell surface expression of CD271 and stage-specific embryonic antigen (SSEA)-4. Among them, the MSCs established from the Lineage(-) CD45(-) CD271(+) SSEA-4(+) fraction (DP MSC) could differentiate into osteoblasts and chondrocytes, but they lacked adipogenic differentiation potential. The DP MSCs expressed significantly higher levels of well-characterized HSC-supportive genes, including IGF-2, Wnt3a, Jagged1, TGFβ3, nestin, CXCL12, and Foxc1, compared with other MSCs. Interestingly, these osteo-chondrogenic DP MSCs possessed the ability to support cord blood-derived primitive human CD34-negative severe combined immunodeficiency-repopulating cells. The HSC-supportive actions of DP MSCs were partially carried out by soluble factors, including IGF-2, Wnt3a, and Jagged1. Moreover, contact between DP MSCs and CD34-positive (CD34(+) ) as well as CD34-negative (CD34(-) ) HSCs was important for the support/maintenance of the CD34(+/-) HSCs in vitro. These data suggest that DP MSCs might play an important role in the maintenance of human primitive HSCs in the BM niche. Therefore, the establishment of DP MSCs provides a new tool for the elucidation of the human HSC/niche interaction in vitro as well as in vivo.
Collapse
Affiliation(s)
- Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamamoto K, Miwa Y, Abe-Suzuki S, Abe S, Kirimura S, Onishi I, Kitagawa M, Kurata M. Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review). Mol Med Rep 2015; 13:587-91. [PMID: 26648325 DOI: 10.3892/mmr.2015.4621] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) occurs under various circumstances, including during embryonic/developmental periods, pathological status secondary to insufficient bone marrow function or ineffective hematopoiesis, in hematological disorders, for example malignancies, as well as stromal disorders of the bone. EMH is characterized by hematopoietic cell accumulations in multiple body locations. Common EMH locations observed in clinical and pathological practice include the spleen, liver, lymph nodes and para‑vertebral regions. Among the various organs associated with EMH, the spleen offers a unique site for evaluation of hematopoietic stem cell (HSC)/niche interactions, as this organ is one of the most common sites of EMH. However, the spleen does not have a major role in embryonic/developmental hematopoiesis. A recent study by our group revealed that circulating HSCs may be trapped by chemokine (C‑X‑C motif) ligand 12 (CXCL12)‑positive cells at the margin of sinuses near CXCL12‑positive endothelial cells, resulting in the initiation of the first step of EMH, which is a similar mechanism to bone marrow hematopoiesis. The present review briefly discusses the environment of EMH in extramedullary spaces in order to investigate the mechanisms underlying HSC maintenance, and aid the elucidation of the niche‑stem cell interactions that occur in the bone marrow.
Collapse
Affiliation(s)
- Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Yukako Miwa
- Department of Pathology, Kanazawa Medical University Hospital, Kanazawa, Ishikawa 920‑0293, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8519, Japan
| |
Collapse
|
23
|
Matsuoka Y, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sasaki Y, Sonoda Y. Human cord blood-derived primitive CD34-negative hematopoietic stem cells (HSCs) are myeloid-biased long-term repopulating HSCs. Blood Cancer J 2015; 5:e290. [PMID: 25768404 PMCID: PMC4382663 DOI: 10.1038/bcj.2015.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Y Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - K Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - H Kawamura
- 1] Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan [2] Department of Orthopedic Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - R Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - T Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Y Sasaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Y Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
24
|
Abstract
The presence of autoimmune diseases, including Systemic Sclerosis (SSc), suggest failure of the normal immune regulatory processes leading to activation and expansion of autoreactive effector immune cells. Recently, stem cell transplantation emerged as a novel rescue therapy for a variety of refractory autoimmune diseases. The therapeutic strategy involves the ablation of the aberrant self-reactive immune cells by chemotherapy and the regeneration of a new self-tolerant immune system formed by the transplanted stem cells. In the last few years, thousands of patients worldwide have received haematopoietic stem cell transplantation (HSCT), mostly autologous, as treatment for severe irreversible autoimmune diseases, with promising results. Here we review the results of published small series of SSc patients treated with allogeneic and autologous HSCT, as well as three randomized trials, exploring the safety and efficacy of autologous HSCT in SSc. Although the results are encouraging, nonetheless, the correct application of stem cell transplantation remains an area of active investigation. Results of larger randomized, double blind clinical trials, will certainly improve our knowledge of the appropriate clinical use of stem cell therapy in SSc patients.
Collapse
Affiliation(s)
- Paola Cipriani
- Clinical Immunology and Rheumatology Section, Department of Biotechnological and Applied Clinical Science, School of Medicine, "San Salvatore" University Hospital, University of L'Aquila, L'Aquila, Italy
| | | | | |
Collapse
|
25
|
Abstract
AIMS To determine the expression of CXCL12 in human spleens with extramedullary haematopoiesis (EMH) for clarifying the association of splenic haematopoietic stem cells (HSCs) with CXCL12, which has been demonstrated to be a marker of bone marrow niches. METHODS We examined the expression of mRNA for CXCL12 by quantitative reverse transcription polymerase chain reaction (RT-PCR) and localised the CXCL12 protein by immunohistochemical staining in EMH negative and positive spleen samples from autopsy cases. RESULTS Expression of CXCL12 was significantly higher in samples from EMH positive cases than those from EMH negative cases. CXCL12 was localised to the endothelial cells of the sinuses of the red pulp in EMH positive spleens while vascular endothelial cells of the white pulp expressed CXCL12 throughout the spleen. c-kit positive/CD34 negative cells were identified in contact with CXCL12 positive endothelial cells of sinuses in EMH positive cases, although the number was few. In contrast, erythroblastic islands were frequently observed in EMH positive cases and dominantly localised to the intrasinusoidal spaces in association with CD68 positive macrophages. CONCLUSIONS Our results suggest that endothelial cells of splenic sinuses expressing CXCL12 may contribute to attracting circulating haematopoietic precursor cells and constitute bone marrow niche-like regions of EMH in humans. Differentiating haematopoietic cells may move into intrasinusoidal spaces to form EMH foci such as erythroblastic accumulation.
Collapse
|
26
|
Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, Fujioka T, Kohno H, Sasaki Y, Matsui K, Asano H, Kaneko K, Sonoda Y. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 2013; 28:1308-15. [PMID: 24189293 PMCID: PMC4051213 DOI: 10.1038/leu.2013.326] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 12/18/2022]
Abstract
The identification of human CD34-negative (CD34(-)) hematopoietic stem cells (HSCs) provides a new concept for the hierarchy in the human HSC compartment. Previous studies demonstrated that CD34(-) severe combined immunodeficiency (SCID)-repopulating cells (SRCs) are a distinct class of primitive HSCs in comparison to the well-characterized CD34(+)CD38(-) SRCs. However, the purification level of rare CD34(-) SRCs in 18 lineage marker-negative (Lin(-)) CD34(-) cells (1/1000) is still very low compared with that of CD34(+)CD38(-) SRCs (1/40). As in the mouse, it will be necessary to identify useful positive markers for a high degree of purification of rare human CD34(-) SRCs. Using 18Lin(-)CD34(-) cells, we analyzed the expression of candidate positive markers by flow cytometric analysis. We finally identified CD133 as a reliable positive marker of human CB-derived CD34(-) SRCs and succeeded in highly purifying primitive human CD34(-) HSCs. The limiting dilution analysis demonstrated that the incidence of CD34(-) SRCs in 18Lin(-)CD34(-)CD133(+) cells was 1/142, which is the highest level of purification of these unique CD34(-) HSCs to date. Furthermore, CD133 expression clearly segregated the SRC activities of 18Lin(-)CD34(-) cells, as well as 18Lin(-)CD34(+) cells, in their positive fractions, indicating its functional significance as a common cell surface maker to isolate effectively both CD34(+) and CD34(-) SRCs.
Collapse
Affiliation(s)
- M Takahashi
- 1] Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan [2] Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Y Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - K Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - R Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - T Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - H Kohno
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Y Sasaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - K Matsui
- Department of Gynecology and Obstetrics, Fukuda Hospital, Kumamoto, Japan
| | - H Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - K Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Y Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
27
|
Interest in Determining the CD34+ CD38- Phenotype in the Diagnosis and Prognosis of Acute Leukemia in Abidjan - Côte d'Ivoire. Mediterr J Hematol Infect Dis 2013; 5:e2013023. [PMID: 23667721 PMCID: PMC3647708 DOI: 10.4084/mjhid.2013.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/03/2013] [Indexed: 11/18/2022] Open
Abstract
Background In Côte d’Ivoire, acute leukemias account for 12.5% of hematological malignancies. Acute leukemias are due to an anomaly of the stem cell characterized among other things by the expression of CD34+ CD38− surface markers. This CD34+ CD38− phenotype as well as other factors such as tumor syndrome, high leukocytosis and blasts are considered as important factors of poor prognosis. We therefore proposed to investigate the prognostic value of the expression of CD34+ CD38− markers in acute leukemias in Abidjan. Methods We selected 23 patients aged 33 years on whom we performed Complete Blood Count, bone marrow aspiration and immunophenotyping. To search for myeloperoxydase, smears of blood or bone marrow were stained with benzidine and revealed by the use of Hydrogen peroxide. Acute leukemias were then identified and distributed using the score proposed by the European Group for the Immunological characterization of Leukemias. The definitive diagnosis was made by combining morphological characters that serve as the basis for the French-American-British classification as well as cytochemical and immunophenotypic characters. Results According to the cytological and immunophenotypic classifications, the acute lymphoid leukemia 2 and B IV predominated. 52.2% (12/33) of patients were CD34+ CD38−. This phenotype was found in almost all cytological immunophenotypic types. The medullary invasion by blasts (reflection of the tumor mass) of the total sample of CD34+, CD34+ CD38− patients and those not expressing CD34+ was respectively 79.4%, 81.25%, 83.3% and 74.8%. Conclusion There was therefore no correlation between medullary blasts and the expression of CD34+ CD38−. To the factors we selected it would have been necessary to associate the study of cytogenetic and molecular anomalies to better understand the role of CD34+ CD38− phenotype, concerning prognosis.
Collapse
|
28
|
Cipriani P, Carubbi F, Liakouli V, Marrelli A, Perricone C, Perricone R, Alesse E, Giacomelli R. Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmun Rev 2012. [PMID: 23183379 DOI: 10.1016/j.autrev.2012.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review we report the recent progresses, available in the literature, concerning the biology and the potential therapeutic role of both mesenchymal stem cells (MSCs) and hematopoietic stem cells in autoimmune diseases. Mesenchymal stem cells (MSCs) are responsible for the normal turnover and maintenance of adult mesenchymal tissues and their pleiotropic nature allows them to sense and respond to an event in the local environment, be it injury or inflammation. Recently, MSCs have been shown to have immune-modulatory properties and immunosuppressive capacities, acting on different immune cells both in vitro and in vivo, in addition to an immunologically privileged phenotype. Moreover, several works suggest that MSCs are defective in autoimmune diseases. These aspects are now considered the most intriguing aspect of their biology, introducing the possibility that these cells might be used as effective therapy in autoimmune diseases. Autoimmune diseases represent a failure of normal immune regulatory processes as they are characterized by activation and expansion of immune cell subsets in response to non-pathogenic stimuli. As autoimmune diseases can be transferred, or alternatively, cured, by stem cell transplantation, a defect in the hemopoietic stem cell as a cause of autoimmune diseases may be postulated. The rationale for autologous hematopoietic stem cell transplantation (HSCT) in autoimmune diseases is the ablation of an aberrant or self-reactive immune system by chemotherapy and regeneration of a new and hopefully self-tolerant immune system from hematopoietic stem cells. In the past 15years, more than 1500 patients worldwide have received HSCT, mostly autologous, as treatment for a severe autoimmune disease and the majority were affected by multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, juvenile idiopathic arthritis and idiopathic cytopenic purpura.
Collapse
Affiliation(s)
- Paola Cipriani
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Beksac M, Preffer F. Is it time to revisit our current hematopoietic progenitor cell quantification methods in the clinic? Bone Marrow Transplant 2011; 47:1391-6. [PMID: 22139068 DOI: 10.1038/bmt.2011.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the clinical practice of hematopoietic SCT, the minimum numbers of cells required for a successful engraftment are defined on the basis of their CD45 and CD34 expression profiles. However, the quantity of earlier progenitors or CD34-positive cells at different differentiation stages within stem cell grafts is not generally taken into consideration. During the last decade, various teams have quantified the number of cells expressing various combinations of CD34, CD38, CD133, CD90 co-expression and/or aldehyde dehydrogenase functional capacity using flow cytometry. Some of these studies resulted in the greater appreciation that combinations of these Ags were associated with varied myeloid, erythroid and platelet engraftment rates whereas others showed that the relative absence or presence of these markers could define cells responsible for either short- or long-term engraftment. These findings were also extended to differences between progenitor cell populations found within BM vs peripheral or cord-blood grafts. Cells harvested from donors are also generally frozen and stored; thawed cells have variable levels of viability and functional capacity based on the time tested post thaw, which also can be assessed by flow cytometry. Finally, flow cytometry has the potential for analysis of cells carrying a mesenchymal stem cell phenotype, which may be quiescent within some of the stem cell products. This review will address the need for stem cell subpopulation quantification and summarize existing published data to identify some Ags and functional characteristics that can be applicable to daily clinical practice.
Collapse
Affiliation(s)
- M Beksac
- Ankara University School of Medicine, Department of Hematology, Ankara, Turkey.
| | | |
Collapse
|
30
|
Successful modulation of type 2 diabetes in db/db mice with intra-bone marrow--bone marrow transplantation plus concurrent thymic transplantation. J Autoimmun 2011; 35:414-23. [PMID: 20884174 DOI: 10.1016/j.jaut.2010.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that both autoimmune and autoinflammatory mechanisms are involved in the development of not only type 1 diabetes mellitus (T1 DM), but also type 2 diabetes mellitus (T2 DM). Our laboratory has focused on this concept, and in earlier efforts replaced the bone marrow cells (BMCs) of leptin receptor-deficient (db/db) mice, an animal model of T2DM, with those of normal C57BL/6 (B6) mice by IBM-BMT. However, the outcome was poor due to incomplete recovery of T cell function. Therefore, we hypothesized that intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT + TT) could be used to treat T2 DM by normalizing the T cell imbalance. Hence we addressed this issue by using such dual transplantation and demonstrate herein that seven weeks later, recipient db/db mice manifested improved body weight, reduced levels of blood glucose, and a reduction of plasma IL-6 and IL-1β. More importantly, this treatment regimen showed normal CD4/CD8 ratios, and increased plasma adiponectin levels, insulin sensitivity, and the number of insulin-producing cells. Furthermore, the expression of pancreatic pAKT, pLKB1, pAMPK and HO-1 was increased in the mice treated with IBM-BMT + TT. Our data show that IBM-BMT + TT treatment normalizes T cell subsets, cytokine imbalance and insulin sensitivity in the db/db mouse, suggesting that IBM-BMT + TT is a viable therapeutic option in the treatment of T2 DM.
Collapse
|
31
|
Development of a high-resolution purification method for precise functional characterization of primitive human cord blood–derived CD34–negative SCID-repopulating cells. Exp Hematol 2011; 39:203-213.e1. [DOI: 10.1016/j.exphem.2010.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/21/2022]
|
32
|
|
33
|
Colmegna I, Weyand CM. Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology (Oxford) 2010; 50:252-60. [PMID: 20837497 DOI: 10.1093/rheumatology/keq298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RA is the prototypic chronic inflammatory disease, characterized by progressive articular cartilage and bone destruction. The systemic nature of RA is evidenced by the increased risk of atherosclerosis and lymphoproliferative disorders. Components of both the innate and adaptive immune system are implicated in the pathophysiology of the articular and extra-articular manifestations of the disease. A fundamental process in the onset of RA is the breakdown in self-tolerance. Accelerated ageing of immune cells (immunosenescence) appears to be a major mechanism favouring the disruption of tolerance. Telomere erosion, a hallmark of immunosenescence, is present in lymphoid (naïve and memory T cells) and myeloid (granulocytes) cells in RA. The premature ageing process also involves the haematopoietic stem and progenitor cells (CD34(+) HSPC), thus extending the RA immunopathogenesis to include early events in the shaping of the immune system. This review summarizes current concepts of HSPC ageing and its impact on immune regeneration, highlighting the phenotypic and functional similarities between elderly and RA HSPC.
Collapse
Affiliation(s)
- Inés Colmegna
- Department of Medicine, McGill University Health Center, Montreal, Canada.
| | | |
Collapse
|
34
|
van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica 2010; 95:1594-8. [PMID: 20378567 DOI: 10.3324/haematol.2009.019828] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of human erythropoiesis in health and disease requires a robust culture system that consistently and reliably generates large numbers of immature erythroblasts that can be induced to differentiate synchronously. We describe a culture method modified from Leberbauer et al. (2005) and obtain a homogenous population of erythroblasts from peripheral blood mononuclear cells (PBMC) without prior purification of CD34(+) cells. This pure population of immature erythroblasts can be expanded to obtain 4x10(8) erythroblasts from 1x10(8) PBMC after 13-14 days in culture. Upon synchronized differentiation, high levels of enucleation (80-90%) and low levels of cell death (<10%) are achieved. We compared the yield of erythroblasts obtained from PBMC, CD34(+) cells or PBMC depleted of CD34(+) cells and show that CD34(-) cells represent the most significant early erythroid progenitor population. This culture system may be particularly useful for investigating the pathophysiology of anemic patients where only small blood volumes are available.
Collapse
Affiliation(s)
- Emile van den Akker
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Clifton, Bristol, BS81TD, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Manzanedo A, Rodriguez F, Obeso JA, Rodriguez M. In Vivo Growing of New Cell Colonies in a Portion of Bone Marrow: Potential Use for Indirect Cell Therapy. CELL MEDICINE 2010; 1:93-103. [PMID: 26966633 DOI: 10.3727/215517910x528969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability of bone marrow cells (BMCs) to migrate to different organs can be used for indirect cell therapy, a procedure based on the engraftment of therapeutic cells in a different place from where they will finally move to and perform their action and which could be particularly useful for chronic illness where a persistent and long-lasting therapeutic action is required. Thus, establishing a stable colony of engineered BMCs is a requisite for the chronic provision of damaged tissues with engineered cells. Reported here is a procedure for creating such a cell colony in a portion of the bone marrow (BM). The study was performed in C57BL/6j mice and consisted of developing a focal niche in a portion of the bone marrow with focal irradiation so that it could be selectively colonized by BM cells (C57BL/6-FG-VC-GFP mice) injected in the blood stream. Both the arrival of cells coming from the nonirradiated BM (week 1 after irradiation) and the proliferation of cells in the irradiated BM (week 2) prevented the homing of injected cells in the BM niche. However, when BMCs were injected in a time window about 48 h after irradiation they migrated to the BM niche where they established a cell colony able to: 1) survive for a long period of time [the percentage of injected cells increased in the BM from day 30 postinjection (15%) to day 110 postinjection 28%)]; 2) express cell differentiation markers (90% of them were lineage committed 4 weeks after engraftment); and 3) colonize to the blood stream (with 5% and 9% of all blood cells being computed 1 and 3 months after engraftment, respectively). The intravenous injection of BMCs in combination with a previous transitory focal myeloablation is a safe and easy method for creating the long-lasting colony of modified BMCs needed for treating chronic and progressive illness with indirect cell therapy.
Collapse
Affiliation(s)
- Ana Manzanedo
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Fidel Rodriguez
- † Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La Laguna , La Laguna, Tenerife, Canary Islands , Spain
| | - Jose A Obeso
- ‡Department of Neurology and Neurosurgery, Clinica Universitaria and Medical School, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain; §Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
36
|
Yang SH, Wang TF, Tsai HH, Lin TY, Wen SH, Chen SH. Preharvest hematopoietic progenitor cell counts predict CD34+ cell yields in granulocyte-colony-stimulating factor-mobilized peripheral blood stem cell harvest in healthy donors. Transfusion 2009; 50:1088-95. [DOI: 10.1111/j.1537-2995.2009.02546.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Yaniv I, Ash S, Farkas DL, Askenasy N, Stein J. Consideration of strategies for hematopoietic cell transplantation. J Autoimmun 2009; 33:255-9. [PMID: 19800763 DOI: 10.1016/j.jaut.2009.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone marrow transplantation has been adoptively transferred from oncology to the treatment of autoimmune disorders. Along with extension of prevalent transplant-related concepts, the assumed mechanism that arrests autoimmunity involves elimination of pathogenic cells and resetting of immune homeostasis. Similar to graft versus tumor (GVT) reactivity, allogeneic transplants are considered to provide a better platform of immunomodulation to induce a graft versus autoimmunity reaction (GVA). It is yet unclear whether recurrence of autoimmunity in both autologous and allogeneic settings reflects relapse of the disease, transplant-associated immune dysfunction or insufficient immune modulation. Possible causes of disease recurrence include reactivation of residual host pathogenic cells and persistence of memory cells, genetic predisposition to autoimmunity and pro-inflammatory characteristics of the target tissues. Most important, there is little evidence that autoimmune disorders are indeed abrogated by current transplant procedures, despite reinstitution of both peripheral and thymic immune homeostasis. It is postulated that non-specific immunosuppressive therapy that precedes and accompanies current bone marrow transplant strategies is detrimental to the active immune process that restores self-tolerance. This proposition refocuses the need to develop strategies of immunomodulation without immunosuppression.
Collapse
Affiliation(s)
- Isaac Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | | | | | | | | |
Collapse
|
38
|
In vivo dynamics of human cord blood-derived CD34− SCID-repopulating cells using intra-bone marrow injection. Leukemia 2009; 24:162-8. [DOI: 10.1038/leu.2009.206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Lehne G, Grasmo-Wendler UH, Berner JM, Meza-Zepeda LA, Adamsen BL, Flack A, Reiner A, Clausen OPF, Hovig E, Myklebost O. Upregulation of stem cell genes in multidrug resistant K562 leukemia cells. Leuk Res 2009; 33:1379-85. [DOI: 10.1016/j.leukres.2009.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 12/29/2022]
|
40
|
Kaminitz A, Mizrahi K, Yaniv I, Farkas DL, Stein J, Askenasy N. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice. J Autoimmun 2009; 33:83-91. [DOI: 10.1016/j.jaut.2009.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 12/29/2022]
|
41
|
Alexandre CS, Volpini RA, Shimizu MH, Sanches TR, Semedo P, di Jura VL, Câmara NO, Seguro AC, Andrade L. Lineage-negative bone marrow cells protect against chronic renal failure. Stem Cells 2009; 27:682-92. [PMID: 19096042 DOI: 10.1634/stemcells.2008-0496] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham (laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure.
Collapse
|
42
|
Kushida T, Ueda Y, Umeda M, Oe K, Okamoto N, Iida H, Abraham NG, Gershwin ME, Ikehara S. Allogeneic intra-bone marrow transplantation prevents rheumatoid arthritis in SKG/Jcl mice. J Autoimmun 2009; 32:216-22. [PMID: 19349145 DOI: 10.1016/j.jaut.2009.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
The treatment of autoimmune diseases by allogeneic bone marrow transplantation remains a promising therapeutic avenue. However, more intensive studies on murine models are essential before application to a large number of human patients. In particular, the use of bone marrow transplantation to treat rheumatoid arthritis has been problematic. We have taken advantage of the SKG/Jcl mouse that develops a chronic T cell-mediated autoimmune disease that mimics rheumatoid arthritis which attempted to prevent the development of immunopathology in these mice by allogeneic bone marrow transplantation (BMT). In particular, we utilized our unique technology in which bone marrow cells (BMCs) of control C57BL/6J mice are directly injected into the bone marrow cavity in the tibia of SKG mice (intra-bone marrow [IBM]-BMT). As controls, SKG/Jcl mice were transplanted with whole BMCs from syngeneic SKG mice. Importantly, 12 months after IBM-BMT [B6-->SKG] demonstrated no evidence of arthritis, whereas the control [SKG-->SKG] mice demonstrated, the expected immunopathology of a rheumatoid arthritis-like condition. Further, hematolymphoid cells in [B6-->SKG] mice were reconstituted by donor-derived cells and the percentages of Treg (Foxp3+/CD4+) cells, the percentages of receptor activator of nuclear factor-kappaB ligand (RANKL)+ cells on the CD4+ T cells and the serum levels of tumor necrosis factor-alpha, interleukin-1 and interleukin-6 were normalized in the [B6-->SKG] mice. These data suggest that IBM-BMT is a viable method of immunological manipulation that suppresses the severe joint destruction and bone absorption in SKG/Jcl mice and lends further credence to the use of this methodology in humans with intractable rheumatoid arthritis.
Collapse
Affiliation(s)
- Taketoshi Kushida
- Department of Orthopedic Surgery, Kansai Medical University, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bone marrow transplantation, refractory autoimmunity and the contributions of Susumu Ikehara. J Autoimmun 2008; 30:105-7. [PMID: 18243658 DOI: 10.1016/j.jaut.2007.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Ratajczak MZ. Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 2008; 15:293-300. [DOI: 10.1097/moh.0b013e328302c7ca] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Abraham NG, Li M, Vanella L, Peterson SJ, Ikehara S, Asprinio D. Bone marrow stem cell transplant into intra-bone cavity prevents type 2 diabetes: Role of heme oxygenase-adiponectin. J Autoimmun 2008; 30:128-35. [DOI: 10.1016/j.jaut.2007.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Rezvani AR, Storb RF. Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun 2008; 30:172-9. [PMID: 18242060 PMCID: PMC2329571 DOI: 10.1016/j.jaut.2007.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an increasingly widely used treatment modality in hematological malignancies. Alloreactivity mediated by donor T cells (and, in some settings, by donor natural killer cells) can produce durable immunologic control or eradication of residual malignancy after allogeneic HCT. However, graft-vs.-tumor (GVT) effects are variably effective and are often accompanied by deleterious alloreactivity against normal host tissue, manifesting as graft-vs.-host disease (GVHD). A major focus of current research in HCT is the separation of beneficial GVT effects from GVHD. Here we review a number of approaches currently under investigation to specifically augment GVT effects, including the identification of minor histocompatibility antigens (mHA), adoptive immunotherapy with tumor-specific or mHA-specific cytotoxic T lymphocytes, vaccination of the donor or recipient to stimulate tumor-specific immunity, and adoptive transfer of natural killer cells. In addition, we review strategies being investigated to specifically suppress GVHD while sparing GVT, including the manipulation and infusion of regulatory T cells, the use of novel pharmacologic and biologic agents, and the use of mesenchymal stem cells. Ultimately, advances in separation of GVT from GVHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies.
Collapse
Affiliation(s)
- Andrew R Rezvani
- Transplantation Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, 1100 Fairview Ave N, MS D1-100, Seattle, WA 98109, USA.
| | | |
Collapse
|
47
|
Hematopoietic stem cell transplantation for autoimmune diseases: What have we learned? J Autoimmun 2008; 30:116-20. [DOI: 10.1016/j.jaut.2007.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 2008; 30:121-7. [PMID: 18249090 DOI: 10.1016/j.jaut.2007.12.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to be a promising platform for cell and gene therapy for a variety of diseases. First, in the field of hematopoietic stem cell transplantation, there are two applications of MSCs: 1) the improvement of stem cell engrafting and the acceleration of hematopoietic reconstitution based on the hematopoiesis-supporting ability; and 2) the treatment of severe graft-versus-host disease (GVHD) based on the immunomodulatory ability. Regarding the immunosuppressive ability, we found that nitric oxide (NO) is involved in the MSC-mediated suppression of T cell proliferation. Second, tumor-bearing nude mice were injected with luciferase-expressing MSCs. An in vivo imaging analysis showed the significant accumulation of the MSCs at the site of tumors. The findings suggest that MSCs can be utilized to target metastatic tumors and to deliver anti-cancer molecules locally. As the third application, MSCs may be utilized as a cellular vehicle for protein-supplement gene therapy. When long-term transgene expression is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of adeno-associated virus (AAV) would be particularly valuable. There will be wide-ranging applications of MSCs to frontier medical treatments in the near future.
Collapse
Affiliation(s)
- Keiya Ozawa
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Marmont AM. Will hematopoietic stem cell transplantation cure human autoimmune diseases? J Autoimmun 2008; 30:145-50. [DOI: 10.1016/j.jaut.2007.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Deane S, Meyers FJ, Gershwin ME. On reversing the persistence of memory: Hematopoietic stem cell transplant for autoimmune disease in the first ten years. J Autoimmun 2008; 30:180-96. [DOI: 10.1016/j.jaut.2007.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|