1
|
Teranishi H, Tsuda K, Kanzaki R, Hayashi T, Harada D. Safety and effectiveness of efgartigimod for intravenous infusion in patients with generalized myasthenia gravis: an interim analysis of Japanese post-marketing surveillance. Expert Opin Biol Ther 2025; 25:1-8. [PMID: 40200387 DOI: 10.1080/14712598.2025.2490063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Efgartigimod for intravenous infusion (efgartigimod-IV) is approved in Japan for generalized myasthenia gravis (gMG). Post-marketing surveillance was mandated by regulatory authorities to assess the safety and effectiveness of efgartigimod in patients with gMG. RESEARCH DESIGN AND METHODS Patients with gMG who received efgartigimod-IV between May 2022 and September 2023 were registered. The interim analysis data were cutoff in June 2024 and included patients whose institutions agreed to publication. RESULTS The safety analysis set consisted of 373 patients: 53.35% (n = 199) anti-acetylcholine receptor antibody positive, 14.21% (n = 53) anti-muscle-specific receptor kinase antibody positive, and 31.64% (n = 118) double-seronegative. Adverse drug reaction and serious adverse drug reaction were reported in 21.45% (80/373) and 4.29% (16/373) of patients, respectively. Although six deaths were reported, none of them were related to efgartigimod. The effectiveness analysis set consisted of 246 patients. After three weeks from the first administration, mean score of MG-Activities of Daily Living decreased from 7.5 to 4.4: -3.1 points improvement (standard deviation: 2.95, p < 0.001). No remarkable differences were observed in the response to efgartigimod between the subgroups of patient baseline characteristics, e.g. autoantibody profiles. CONCLUSIONS In real-world settings, efgartigimod-IV was well tolerated and effective in patients with gMG.
Collapse
Affiliation(s)
| | - Koichi Tsuda
- Medical Affairs, Argenx Japan K.K., Minato-ku, Japan
| | - Rumiko Kanzaki
- Global Patient Safety, Argenx Japan K.K., Minato-ku, Japan
| | - Tomoyo Hayashi
- Global Patient Safety, Argenx Japan K.K., Minato-ku, Japan
| | | |
Collapse
|
2
|
Lim JL, Jensen SM, Plomp JJ, Vankerckhoven B, Kneip C, Coppejans R, Steyaert C, Moens K, De Clercq L, Tannemaat MR, Ulrichts P, Silence K, van der Maarel SM, Vergoossen DL, Vanhauwaert R, Verschuuren JJ, Huijbers MG. Patient-specific therapeutic benefit of MuSK agonist antibody ARGX-119 in MuSK myasthenia gravis passive transfer models. iScience 2025; 28:111684. [PMID: 39898046 PMCID: PMC11783450 DOI: 10.1016/j.isci.2024.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Muscle-specific kinase (MuSK) orchestrates the establishment and maintenance of neuromuscular synapses. Autoantibodies targeting MuSK cause myasthenia gravis (MG), a disease characterized by skeletal muscle weakness. MuSK autoantibodies are predominantly IgG4 which are bispecific, functionally monovalent antibodies that are antagonists of MuSK signaling. We hypothesized that bivalent MuSK agonist antibodies can rescue MuSK MG. Here, we investigated whether ARGX-119, a MuSK frizzled-like domain agonist antibody, can ameliorate disease in passive transfer models induced by polyclonal patient IgG4. ARGX-119 improved survival and muscle weakness in a mouse model induced by one patient material, but not by three others. Patient-specific efficacy could not be explained by titer or competition for ARGX-119 binding, but rather correlated with the presence of MuSK activating antibodies in some patients. This first proof of concept of a MuSK agonist in a clinically relevant MuSK MG model forms a starting point for therapeutic studies toward ARGX-119 efficacy in neuromuscular diseases.
Collapse
Affiliation(s)
- Jamie L. Lim
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stine Marie Jensen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap J. Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | - Martijn R. Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Dana L.E. Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jan J. Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Hu G, Zhao X, Wang Y, Zhu X, Sun Z, Yu X, Wang J, Liu Q, Zhang J, Zhang Y, Yang J, Chang T, Ruan Z, Lv J, Gao F. Advances in B Cell Targeting for Treating Muscle-Specific Tyrosine Kinase-Associated Myasthenia Gravis. Immunotargets Ther 2024; 13:707-720. [PMID: 39678139 PMCID: PMC11646387 DOI: 10.2147/itt.s492062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Myasthenia gravis (MG) is a typical autoimmune disease of the nervous system. It is characterized by skeletal muscle weakness and fatigue due to impaired neuromuscular junction transmission mediated by IgG autoantibodies. Muscle-specific receptor tyrosine kinase-associated MG (MuSK-MG), a rare and severe subtype of MG, is distinguished by the presence of anti-MuSK antibodies; it responds poorly to traditional therapies. Recent research on MuSK-MG treatment has focused on specific targeted therapies. Since B cells play a critical pathogenic role in producing autoantibodies and inflammatory mediators, they are often considered the preferred target for treating MuSK-MG. Currently, various B cell-targeted drugs have been developed to treat MuSK-MG; they have shown good therapeutic effects. This review explores the evolving landscape of B cell-targeted therapies in MuSK-MG, focusing on their mechanisms, efficacy, and safety, and the current limitations associated with their use. We discuss current B cell-targeted therapies aimed at depleting or modulating B cells via both direct and indirect approaches. Furthermore, we focus on novel and promising strategies such as Chimeric Autoantibody Receptor T cell therapy, which explicitly targets MuSK-specific B cells without compromising general humoral immunity. Finally, this review provides an outlook on the potential benefits and limitations of B cell-targeted therapy in developing new therapies for MuSK-MG. We conclude by discussing future research efforts needed to optimize these therapies, expand treatment options, and improve long-term outcomes in MuSK-MG management.
Collapse
Affiliation(s)
- Guanlian Hu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiren Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhan Sun
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jiahui Wang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qian Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ting Chang
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
4
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Mousavi A, Kumar P, Frykman H. The changing landscape of autoantibody testing in myasthenia gravis in the setting of novel drug treatments. Clin Biochem 2024; 133-134:110826. [PMID: 39357636 DOI: 10.1016/j.clinbiochem.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Acquired myasthenia gravis (MG) is an autoimmune disease targeting the specific proteins in the postsynaptic muscle membrane. 50% of ocular and 80% of generalized MG have acetylcholine receptor antibodies (AChR Abs). 1-10% of MG patients have antibodies against muscle-specific kinase (MuSK), and 2-50 % of seronegative MG cases have antibodies against lipoprotein-receptor-related protein4 antibodies (LRP4 Abs). Serological testing is crucial for diagnosing and determining the appropriate therapeutic approach for MG patients. The radioimmunoprecipitation assay (RIPA) method is a historical standard test for detecting the AChR Abs and MuSK Abs. While it has nearly 100% specificity in the AChR Abs detection, its sensitivity is between 50--92%. The sensitivity and specificity of RIPA for detecting MuSK Abs is much lower. The fixed and live Cell-Based assays (f-CBA and L- CBA) have higher sensitivity than RIPA. With advancements in the serological diagnosis and management of MG, we now recommend a complete reflex testing algorithm on the first pretreatment sample of a suspected MG patient, starting with the binding and blocking assays for AChR Abs by RIPA and/ or f-CBA. If AChR Ab is negative, then reflex to MuSK Abs by RIPA and/ or CBAs. If AChR and MuSK Abs are negative, then use clustered L-CBA by request.
Collapse
Affiliation(s)
- Ali Mousavi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Pankaj Kumar
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Hans Frykman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada; Neurocode Lab. Inc. Bellingham, Washington, USA.
| |
Collapse
|
6
|
Yasuda M, Uzawa A, Onishi Y, Handa H, Akamine H, Ogaya E, Ozawa Y, Masuda H, Mori M, Kuwabara S. Elevated serum levels of C-terminal agrin fragment in acetylcholine receptor antibody-positive myasthenia gravis. J Neuroimmunol 2024; 396:578455. [PMID: 39276618 DOI: 10.1016/j.jneuroim.2024.578455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Agrin is essential for neuromuscular junction (NMJ) formation and maintenance. The C-terminal agrin fragment (CAF), generated by neurotrypsin-mediated cleavage of agrin, has been gaining attention as a potential biomarker for sarcopenia. We investigated serum CAF levels in myasthenia gravis (MG), a NMJ disorder. Compared to healthy controls, serum CAF levels were significantly elevated in acetylcholine receptor antibody-positive MG (AChR-MG) patients, but not in muscle-specific kinase antibody-positive MG patients. In AChR-MG, baseline and post-treatment CAF levels inversely correlated with post-treatment MG activities of daily living scores, suggesting that elevated CAF levels may reflect protective mechanisms against AChR-MG pathogenesis, such as improved NMJ regeneration.
Collapse
Affiliation(s)
- Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, NHO Chiba Medical Center, Japan
| | - Hideo Handa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Etsuko Ogaya
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Japanese Narita Red Cross Hospital, Japan
| | - Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
7
|
Gaig C, Sabater L. Clinical presentations and antibody mechanisms in anti-IgLON5 disease. Rev Neurol (Paris) 2024; 180:940-949. [PMID: 39304359 DOI: 10.1016/j.neurol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 09/22/2024]
Abstract
Anti-IgLON5 disease is a rare neurological disease, identified just ten years ago, where autoimmunity and neurodegeneration converge. The heterogeneity of symptoms, sometimes mimicking pure neurodegenerative diseases or motor neuron diseases, in addition to lack of awareness, represents a diagnostic challenge. Biomarkers of neuronal damage in combination with in vivo visualization of tau deposition using positron emission tomography (PET) scanning could represent a major advance in monitoring disease progression. Recent studies with more autopsies available have helped refine the knowledge of the pathological features of the disease and strengthen the autoimmune hypothesis of the disease. Although the pathogenesis of anti-IgLON5 disease remains unclear, the irreversible antibody-mediated decrease of IgLON5 clusters from the cell surface and alterations produced in the cytoskeleton, as well as the behavioural abnormalities and signs of neuroinflammation and neurodegeneration observed in the brains of animals infused with antibodies from patients by passive transfer, which have recently been published, support the autoimmune hypothesis of the disease. This review aims to summarize these important aspects and recent advances in the pathophysiology of anti-IgLON5 disease.
Collapse
Affiliation(s)
- C Gaig
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - L Sabater
- Fundació de Recerca Biomèdica Clínic Barcelona-Institut d'Investigacions August Pi i Sunyer-Caixa Research Institute, Universitat de Barcelona, Barcelona, Spain; Spanish National Network for Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
8
|
Pas HH, van der Molen M, van Nijen-Vos L, Nijenhuis M, Bremer J. The Autoimmune IgG Subclass Response Defines the IgG Deposition Pattern in Pemphigus Patient Skin. J Invest Dermatol 2024; 144:1649-1650. [PMID: 38272208 DOI: 10.1016/j.jid.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Hendri H Pas
- Center of Expertise for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Marije van der Molen
- Center of Expertise for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura van Nijen-Vos
- Center of Expertise for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miranda Nijenhuis
- Center of Expertise for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Center of Expertise for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Ma C, Liu D, Wang B, Yang Y, Zhu R. Advancements and prospects of novel biologicals for myasthenia gravis: toward personalized treatment based on autoantibody specificities. Front Pharmacol 2024; 15:1370411. [PMID: 38881870 PMCID: PMC11177092 DOI: 10.3389/fphar.2024.1370411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disease with a prevalence of 150-250 cases per million individuals. Autoantibodies include long-lived antibodies against the acetylcholine receptor (AChR), mainly of the IgG1 subclass, and IgG4, produced almost exclusively by short-lived plasmablasts, which are prevalent in muscle-specific tyrosine kinase (MuSK) myasthenia gravis. Numerous investigations have demonstrated that MG patients receiving conventional medication today still do not possess satisfactory symptom control, indicating a substantial disease burden. Subsequently, based on the type of the autoantibody and the pathogenesis, we synthesized the published material to date and reached a conclusion regarding the literature related to personalized targeted therapy for MG. Novel agents for AChR MG have shown their efficacy in clinical research, such as complement inhibitors, FcRn receptor antagonists, and B-cell activating factor (BAFF) inhibitors. Rituximab, a representative drug of anti-CD20 therapy, has demonstrated benefits in treatment of MuSK MG patients. Due to the existence of low-affinity antibodies or unidentified antibodies that are inaccessible by existing methods, the treatment for seronegative MG remains complicated; thus, special testing and therapy considerations are necessary. It may be advantageous to initiate the application of novel biologicals at an early stage of the disease. Currently, therapies can also be combined and individualized according to different types of antibodies. With such a wide range of drugs, how to tailor treatment strategies to patients with various conditions and find the most suitable solution for each MG profile are our necessary and urgent aims.
Collapse
Affiliation(s)
- Chi Ma
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Benqiao Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
He T, Chen K, Li Y, Luo Z, Luo M, Yang H. Clinical Features and Prognostic Analysis of MuSK-Antibody-Positive Myasthenia Gravis versus Double-Seropositive Myasthenia Gravis: A Single-Center Study from Central South China. Neuropsychiatr Dis Treat 2024; 20:725-735. [PMID: 38566882 PMCID: PMC10986406 DOI: 10.2147/ndt.s450651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose To decipher the discrepancies between muscle-specific kinase antibody-positive myasthenia gravis (MuSK-MG) and double-seropositive myasthenia gravis (DSP-MG), and to determine prognostic factors for minimal manifestation status (MMS) achievement in MG patients with MuSK autoantibodies (MuSK-Ab). Patients and Methods A total of 34 MG patients seropositive for MuSK-Ab were enrolled in this study. The demographic and clinical features were compared between MuSK-MG (n = 28) and DSP-MG (n = 6) patients, and factors affecting MMS induction in all patients with MuSK-Ab were identified using Cox regression analysis. Results Compared to MuSK-MG patients, those with DSP-MG had similar clinical characteristics, except that they had a lower frequency of bulbar muscle involvement at nadir (50% vs 92.9%; P = 0.029) and higher proportions of comorbidities with diabetes mellitus (33.3% vs 0%; P = 0.027) and thymic abnormalities (33.3% vs 0%; P = 0.027). Higher MG Activities of Daily Living (MG-ADL) scores (HR = 0.16, 95% CI: 0.037-0.7, P = 0.015) and axial muscle involvement at nadir (HR = 0.39, 95% CI: 0.16-0.94, P = 0.035) were negative prognostic factors for MMS achievement in patients with MuSK-Ab regardless of acetylcholine receptor antibody (AChR-Ab) positivity. Multivariable Cox regression analysis further established higher MG-ADL scores at the nadir (HR = 0.19, 95% CI: 0.04-0.94; P = 0.042) as an independent risk factor for MMS achievement. Conclusion DSP-MG was comparable to MuSK-MG and could be considered a single entity in our cohort. In all MG patients with MuSK-Ab, a higher MG-ADL score at nadir may herald a lower chance of MMS achievement, with no observed potential effect of AChR-Ab presence.
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
12
|
Wang F, Cheng J, Niu X, Li L. Respiratory failure as first presentation of myasthenia gravis: a case report. J Int Med Res 2024; 52:3000605241234585. [PMID: 38443765 PMCID: PMC10916481 DOI: 10.1177/03000605241234585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Myasthenia gravis (MG) is often complicated by respiratory failure, an exacerbation known as myasthenic crisis. However, most patients with MG develop respiratory symptoms during the late course of the disease. Respiratory failure as an exclusive initial and primary complaint in patients with MG is rare and seldom reported. We herein describe a woman in her late 50s who presented with respiratory failure and was diagnosed with obesity hypoventilation syndrome at a local hospital. Her condition gradually worsened during the next 4 months and became accompanied by dysphagia. After 1 year of medical investigation, she was diagnosed in our hospital. A high level of anti-muscle-specific receptor tyrosine kinase antibody was found in her serum, and stimulation and electromyography results suggested MG. The patient's symptoms were improved by intravenous immunoglobulin and hormone therapy. This case reminds physicians to consider MG when encountering a patient who initially presents with respiratory failure.
Collapse
Affiliation(s)
- Fangming Wang
- Hebei Medical University Graduate School, Shijiazhuang, China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
13
|
Tannemaat MR, Huijbers MG, Verschuuren JJGM. Myasthenia gravis-Pathophysiology, diagnosis, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:283-305. [PMID: 38494283 DOI: 10.1016/b978-0-12-823912-4.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Collapse
Affiliation(s)
- Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Yasuda M, Uzawa A, Kuwabara S, Suzuki S, Akamine H, Onishi Y, Ozawa Y, Kawaguchi N, Kubota T, Takahashi MP, Suzuki Y, Watanabe G, Kimura T, Sugimoto T, Samukawa M, Minami N, Masuda M, Konno S, Nagane Y, Utsugisawa K. Clinical features and outcomes of patients with muscle-specific kinase antibody-positive myasthenia gravis in Japan. J Neuroimmunol 2023; 385:578241. [PMID: 37952282 DOI: 10.1016/j.jneuroim.2023.578241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
This study included 51 patients with muscle-specific kinase antibody-positive myasthenia gravis (MuSK-MG) from a Japanese multicenter survey to examine clinical features and outcomes. Median onset age was 37 years and female predominance was observed. All patients developed generalized symptoms and almost all (50/51) patients had bulbar symptoms. About half of the patients met the criteria for refractory MG. The refractory group had a lower age of onset, higher severity scores, and higher maximum daily doses of oral prednisolone compared to the nonrefractory group. The outcomes for MuSK-MG patients in Japan are not favorable, indicating the need for more aggressive treatment.
Collapse
Affiliation(s)
- Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Kawaguchi
- Department of Neurology, Neurology Chiba Clinic, Chiba, Japan
| | - Tomoya Kubota
- Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masanori P Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Suzuki
- Department of Neurology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Genya Watanabe
- Department of Neurology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo Medical University, Nishinomiya, Japan
| | - Takamichi Sugimoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan
| | - Makoto Samukawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoya Minami
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masayuki Masuda
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Shingo Konno
- Department of Neurology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yuriko Nagane
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| | | |
Collapse
|
15
|
Zhou Q, Xiong Z, Yang D, Xiong C, Li X. The association between bullous pemphigoid and cognitive outcomes in middle-aged and older adults: A systematic review and meta-analysis. PLoS One 2023; 18:e0295135. [PMID: 38033098 PMCID: PMC10688758 DOI: 10.1371/journal.pone.0295135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Bullous pemphigoid (BP) is a rare autoimmune skin condition that causes large fluid-filled blisters on the skin, especially in older adults. BP has been linked to various diseases and medications, but its association with cognitive outcomes is unclear. METHODS We conducted a systematic review and meta-analysis of studies investigating the association between BP and cognitive outcomes, such as all-cause dementia, Alzheimer's disease, and vascular dementia in middle-aged and older adults. We searched PubMed, Embase, and Web of Science databases for relevant studies published up to March 2023. We included studies that reported odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) for the association between BP and cognitive outcomes. We pooled the ORs, or HRs using random-effects models and performed subgroup and sensitivity analyses to explore potential sources of heterogeneity. RESULTS The study selection process identified 13 studies for inclusion in the analysis, 11 studied arms of which used a case-control design and 7 studied arms of which used a cohort design. The studies were conducted primarily in Europe, with a few from Asia and the United States. The meta-analysis found that BP was associated with higher odds of all-cause dementia in middle-aged and older participants in both cohort studies(HR = 1.41,95% CI: 1.20-1.66, P = 0.000) and case-control (OR = 4.25, 95% CI, 2.73-6.61; P = 0.000). The study found no significant publication bias in the included studies. The meta-regression analyses identified some subgroups associated with significantly reported odds ratios in case-control association analysis, including Europe, BP diagnosed based on clinical, histology, immunofluorescence, and both adjustment status of NO and YES. CONCLUSIONS Our meta-analysis suggests that BP is associated with an increased risk of all-cause dementia in middle-aged and older adults. Further studies are needed to elucidate the underlying mechanisms and causal relationship between BP and cognitive outcomes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Zhenrong Xiong
- Public Relations Department, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Dejiang Yang
- Department of Neurology, First Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Chongyu Xiong
- Department of Neurology, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Xinming Li
- Department of Neurology, First Hospital of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Cao M, Liu WW, Maxwell S, Huda S, Webster R, Evoli A, Beeson D, Cossins JA, Vincent A. IgG1-3 MuSK Antibodies Inhibit AChR Cluster Formation, Restored by SHP2 Inhibitor, Despite Normal MuSK, DOK7, or AChR Subunit Phosphorylation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200147. [PMID: 37582613 PMCID: PMC10427144 DOI: 10.1212/nxi.0000000000200147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and βAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in βAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.
Collapse
Affiliation(s)
- Michelangelo Cao
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Wei-Wei Liu
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Susan Maxwell
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Saif Huda
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Richard Webster
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith A Cossins
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Nuffield Department of Clinical Neurosciences (M.C., W.W.L., S.M., R.W., D.B., J.A.C., A.V.), University of Oxford; Norfolk and Norwich University Hospital (M.C.); The Walton Centre NHS Foundation Trust (S.H.), Liverpool, United Kingdom; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|
17
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|
18
|
Yu X, Wax J, Riemekasten G, Petersen F. Functional autoantibodies: Definition, mechanisms, origin and contributions to autoimmune and non-autoimmune disorders. Autoimmun Rev 2023; 22:103386. [PMID: 37352904 DOI: 10.1016/j.autrev.2023.103386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
A growing body of evidence underscores the relevance of functional autoantibodies in the development of various pathogenic conditions but also in the regulation of homeostasis. However, the definition of functional autoantibodies varies among studies and a comprehensive overview on this emerging topic is missing. Here, we do not only explain functional autoantibodies but also summarize the mechanisms underlying the effect of such autoantibodies including receptor activation or blockade, induction of receptor internalization, neutralization of ligands or other soluble extracellular antigens, and disruption of protein-protein interactions. In addition, in this review article we discuss potential triggers of production of functional autoantibodies, including infections, immune deficiency and tumor development. Finally, we describe the contribution of functional autoantibodies to autoimmune diseases including autoimmune thyroid diseases, myasthenia gravis, autoimmune pulmonary alveolar proteinosis, autoimmune autonomic ganglionopathy, pure red cell aplasia, autoimmune encephalitis, pemphigus, acquired thrombotic thrombocytopenic purpura, idiopathic dilated cardiomyopathy and systemic sclerosis, as well as non-autoimmune disorders such as allograft rejection, infectious diseases and asthma.
Collapse
Affiliation(s)
- Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany.
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, 23538 Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
19
|
Huang EJC, Wu MH, Wang TJ, Huang TJ, Li YR, Lee CY. Myasthenia Gravis: Novel Findings and Perspectives on Traditional to Regenerative Therapeutic Interventions. Aging Dis 2023; 14:1070-1092. [PMID: 37163445 PMCID: PMC10389825 DOI: 10.14336/ad.2022.1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023] Open
Abstract
The prevalence of myasthenia gravis (MG), an autoimmune disorder, is increasing among all subsets of the population leading to an elevated economic and social burden. The pathogenesis of MG is characterized by the synthesis of autoantibodies against the acetylcholine receptor (AChR), low-density lipoprotein receptor-related protein 4 (LRP4), or muscle-specific kinase at the neuromuscular junction, thereby leading to muscular weakness and fatigue. Based on clinical and laboratory examinations, the research is focused on distinguishing MG from other autoimmune, genetic diseases of neuromuscular transmission. Technological advancements in machine learning, a subset of artificial intelligence (AI) have been assistive in accurate diagnosis and management. Besides, addressing the clinical needs of MG patients is critical to improving quality of life (QoL) and satisfaction. Lifestyle changes including physical exercise and traditional Chinese medicine/herbs have also been shown to exert an ameliorative impact on MG progression. To achieve enhanced therapeutic efficacy, cholinesterase inhibitors, immunosuppressive drugs, and steroids in addition to plasma exchange therapy are widely recommended. Under surgical intervention, thymectomy is the only feasible alternative to removing thymoma to overcome thymoma-associated MG. Although these conventional and current therapeutic approaches are effective, the associated adverse events and surgical complexity limit their wide application. Moreover, Restivo et al. also, to increase survival and QoL, further recent developments revealed that antibody, gene, and regenerative therapies (such as stem cells and exosomes) are currently being investigated as a safer and more efficacious alternative. Considering these above-mentioned points, we have comprehensively reviewed the recent advances in pathological etiologies of MG including COVID-19, and its therapeutic management.
Collapse
Affiliation(s)
- Evelyn Jou-Chen Huang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
20
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Abstract
INTRODUCTION Myasthenia gravis (MG) is a neurological B-cell mediated autoimmune disorder affecting the neuromuscular junction. MG therapeutics have always relied on nonselective immunosuppression with oral steroids and non-steroidal immunosuppressants, mainly with good clinical response. However, clinical stabilization is often reached at the cost of many troublesome side effects and up to 15% of MG patients are deemed as refractory to conventional immunosuppression. This highlights the need of a more targeted and efficacious therapeutic approach. Results from the randomized-controlled period of the CHAMPION study demonstrate a good safety, tolerability, and efficacy profile of ravulizumab compared to placebo. Like eculizumab, ravulizumab is an anti-C5 monoclonal antibody, but with an enhanced pharmacokinetic profile, that allows dosing every 8 weeks. AREAS COVERED We provide an overview of ravulizumab biological features and results from the phase III CHAMPION MG (NCT03920293) study. EXPERT OPINION Data of the CHAMPION MG trial demonstrate that ravulizumab is effective and safe in the treatment of generalized MG. Having a rapid clinical effect, with long-term clinical response, ravulizumab could represent a selective immunosuppressive drug of choice in the future therapeutic algorithm of MG, where conventional immunosuppressants slowly leave room for newer drugs with a more targeted mechanism of action.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
23
|
Behbehani R. Ocular Myasthenia Gravis: A Current Overview. Eye Brain 2023; 15:1-13. [PMID: 36778719 PMCID: PMC9911903 DOI: 10.2147/eb.s389629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Ocular myasthenia gravis (OMG) is a neuromuscular disease characterized by autoantibody production against post-synaptic proteins in the neuromuscular junction. The pathophysiological auto-immune mechanisms of myasthenia are diverse, and this is governed primarily by the type of autoantibody production. The diagnosis of OMG relies mainly on clinical assessment, the use of serological antibody assays for acetylcholine receptors (AchR), muscle-specific tyrosine kinase (MusK), and low-density lipoprotein 4 (LPR4). Other autoantibodies against post-synaptic proteins, such as cortactin and agrin, have been detected; however, their diagnostic value and pathogenic effect are not yet clearly defined. Clinical tests such as the ice test and electrophysiologic tests, particularly single-fiber electromyography, have a valuable role in diagnosis. The treatment of OMG is primarily through cholinesterase inhibitors (pyridostigmine), and steroids are frequently required in cases of ophthalmoplegia. Other immunosuppressive therapies include antimetabolites (azathioprine, mycophenolate mofetil, methotrexate) and biological agents such as B-cell depleting agents (Rituximab) and complement inhibitors (eculizumab). Evidence is scarce on the effect of immunosuppressive therapy on altering the natural course of OMG. Clinicians must be vigilant of a myasthenic syndrome in patients using immune-check inhibitors. Reliable and consistent biomarkers are required to assess disease severity and response to therapy to optimize the management of OMG. The purpose of this review is to summarize the current trends and the latest developments in diagnosing and treating OMG.
Collapse
Affiliation(s)
- Raed Behbehani
- Neuroophthalmology Unit, Ibn Sina Hospital, Kuwait City, Kuwait,Correspondence: Raed Behbehani, Ibn Sina Hospital, P.O Box 1180, Tel +965 2224 2999, Fax +965 2249 2406, Email
| |
Collapse
|
24
|
Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. J Allergy Clin Immunol 2023:S0091-6749(23)00091-X. [PMID: 36716825 DOI: 10.1016/j.jaci.2022.10.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.
Collapse
|
25
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Sánchez-Tejerina D, Sotoca J, Llaurado A, López-Diego V, Juntas-Morales R, Salvado M. New Targeted Agents in Myasthenia Gravis and Future Therapeutic Strategies. J Clin Med 2022; 11:6394. [PMID: 36362622 PMCID: PMC9658349 DOI: 10.3390/jcm11216394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease for which multiple immunomodulatory therapies are available. Nevertheless, MG has a significant impact on patient quality of life. In recent years, experts' main efforts have focused on optimizing treatment strategies, since disease burden is considerably affected by their safety and tolerability profiles, especially in patients with refractory phenotypes. This article aims to offer neurologists caring for MG patients an overview of the most innovative targeted drugs specifically designed for this disease and summarizes the recent literature and more recent evidence on agents targeting B cells and plasmablasts, complement inhibitors, and neonatal fragment crystallizable receptor (FcRn) antagonists. Positive clinical trial results have been reported, and other studies are ongoing. Finally, we briefly discuss how the introduction of these novel targeted immunological therapies in a changing management paradigm would affect not only clinical outcomes, disease burden, safety, and tolerability, but also health spending in a condition that is increasingly managed based on a patient-centred model.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Salvado
- Clinic of Neuromuscular Disorders and Rare Diseases, Neurology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, European Reference Network for Neuromuscular and Rare Diseases EURO-NMD, 08035 Barcelona, Spain
| |
Collapse
|
27
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
28
|
Jentzer A, Attal A, Roué C, Raymond J, Lleixà C, Illa I, Querol L, Taieb G, Devaux J. IgG4 Valency Modulates the Pathogenicity of Anti–Neurofascin-155 IgG4 in Autoimmune Nodopathy. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/5/e200014. [PMID: 35948442 PMCID: PMC9365386 DOI: 10.1212/nxi.0000000000200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives IgG4 autoantibodies to neurofascin-155 (Nfasc155) are associated with a subgroup of patients with chronic inflammatory demyelinating polyneuropathy (CIDP), currently named autoimmune nodopathy. We previously demonstrated that those antibodies alter conduction along myelinated axons by inducing Nfasc155 depletion and paranode destruction. In blood, IgG4 have the potency to exchange their moiety with other unrelated IgG4 through a process called Fab-arm exchange (FAE). This process results in functionally monovalent antibodies and may affect the pathogenicity of autoantibodies. Here, we examined this issue and whether FAE is beneficial or detrimental for Nfasc155 autoimmune nodopathy. Methods The bivalency and monospecificity of anti-Nfasc155 were examined by sandwich ELISA in 10 reactive patients, 10 unreactive CIDP patients, and 10 healthy controls. FAE was induced in vitro using reduced glutathione and unreactive IgG4, and the ratio of the κ:λ light chain was monitored. To determine the pathogenic potential of bivalent anti-Nfasc155 IgG4, autoantibodies derived from patients were enzymatically cleaved into monovalent Fab and bivalent F(ab’)2 or swapped with unreactive IgG4 and then were injected in neonatal animals. Results Monospecific bivalent IgG4 against Nfasc155 were detected in the serum of all reactive patients, indicating that a fraction of IgG4 have not undergone FAE in situ. These IgG4 were, nonetheless, capable of engaging into FAE with unreactive IgG4 in vitro, and this decreased the levels of monospecific antibodies and modulated the ratio of the κ:λ light chain. When injected in animals, monovalent anti-Nfasc155 Fab did not alter the formation of paranodes; by contrast, both native anti-Nfasc155 IgG4 and F(ab’)2 fragments strongly impaired paranode formation. The promotion of FAE with unreactive IgG4 also strongly diminished the pathogenic potential of anti-Nfasc155 IgG4 in animals and decreased IgG4 clustering on Schwann cells. Discussion Our findings demonstrate that monospecific and bivalent anti-Nfasc155 IgG4 are detected in patients and that those autoantibodies are the pathogenic ones. The transformation of anti-Nfasc155 IgG4 into monovalent Fab or functionally monovalent IgG4 through FAE strongly decreases paranodal alterations. Bivalency thus appears crucial for Nfasc155 clustering and paranode destruction.
Collapse
Affiliation(s)
- Alexandre Jentzer
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Arthur Attal
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Clémence Roué
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Julie Raymond
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Cinta Lleixà
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Isabel Illa
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Luis Querol
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Guillaume Taieb
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Jérôme Devaux
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain.
| |
Collapse
|
29
|
Cardiac troponin T and autoimmunity in skeletal muscle aging. GeroScience 2022; 44:2025-2045. [PMID: 35034279 PMCID: PMC9616986 DOI: 10.1007/s11357-022-00513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Age-related muscle mass and strength decline (sarcopenia) impairs the performance of daily living activities and can lead to mobility disability/limitation in older adults. Biological pathways in muscle that lead to mobility problems have not been fully elucidated. Immunoglobulin G (IgG) infiltration in muscle is a known marker of increased fiber membrane permeability and damage vulnerability, but whether this translates to impaired function is unknown. Here, we report that IgG1 and IgG4 are abundantly present in the skeletal muscle (vastus lateralis) of ~ 50% (11 out of 23) of older adults (> 65 years) examined. Skeletal muscle IgG1 was inversely correlated with physical performance (400 m walk time: r = 0.74, p = 0.005; SPPB score: r = - 0.73, p = 0.006) and muscle strength (r = - 0.6, p = 0.05). In a murine model, IgG was found to be higher in both muscle and blood of older, versus younger, C57BL/6 mice. Older mice with a higher level of muscle IgG had lower motor activity. IgG in mouse muscle co-localized with cardiac troponin T (cTnT) and markers of complement activation and apoptosis/necroptosis. Skeletal muscle-inducible cTnT knockin mice also showed elevated IgG in muscle and an accelerated muscle degeneration and motor activity decline with age. Most importantly, anti-cTnT autoantibodies were detected in the blood of cTnT knockin mice, old mice, and older humans. Our findings suggest a novel cTnT-mediated autoimmune response may be an indicator of sarcopenia.
Collapse
|
30
|
Lenti MV, Rossi CM, Melazzini F, Gastaldi M, Bugatti S, Rotondi M, Bianchi PI, Gentile A, Chiovato L, Montecucco C, Corazza GR, Di Sabatino A. Seronegative autoimmune diseases: A challenging diagnosis. Autoimmun Rev 2022; 21:103143. [PMID: 35840037 DOI: 10.1016/j.autrev.2022.103143] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases (AID) are increasingly prevalent conditions which comprise more than 100 distinct clinical entities that are responsible for a great disease burden worldwide. The early recognition of these diseases is key for preventing their complications and for tailoring proper management. In most cases, autoantibodies, regardless of their potential pathogenetic role, can be detected in the serum of patients with AID, helping clinicians in making a definitive diagnosis and allowing screening strategies for early -and sometimes pre-clinical- diagnosis. Despite their undoubted crucial role, in a minority of cases, patients with AID may not show any autoantibody, a condition that is referred to as seronegative AID. Suboptimal accuracy of the available laboratory tests, antibody absorption, immunosuppressive therapy, immunodeficiencies, antigen exhaustion, and immunosenescence are the main possible determinants of seronegative AID. Indeed, in seronegative AID, the diagnosis is more challenging and must rely on clinical features and on other available tests, often including histopathological evaluation and radiological diagnostic tests. In this review, we critically dissect, in a narrative fashion, the possible causes of seronegativity, as well as the diagnostic and management implications, in several AID including autoimmune gastritis, celiac disease, autoimmune liver disease, rheumatoid arthritis, autoimmune encephalitis, myasthenia gravis, Sjögren's syndrome, antiphospholipid syndrome, and autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Federica Melazzini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Bugatti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Paola Ilaria Bianchi
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonella Gentile
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Luca Chiovato
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Carlomaurizio Montecucco
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
31
|
Dalakas MC. Role of complement, anti-complement therapeutics, and other targeted immunotherapies in myasthenia gravis. Expert Rev Clin Immunol 2022; 18:691-701. [PMID: 35730504 DOI: 10.1080/1744666x.2022.2082946] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several patients with myasthenia gravis (MG) do not adequately respond to available drugs or exhibit poor tolerance, necessitating the need for new therapies. AREAS COVERED The paper discusses the rapidly evolving target-specific immunotherapies that promise long-standing remissions in the management of MG. It is specifically focused on the role of complement, anti-complement therapeutics, and the anti-FcRn and B cell monoclonals. EXPERT OPINION Anti-AChR antibodies cause internalization of the receptors and activate complement leading to in situ MAC formation that damages the post-synaptic membrane of the neuromuscular junction. Inhibiting MAC formation by antibodies targeting key complements subcomponents is a reasonable therapeutic goal. Indeed, the anti-C5 monoclonal antibodies, Eculizumab, Ravulizumab, and Zilucoplan, have been successfully tested in MG with Eculizumab first and now Ravulizumab FDA-approved for refractory MG based on sustained long-term benefits. Among the biologics that inhibit FcRn, Efgartigimod caused rapid reduction of the circulating IgG in the lysosomes, and induced sustained clinical remission with good safety profile leading to FDA-approved indication. Anti-B cell agents, like Rituximab, can induce sustained long-term remissions, especially in IgG4 antibody-mediated Musk-MG, by targeting short-lived antibody-secreting plasmablasts. These biologics offer effective targeted immunotherapies with good tolerance promising to change the therapeutic algorithm in the chronic MG management.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Neuroimmunology Unit, National and Kapodistrian University, University of Athens Medical School, Athens, Greece
| |
Collapse
|
32
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
33
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
34
|
Berger B, Schröter N. Changes in antibody titers and clinical course in myasthenia gravis retrospective study. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2022. [DOI: 10.1002/pnp.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin Berger
- Dr Berger is a Senior Physician and Dr Schröter is an Assistant Physician at the Clinic of Neurology and Neurophysiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nils Schröter
- Dr Berger is a Senior Physician and Dr Schröter is an Assistant Physician at the Clinic of Neurology and Neurophysiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
35
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
36
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
37
|
Beladakere Ramaswamy S, Singh S, Hooshmand S, Junsang C, Sweeney M, Govindarajan R. Current and Upcoming Treatment Modalities in Myasthenia Gravis. J Clin Neuromuscul Dis 2021; 23:75-99. [PMID: 34808650 DOI: 10.1097/cnd.0000000000000377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ABSTRACT Myasthenia gravis (MG) is one of the extensively studied autoimmune disorder. There has been a dramatic increase in research to further understand molecular pathogenesis of MG and clinical trials for new drugs in MG treatment in the past decade. This review article is to consolidate the available information in simple terms with students, residents, and fellows as target audience for easy learning and help application of this knowledge to clinical practice.
Collapse
|
38
|
Basile U, Napodano C, Gulli F, Pocino K, Di Santo R, Todi L, Basile V, Provenzano C, Ciasca G, Marino M. Laboratory Investigation of Hybrid IgG4 k/λ in MuSK Positive Myasthenia Gravis. Int J Mol Sci 2021; 22:ijms22179142. [PMID: 34502051 PMCID: PMC8430634 DOI: 10.3390/ijms22179142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
Myasthenia gravis with antibodies (Abs) against the muscle-specific tyrosine kinase (MuSK) is a rare autoimmune disorder (AD) of the neuromuscular junction (NMJ) and represents a prototype of AD with proven IgG4-mediated pathogenicity. Thanks to the mechanism of Fab-arm exchange (FAE) occurring in vivo, resulting MuSK IgG4 k/λ Abs increase their interference on NMJ and pathogenicity. The characterization of hybrid MuSK IgG4 as a biomarker for MG management is poorly investigated. Here, we evaluated total IgG4, hybrid IgG4 k/λ, and the hybrid/total ratio in 14 MuSK-MG sera in comparison with 24 from MG with Abs against acetylcholine receptor (AChR) that represents the not IgG4-mediated MG form. In both subtypes of MG, we found that the hybrid/total ratio reflects distribution reported in normal individuals; instead, when we correlated the hybrid/total ratio with specific immune-reactivity we found a positive correlation only with anti-MuSK titer, with a progressive increase of hybrid/total mean values with increasing disease severity, indirectly confirming that most part of hybrid IgG4 molecules are engaged in the anti-MuSK pathogenetic immune-reactivity. Further analysis is necessary to strengthen the significance of this less unknown biomarker, but we retain it is full of a diagnostic-prognostic powerful potential for the management of MuSK-MG.
Collapse
Affiliation(s)
- Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | | | - Francesca Gulli
- Laboratorio di Patologia Clinica, Ospedale Madre Giuseppina Vannini, 00177 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa Patologia Clinica, Ospedale Generale di Zona, San Pietro Fatebenefratelli, 00189 Rome, Italy;
| | - Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Fondazione Policlinico “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.S.); (G.C.)
| | - Laura Todi
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (C.P.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research, Advanced Diagnostics and Technological Innovation, IFO-Regina Elena National Cancer Institute, 00128 Rome, Italy;
| | - Carlo Provenzano
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (C.P.)
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Fondazione Policlinico “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.D.S.); (G.C.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (C.P.)
- Correspondence:
| |
Collapse
|
39
|
Evoli A, Spagni G, Monte G, Damato V. Heterogeneity in myasthenia gravis: considerations for disease management. Expert Rev Clin Immunol 2021; 17:761-771. [PMID: 34043932 DOI: 10.1080/1744666x.2021.1936500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myasthenia gravis is a rare disease of the neuromuscular junction and a prototype of B cell-driven immunopathology. Pathogenic antibodies target post-synaptic transmembrane proteins, most commonly the nicotinic acetylcholine receptor and the muscle-specific tyrosine kinase, inducing end-plate alterations and neuromuscular transmission impairment. Several clinical subtypes are distinct on the basis of associated antibodies, age at symptom onset, thymus pathology, genetic factors, and weakness distribution. These subtypes have distinct pathogenesis that can account for different responses to treatment. Conventional therapy is based on the use of symptomatic agents, steroids, immunosuppressants and thymectomy. Of late, biologics have emerged as effective therapeutic options.Areas covered: In this review, we will discuss the management of myasthenia gravis in relation to its phenotypic and biological heterogeneity, in the light of recent advances in the disease immunopathology, new diagnostic tools, and results of clinical trialsExpert opinion: Clinical management is shaped on serological subtype, and patient age at onset, lifestyle and comorbidities, balancing therapeutic needs and safety. Although reliable biomarkers predictive of clinical and biologic outcome are still lacking, recent developments promise a more effective and safe treatment. Disease subtyping according to serological testing and immunopathology is crucial to the appropriateness of clinical management.
Collapse
Affiliation(s)
- Amelia Evoli
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gabriele Monte
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
40
|
Fc-Receptor Targeted Therapies for the Treatment of Myasthenia gravis. Int J Mol Sci 2021; 22:ijms22115755. [PMID: 34071155 PMCID: PMC8198115 DOI: 10.3390/ijms22115755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which immunoglobulin G (IgG) antibodies (Abs) bind to acetylcholine receptors (AChR) or to functionally related molecules in the postsynaptic membrane at the neuromuscular junction. IgG crystallizable fragment (Fc)-mediated effector functions, such as antibody-dependent complement deposition, contribute to disease development and progression. Despite progress in understanding Ab-mediated disease mechanisms, immunotherapy of MG remained rather unspecific with corticosteroids and maintenance with immunosuppressants as first choice drugs for most patients. More specific therapeutic IgG Fc-based platforms that reduce serum half-life or effector functions of pathogenic MG-related Abs are currently being developed, tested in clinical trials or have recently been successfully translated into the clinic. In this review, we illustrate mechanisms of action and clinical efficacies of emerging Fc-mediated therapeutics such as neonatal Fc receptor (FcRn)-targeting agents. Furthermore, we evaluate prospects of therapies targeting classical Fc receptors that have shown promising therapeutic efficacy in other antibody-mediated conditions. Increased availability of Fc- and Fc receptor-targeting biologics might foster the development of personalized immunotherapies with the potential to induce sustained disease remission in patients with MG.
Collapse
|
41
|
Gastaldi M, Scaranzin S, Businaro P, Mobilia E, Benedetti L, Pesce G, Franciotta D. Improving laboratory diagnostics in myasthenia gravis. Expert Rev Mol Diagn 2021; 21:579-590. [PMID: 33970749 DOI: 10.1080/14737159.2021.1927715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Myasthenia gravis (MG) is a prototypical autoimmune disease, characterized by pathogenic autoantibodies targeting structures of the neuromuscular junction. Radioimmunoprecipitation assays (RIPAs) represent the gold standard for their detection. However, new methods are emerging to complement, or overcome RIPAs, also with the perspective of eliminating the use of radioactive reagents.Areas covered: We discuss advances in laboratory methods, prompted especially by cell-based assays (CBAs), for the detection of the autoantibodies of MG diagnostics, above all those to the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low molecular-weight receptor-related low-density lipoprotein-4 (LRP4).Expert opinion: CBA technology makes AChRs aggregate on cell membranes, thus allowing to detect autoantibodies to clustered AChRs, with reduction of seronegative MG cases. The diagnostic relevance of RIPA/CBA-measurable LRP4 antibodies is still unclear, in Caucasian patients at least. Live CBAs for the detection of AChR, MuSK, and LRP4 antibodies might represent an alternative to RIPAs, but first require full validation. CBAs could be used as screening tests, limiting RIPAs for antibody quantification. To this end, ELISAs might be an alternative.Fixation procedures preserving enough degree of antigen conformationality could yield AChR and MuSK CBAs suitable for a wide use in clinical-chemistry laboratories.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Emanuela Mobilia
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giampaola Pesce
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine (Dimi), University of Genova, Genova, Italy
| | - Diego Franciotta
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
42
|
Napodano C, Marino M, Stefanile A, Pocino K, Scatena R, Gulli F, Rapaccini GL, Delli Noci S, Capozio G, Rigante D, Basile U. Immunological Role of IgG Subclasses. Immunol Invest 2021; 50:427-444. [PMID: 32522062 DOI: 10.1080/08820139.2020.1775643] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The loss of tolerance to self-antigens is the unequivocal "red line" of autoimmunity: both development of autoreactive T and B cells and production of polyclonal autoantibodies represent seminal keys to the pathogenesis of protean autoimmune diseases. Most of these autoantibodies are immunoglobulins G (IgG), functionally distinguished in four subclasses named IgG1, IgG2, IgG3, and IgG4, due to structural differences in the hinge and heavy chain constant regions. Different studies analyzed serum levels of IgG subclasses in the course of different disorders, showing that they might have a pathogenic role by regulating interactions among immunoglobulins, Fc-gamma receptors, and complement. To date, the mechanisms promoting different IgG subclasses distribution during the natural history of most autoimmune diseases remain somewhat unclear. Evidence from the medical literature shows that the serum IgG profile is peculiar for many autoimmune diseases, suggesting that different subclasses could be specific for the underlying driving autoantigens. A better knowledge of IgG subsets may probably help to elucidate their pathological task, but also to define their relevance for diagnostic purposes, patients' personalized management, and prognosis assessment.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - MariaPaola Marino
- Institute of General Pathology, Dipartimento Di Medicina E Chirurgia Traslazionale, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Annunziata Stefanile
- Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Krizia Pocino
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Roberto Scatena
- Dipartimento Di Medicina Di Laboratorio, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Francesca Gulli
- Dipartimento Di Medicina Di Laboratorio, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Gian Lodovico Rapaccini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Delli Noci
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Capozio
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Donato Rigante
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Umberto Basile
- Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
43
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
44
|
Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis With Peripheral Nerve Hyperexcitability: Case Report and Literature Review. Clin Neuropharmacol 2021; 44:57-61. [PMID: 33470659 DOI: 10.1097/wnf.0000000000000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Administration of acetylcholinesterase inhibitors can bring about peripheral nerve hyperexcitability symptom in muscle-specific tyrosine kinase antibody positive myasthenia gravis, but the changes in electromyography before and after drug withdrawal have not been described in detail. METHODS Electromyography was performed on a case of muscle-specific tyrosine kinase antibody positive myasthenia gravis with peripheral nerve hyperexcitability correlated with the administration of pyridostigmine bromide before and after drug withdrawal, respectively. RESULTS Afterdischarges close after M waves appeared on the tibial nerve, common peroneal nerve, median nerve, and ulnar nerve, and these presented unique characteristics in repetitive nerve stimulation. Ten days after pyridostigmine bromide withdrawal, the second electromyography examination was carried out and showed that the afterdischarges on all nerves disappeared dramatically and the amplitude of tibial nerve F waves was elevated than before. CONCLUSIONS Afterdischarges can be an important indicator of muscle-specific tyrosine kinase antibody positive myasthenia gravis with peripheral nerve hyperexcitability correlated with acetylcholinesterase inhibitors.
Collapse
|
45
|
Frykman H, Kumar P, Oger J. Immunopathology of Autoimmune Myasthenia Gravis: Implications for Improved Testing Algorithms and Treatment Strategies. Front Neurol 2020; 11:596621. [PMID: 33362698 PMCID: PMC7755715 DOI: 10.3389/fneur.2020.596621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a heterogeneous condition, characterized by autoantibodies (Abs) that target functionally important structures within neuromuscular junctions (NMJ), thus affecting nerve-to-muscle transmission. MG patients are more often now subgrouped based on the profile of serum autoantibodies, which segregate with clinical presentation, immunopathology, and their response to therapies. The serological testing plays an essential role in confirming MG diagnosis and guiding disease management, although a small percentage of MG patients remain negative for antibodies. With the advancements in new highly effective pathophysiologically-specific immunotherapeutic options, it has become increasingly important to identify the specific Abs responsible for the pathogenicity in individual MG patients. There are several new assays and protocols being developed for the improved detection of Abs in MG patients. This review focuses on the divergent immunopathological mechanisms in MG, and discusses their relevance to improved diagnostic and treatment. We propose a comprehensive "reflex testing," algorithm for the presence of MG autoantibodies, and foresee that in the near future, the convenience and specificity of novel assays will permit the clinicians to consider them into routine systematic testing, thus stimulating laboratories to make these tests available. Moreover, adopting treatment driven testing algorithms will be crucial to identify subgroups of patients potentially benefiting from novel immunotherapies for MG.
Collapse
Affiliation(s)
- Hans Frykman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Pankaj Kumar
- BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Joel Oger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Lazaridis K, Tzartos SJ. Myasthenia Gravis: Autoantibody Specificities and Their Role in MG Management. Front Neurol 2020; 11:596981. [PMID: 33329350 PMCID: PMC7734299 DOI: 10.3389/fneur.2020.596981] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is the most common autoimmune disorder affecting the neuromuscular junction, characterized by skeletal muscle weakness and fatigability. It is caused by autoantibodies targeting proteins of the neuromuscular junction; ~85% of MG patients have autoantibodies against the muscle acetylcholine receptor (AChR-MG), whereas about 5% of MG patients have autoantibodies against the muscle specific kinase (MuSK-MG). In the remaining about 10% of patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG). Since serological tests are relatively easy and non-invasive for disease diagnosis, the improvement of methods for the detection of known autoantibodies or the discovery of novel autoantibody specificities to diminish SN-MG and to facilitate differential diagnosis of similar diseases, is crucial. Radioimmunoprecipitation assays (RIPA) are the staple for MG antibody detection, but over the past years, using cell-based assays (CBAs) or improved highly sensitive RIPAs, it has been possible to detect autoantibodies in previously SN-MG patients. This led to the identification of more patients with antibodies to the classical antigens AChR and MuSK and to the third MG autoantigen, the low-density lipoprotein receptor-related protein 4 (LRP4), while antibodies against other extracellular or intracellular targets, such as agrin, Kv1.4 potassium channels, collagen Q, titin, the ryanodine receptor and cortactin have been found in some MG patients. Since the autoantigen targeted determines in part the clinical manifestations, prognosis and response to treatment, serological tests are not only indispensable for initial diagnosis, but also for monitoring treatment efficacy. Importantly, knowing the autoantibody profile of MG patients could allow for more efficient personalized therapeutic approaches. Significant progress has been made over the past years toward the development of antigen-specific therapies, targeting only the specific immune cells or autoantibodies involved in the autoimmune response. In this review, we will present the progress made toward the development of novel sensitive autoantibody detection assays, the identification of new MG autoantigens, and the implications for improved antigen-specific therapeutics. These advancements increase our understanding of MG pathology and improve patient quality of life by providing faster, more accurate diagnosis and better disease management.
Collapse
Affiliation(s)
| | - Socrates J Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece.,Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
47
|
Gstöttner C, Vergoossen DLE, Wuhrer M, Huijbers MGM, Domínguez-Vega E. Sheathless CE-MS as a tool for monitoring exchange efficiency and stability of bispecific antibodies. Electrophoresis 2020; 42:171-176. [PMID: 32901958 DOI: 10.1002/elps.202000166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 01/17/2023]
Abstract
Bispecific monoclonal antibodies (BsAbs) are receiving great attention due to their extensive benefits as biopharmaceuticals and their involvement in IgG4 mediated autoimmune diseases. While the production of BsAbs is getting more accessible, their analytical characterization remains challenging. We explored the potential of sheathless CE-MS for monitoring exchange efficiency and stability of in-house produced bispecific antibodies. Two IgG4 bispecific antibodies with different molecular characteristics were prepared using controlled Fragment antigen binding (Fab)-arm exchange. Separation of BsAbs from their parent monospecific antibodies was achieved using a polyethyleniimine (PEI)-coated capillary and acidic background electrolytes permitting reliable assessment of the exchange efficiency. This was especially valuable for a Fab-glycosylated BsAb where the high glycan heterogeneity resulted in an overlap of masses with the monospecific parent antibody, hindering their discrimination by MS only. The method showed also good capabilities to monitor the stability of the generated BsAbs under different storage conditions. The levels of degradation products were different for the studied antibodies indicating pronounced differences in stability. Overall, the proposed method represents a useful analytical tool for exchange efficiency and stability studies of bispecific antibodies.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G M Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
48
|
Cao M, Koneczny I, Vincent A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020; 13:159. [PMID: 32982689 PMCID: PMC7492727 DOI: 10.3389/fnmol.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease that impairs neuromuscular transmission leading to generalized muscle weakness. Compared to the more common myasthenia gravis with antibodies against the acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory muscles, with more frequent and severe myasthenic crises. Treatments are usually less effective with the need for prolonged, high doses of steroids and other immunosuppressants to control symptoms. Under physiological condition, MuSK regulates a phosphorylation cascade which is fundamental for the development and maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin, secreted by the motor nerve terminal into the synaptic cleft, binds to low density lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG, monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK activation and leading to the dispersal of AChR clusters. Lower levels of divalent MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to the pathogenesis of the disease remains controversial. This review aims to provide a detailed update on the epidemiological and clinical features of MuSK-MG, focusing on the pathophysiological mechanisms and the latest indications regarding the efficacy and safety of different treatment options.
Collapse
Affiliation(s)
- Michelangelo Cao
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Rodolico C, Bonanno C, Toscano A, Vita G. MuSK-Associated Myasthenia Gravis: Clinical Features and Management. Front Neurol 2020; 11:660. [PMID: 32793097 PMCID: PMC7390870 DOI: 10.3389/fneur.2020.00660] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023] Open
Abstract
Muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG) is a rare, frequently more severe, subtype of MG with different pathogenesis, and peculiar clinical features. The prevalence varies among countries and ethnic groups, affecting 5–8% of all MG patients. MuSK-MG usually has an acute onset affecting mainly the facial-bulbar muscles. The symptoms usually progress rapidly, within a few weeks. Early respiratory crises are frequent. The disease may lead to generalized muscle weakness up to muscle atrophy. The main bulbar involvement, the absence of significant thymus alterations, and the association with HLA class II DR14, DR16, and DQ5 alleles have been confirmed. Atypical onset, such as ocular involvement, lack of symptom fluctuations, acetylcholinesterase inhibitors failure, and negative results of electrophysiologic testing, if not specifically performed in the mainly involved muscle groups, makes MuSK-MG diagnosis challenging. In most cases, steroids are effective. Conventional immunosuppressants are not commonly able to replace steroids in maintaining a satisfactory long-term control of symptoms. However, the majority of MuSK-MG patients are refractory to treatment. In these cases, the use of rituximab showed promising results, resulting in sustained symptom control.
Collapse
Affiliation(s)
- Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Bonanno
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|