1
|
Jia X, Wenzlau JM, Zhang C, Dong F, Waugh K, Leslie RD, Rewers MJ, Michels AW, Yu L. Strong Association of Autoantibodies Targeting Deamidated Extracellular Epitopes of Insulinoma Antigen-2 With Clinical Onset of Type 1 Diabetes. Diabetes 2025; 74:544-553. [PMID: 39821270 PMCID: PMC11926269 DOI: 10.2337/db24-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
ARTICLE HIGHLIGHTS CD4+ T cells from patients with type 1 diabetes (T1D) have a significant response to post-translationally modified (PTM) deamidated IA-2 peptides; autoantibodies to these PTM neoepitopes remain to be identified in T1D. We aimed to identify autoantibodies specifically targeting reported T-cell reactive, deamidated epitopes of IA-2 and explore their relationship with T1D development. Autoantibodies to deamidated IA-2 were specific to deamidated epitopes and were predominantly present during the late stages of T1D development, challenging the hypothesis that the loss of immune tolerance occurs via post-translational modification of islet antigens. Newly identified autoantibodies to deamidated IA-2 are new biomarkers of islet autoimmunity and have the potential to aid in T1D diagnosis.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Janet M. Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Caiguo Zhang
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - R. David Leslie
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | | |
Collapse
|
2
|
Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem 2024; 300:107589. [PMID: 39032653 PMCID: PMC11381811 DOI: 10.1016/j.jbc.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.
Collapse
Affiliation(s)
- Elvis L Ongey
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Fuentes-Cantero S, González-Rodríguez C, Rodríguez-Chacón C, Galvan-Toribio R, Hermosín-Escudero J, Pérez-Pérez A, León-Justel A. Study of the diagnostic efficiency of anti-ZnT8 autoantibodies for type 1 diabetes in pediatric patients. Lab Med 2024; 55:299-303. [PMID: 37658812 DOI: 10.1093/labmed/lmad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Zinc transporter 8 autoantibodies (ZNt8A) are 1 of the 4 main autoantibodies used for the diagnosis of type 1 diabetes (T1D), with glutamic acid decarboxylase autoantibodies (GADA), islet antigen-2 autoantibodies (IA-2A), and insulin autoantibodies (IAA). The objective of this study is to evaluate the diagnostic efficiency of these autoantibodies for the diagnosis of T1D in pediatric patients. METHODS A retrospective analysis of patients under 16 years of age with suspected T1D was made between June 2020 and January 2021. A total of 80 patients were included in the study, with 1 sample per patient. Subjects were classified according to diagnosis. RESULTS Of the subjects included in the study, 50 developed T1D. The diagnostic efficacy was IA-2A (cutoff ≥ 28 U/L) sensitivity 0.26 (95% CI: 0.14-0.38) and specificity 0.97 (95% CI: 0.79-1.0); GADA (cutoff ≥ 17 U/mL) sensitivity 0.40 (95% CI: 0.26-0.54) and specificity 0.87 (95% CI: 0.75-0.99); ZnT8A (cut off ≥ 15 U/L) sensitivity 0.62 (95% CI: 0.49-0.75) and specificity 0.97 (95% CI: 0.90-1.0). ZnT8A obtained the most significantly global diagnostic accuracy (0.75), and GADA with ZnT8A showed the highest correlation. CONCLUSION The results obtained indicate a higher efficiency of anti-ZnT8 autoantibodies for the diagnosis of T1D in pediatric patients. Clinical efficiency of diabetic autoantibodies is method and assay dependent and influences combined diagnostic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Pérez-Pérez
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| | - Antonio León-Justel
- Unit of Clinical Biochemistry, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
4
|
Kasinathan D, Guo Z, Sarver DC, Wong GW, Yun S, Michels AW, Yu L, Sona C, Poy MN, Golson ML, Fu D. Cell-Surface ZnT8 Antibody Prevents and Reverses Autoimmune Diabetes in Mice. Diabetes 2024; 73:806-818. [PMID: 38387059 PMCID: PMC11043063 DOI: 10.2337/db23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing β-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the β-cell surface. This unique molecular target offers the potential to shield β-cells against autoimmune attacks in T1D. Our previous work showed that a monoclonal antibody (mAb43) against cell-surface ZnT8 could home in on pancreatic islets and prevent autoantibodies from recognizing β-cells. This study demonstrates that mAb43 binds to exocytotic sites on the β-cell surface, masking the antigenic exposure of ZnT8 and insulin after glucose-stimulated insulin secretion. In vivo administration of mAb43 to NOD mice selectively increased the proportion of regulatory T cells in the islet, resulting in complete and sustained protection against T1D onset as well as reversal of new-onset diabetes. The mAb43-induced self-tolerance was reversible after treatment cessation, and no adverse effects were exhibited during long-term monitoring. Our findings suggest that mAb43 masking of the antigenic exposure of β-cells suppresses the immunological cascade from B-cell antigen presentation to T cell-mediated β-cell destruction, providing a novel islet-targeted and antigen-specific immunotherapy to prevent and reverse clinical T1D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Devi Kasinathan
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zheng Guo
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - G. William Wong
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Shumei Yun
- Office of Graduate Medical Education, University of Maryland Medical System, Largo, MD
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Chandan Sona
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Matthew N. Poy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Maria L. Golson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Alves Abrantes JJP, Veríssimo de Azevedo JC, Fernandes FL, Duarte Almeida V, Custódio De Oliveira LA, Ferreira de Oliveira MT, Galvão De Araújo JM, Lanza DCF, Bezerra FL, Andrade VS, Araújo de Medeiros Fernandes TA, Fernandes JV. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 2024; 20:81. [PMID: 38628629 PMCID: PMC11019645 DOI: 10.3892/br.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2023] [Indexed: 04/19/2024] Open
Abstract
The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
Collapse
Affiliation(s)
| | | | - Fernando Liberalino Fernandes
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | - Valéria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | | | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| |
Collapse
|
6
|
Williams CL, Marzinotto I, Brigatti C, Gillespie KM, Lampasona V, Williams AJK, Long AE. A novel, high-performance, low-volume, rapid luciferase immunoprecipitation system (LIPS) assay to detect autoantibodies to zinc transporter 8. Clin Exp Immunol 2024; 215:215-224. [PMID: 38150393 PMCID: PMC10876106 DOI: 10.1093/cei/uxad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Zinc transporter 8 autoantibodies (ZnT8A) are thought to appear close to type 1 diabetes (T1D) onset and can identify high-risk multiple (≥2) autoantibody positive individuals. Radiobinding assays (RBA) are widely used for ZnT8A measurement but have limited sustainability. We sought to develop a novel, high-performance, non-radioactive luciferase immunoprecipitation system (LIPS) assay to replace RBA. METHODS A custom dual C-terminal ZnT8 (aa268-369; R325/W325) heterodimeric antigen, tagged with a NanoluciferaseTM (Nluc-ZnT8) reporter, and LIPS assay was developed. Assay performance was evaluated by testing sera from new onset T1D (n = 573), healthy schoolchildren (n = 521), and selected first-degree relatives (FDRs) from the Bart's Oxford family study (n = 617; 164 progressed to diabetes). RESULTS In new-onset T1D, ZnT8A levels by LIPS strongly correlated with RBA (Spearman's r = 0.89; P < 0.0001), and positivity was highly concordant (94.3%). At a high specificity (95%), LIPS and RBA had comparable assay performance [LIPS pROC-AUC(95) 0.032 (95% CI: 0.029-0.036); RBA pROC-AUC(95) 0.031 (95% CI: 0.028-0.034); P = 0.376]. Overall, FDRs found positive by LIPS or RBA had a comparable 20-year diabetes risk (52.6% and 59.7%, respectively), but LIPS positivity further stratified T1D risk in FDRs positive for at least one other islet autoantibody detected by RBA (P = 0.0346). CONCLUSION This novel, high-performance, cheaper, quicker, higher throughput, low blood volume Nluc-ZnT8 LIPS assay is a safe, non-radioactive alternative to RBA with enhanced sensitivity and ability to discriminate T1D progressors. This method offers an advanced approach to current strategies to screen the general population for T1D risk for immunotherapy trials and to reduce rates of diabetic ketoacidosis at diagnosis.
Collapse
Affiliation(s)
- Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Brigatti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alistair J K Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
7
|
Jia X, Yu L. Understanding Islet Autoantibodies in Prediction of Type 1 Diabetes. J Endocr Soc 2023; 8:bvad160. [PMID: 38169963 PMCID: PMC10758755 DOI: 10.1210/jendso/bvad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/05/2024] Open
Abstract
As screening studies and preventive interventions for type 1 diabetes (T1D) advance rapidly, the utility of islet autoantibodies (IAbs) in T1D prediction comes with challenges for early and accurate disease progression prediction. Refining features of IAbs can provide more accurate risk assessment. The advances in islet autoantibodies assay techniques help to screen out islet autoantibodies with high efficiency and high disease specificity. Exploring new islet autoantibodies to neoepitopes/neoantigens remains a hot research field for improving prediction and disease pathogenesis. We will review the recent research progresses of islet autoantibodies to better understand the utility of islet autoantibodies in prediction of T1D.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Lernmark Å, Akolkar B, Hagopian W, Krischer J, McIndoe R, Rewers M, Toppari J, Vehik K, Ziegler AG. Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 2023; 294:145-158. [PMID: 37143363 PMCID: PMC10524683 DOI: 10.1111/joim.13648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD USA
| | | | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | | |
Collapse
|
9
|
Guo Z, Kasinathan D, Merriman C, Nakayama M, Li H, Li H, Xu C, Wong GW, Yu L, Golson ML, Fu D. Cell-Surface Autoantibody Targets Zinc Transporter-8 (ZnT8) for In Vivo β-Cell Imaging and Islet-Specific Therapies. Diabetes 2023; 72:184-195. [PMID: 36448936 PMCID: PMC9876881 DOI: 10.2337/db22-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Type 1 diabetes (T1D) is a disease in which autoimmune attacks are directed at the insulin-producing β-cell in the pancreatic islet. Autoantigens on the β-cell surface membrane are specific markers for molecular recognition and targets for engagement by autoreactive B lymphocytes, which produce islet cell surface autoantibody (ICSA) upon activation. We report the cloning of an ICSA (mAb43) that recognizes a major T1D autoantigen, ZnT8, with a subnanomolar binding affinity and conformation specificity. We demonstrate that cell-surface binding of mAb43 protects the extracellular epitope of ZnT8 against immunolabeling by serum ICSA from a patient with T1D. Furthermore, mAb43 exhibits in vitro and ex vivo specificity for islet cells, mirroring the exquisite specificity of islet autoimmunity in T1D. Systemic administration of mAb43 yields a pancreas-specific biodistribution in mice and islet homing of an mAb43-linked imaging payload through the pancreatic vasculature, thereby validating the in vivo specificity of mAb43. Identifying ZnT8 as a major antigenic target of ICSA allows for research into the molecular recognition and engagement of autoreactive B cells in the chronic phase of T1D progression. The in vivo islet specificity of mAb43 could be further exploited to develop in vivo imaging and islet-specific immunotherapies.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Devi Kasinathan
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI
| | - Cheng Xu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - G. William Wong
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Maria L. Golson
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Zhang X, Dong Y, Liu D, Yang L, Xu J, Wang Q. Antigen-specific immunotherapies in type 1 diabetes. J Trace Elem Med Biol 2022; 73:127040. [PMID: 35868165 DOI: 10.1016/j.jtemb.2022.127040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/18/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of pancreatic beta cells, in which immune system disorder plays an important role. Finding a cure for T1DM and restoring beta cell function has been a long-standing goal. Research has shown that immune regulation with pancreatic islet auto-antigens may be the most specific and safe treatment for T1DM. Immunological intervention using diabetogenic auto-antigens as a target can help identify T1DM in high-risk individuals by early screening of autoantibodies (AAbs) before the loss of pancreatic islet function and thus achieve primary prevention of T1DM. However, induction of self-tolerance in patients with pre-diabetes can also slow down the attack of autoimmunity, and achieve secondary prevention. Antigen-based immune therapy opens up new avenues for the prevention and treatment of T1DM. The zinc transporter 8 (ZnT8) protein, presents in the serum of pre-diabetic and diabetic patients, is immunogenic and can cause T1D autoimmune responses. ZnT8 has become a potential target of humoral autoimmunity; it is of great significance for the early diagnosis of T1D. ZnT8-specific CD8+ T cells can be detected in most T1DM patients, and play a key role in the progression of T1D. As an immunotherapy target, it can improve the dysfunction of beta cells in T1DM and provide new ideas for the treatment of T1D. In this review, we summarize research surrounding antigen-specific immunotherapies (ASI) over the past 10 years and the ZnT8 antigen as an autoimmune target to induce self-tolerance for T1DM.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Ying Dong
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun 130000, China
| | - Dianyuan Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiayi Xu
- School of Public Health, Jilin University, Changchun 130000, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
11
|
Long AE, George G, Williams CL. Persistence of islet autoantibodies after diagnosis in type 1 diabetes. Diabet Med 2021; 38:e14712. [PMID: 34614253 DOI: 10.1111/dme.14712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
The presence of islet autoantibodies remains a reliable biomarker to identify individuals at high risk of developing type 1 diabetes. As such, these autoantibodies play a pivotal role in understanding the prodrome of diabetes and selecting individuals for both prevention and intervention clinical trials. Over the last few decades, studies have sought to investigate autoantibody prevalence after diabetes onset to better understand ongoing islet autoimmunity; however, many findings are contradictory, and little is known about factors that may influence autoantibody persistence. Generally, glutamate decarboxylase autoantibodies (GADAs) are the most prevalent autoantibodies after diagnosis, particularly in adults, whilst zinc transporter 8 autoantibodies (ZnT8A) prevalence declines more rapidly. However, when studies with islet autoantibody data at diagnosis are considered, it becomes clear that overall islet antigen-2 autoantibodies (IA-2A) tend to persist for longer than GADA or ZnT8A. In this review, we assess the major studies that have contributed to our understanding of autoantibody persistence after diabetes onset and what factors affect this. Islet autoantibodies may provide biomarkers for long-term β-cell function and insights into how to prevent ongoing islet autoimmunity but larger studies collecting samples at and decades after diabetes onset are required to leverage the information they could provide.
Collapse
Affiliation(s)
- Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Gifty George
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|