1
|
Gomez TG, Chéret J, Bedogni B, Kassir R, Bertolini M, Paus R. Vasoactive Intestinal Peptide Operates as a Negative Regulator of Human Hair Follicle Pigmentation Ex Vivo. J Invest Dermatol 2025; 145:691-695.e4. [PMID: 39182562 DOI: 10.1016/j.jid.2024.06.1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Tatiana Gomez Gomez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; CUTANEON - Skin and Hair Innovations GmbH, Hamburg and Berlin, Germany
| | - Barbara Bedogni
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; CUTANEON - Skin and Hair Innovations GmbH, Hamburg and Berlin, Germany.
| |
Collapse
|
2
|
Guo HW, Ye ZM, Chen SQ, McElwee KJ. Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system. Expert Opin Drug Discov 2024; 19:1321-1338. [PMID: 39360759 DOI: 10.1080/17460441.2024.2409660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored. AREAS COVERED This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped. EXPERT OPINION While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.
Collapse
Affiliation(s)
- Hong-Wei Guo
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Ming Ye
- Guangdong Medical University, Zhanjiang, China
| | - Si-Qi Chen
- Guangdong Medical University, Zhanjiang, China
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
3
|
Rutkowski D, Scholey R, Davies J, Pye D, Blackhall F, Warren RB, Jimenez F, Griffiths CEM, Paus R. Epidermal growth factor receptor/mitogen-activated kinase inhibitor treatment induces a distinct inflammatory hair follicle response that includes collapse of immune privilege. Br J Dermatol 2024; 191:791-804. [PMID: 38857906 DOI: 10.1093/bjd/ljae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood. OBJECTIVES To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo. METHODS Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization. RESULTS The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, β2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-β1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs. CONCLUSIONS The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
Collapse
Affiliation(s)
- David Rutkowski
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Manchester University Foundation Trust, Manchester, UK
| | | | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Derek Pye
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | | | - Richard B Warren
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Francisco Jimenez
- Mediteknia Skin and Hair Lab, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Christopher E M Griffiths
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - Ralf Paus
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
4
|
An S, Zheng M, Park IG, Park SG, Noh M, Sung JH. Humanized CXCL12 antibody delays onset and modulates immune response in alopecia areata mice: insights from single-cell RNA sequencing. Front Immunol 2024; 15:1444777. [PMID: 39483478 PMCID: PMC11524852 DOI: 10.3389/fimmu.2024.1444777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
It has been demonstrated that CXCL12 inhibits hair growth via CXCR4, and its neutralizing antibody (Ab) increases hair growth in alopecia areata (AA). However, the molecular mechanisms have not been fully elucidated. In the present study, we further prepared humanized CXCL12 Ab for AA treatment and investigated underlying molecular mechanisms using single-cell RNA sequencing. Subcutaneous injection of humanized CXCL12 Ab significantly delayed AA onset in mice, and dorsal skin was analyzed. T cells and dendritic cells/macrophages were increased in the AA model, but decreased after CXCL12 Ab treatment. Pseudobulk RNA sequencing identified 153 differentially expressed genes that were upregulated in AA model and downregulated after Ab treatment. Gene ontology analysis revealed that immune cell chemotaxis and cellular response to type II interferon were upregulated in AA model but downregulated after Ab treatment. We further identified key immune cell-related genes such as Ifng, Cd8a, Ccr5, Ccl4, Ccl5, and Il21r, which were colocalized with Cxcr4 in T cells and regulated by CXCL12 Ab treatment. Notably, CD8+ T cells were significantly increased and activated via Jak/Stat pathway in the AA model but inactivated after CXCL12 Ab treatment. Collectively, these results indicate that humanized CXCL12 Ab is promising for AA treatment via immune modulatory effects.
Collapse
MESH Headings
- Animals
- Alopecia Areata/immunology
- Alopecia Areata/genetics
- Alopecia Areata/drug therapy
- Mice
- Chemokine CXCL12/genetics
- Single-Cell Analysis
- Disease Models, Animal
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Sequence Analysis, RNA
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Female
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Mei Zheng
- Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., R&D Center, Incheon, Republic of Korea
| |
Collapse
|
5
|
Limbu SL, Purba TS, Harries M, Kundu R, Bhogal RK, Paus R. Dandruff lesional scalp skin exhibits epidermal T cell infiltration and a weakened hair follicle immune privilege. Int J Cosmet Sci 2024; 46:717-733. [PMID: 38488328 DOI: 10.1111/ics.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Dandruff is characterised by the presence of perivascular leukocytes and mild inflammation; however, the immune microenvironment of dandruff-affected scalp skin and the potential changes to the hair follicle's (HF) physiological immune privilege (HF IP) remain unknown. Here, we characterised the HF immune microenvironment and immune privilege status in dandruff-affected scalp skin. METHODS We assessed relevant key parameters in healthy versus dandruff-affected human scalp biopsies using quantitative immunohistomorphometry, laser capture microdissection, and RNA sequencing. RESULTS The number of epidermal CD4+ and CD8+ T cells was increased in lesional dandruff scalp skin, while the number of MHC class II+/CD1a+ Langerhans cells was decreased in the infundibulum. The number of intrafollicular and perifollicular CD4+ T cells and CD8+ T cells, perifollicular CD68+ macrophages, and tryptase+ mast cells remained unchanged. Interestingly, MHC class Ia and ß2-microglobulin protein expression were significantly increased specifically in the suprabulbar outer root sheath (ORS) compartment of dandruff-associated HFs. RNAseq analysis of laser capture micro-dissected suprabulbar ORS compartment revealed antigen presentation pathway as the top regulated canonical pathway, along with the upregulation of HF-IP genes such as HLA-C, HLA-DP, and TAP1, which are normally down-regulated in healthy HFs. Intrafollicular protein expression of known HF IP guardians (CD200 and α-MSH) and 'danger signals' (MICA and CXCL10) remained unaltered at the IP sites of dandruff lesional HFs compared to non-lesional and healthy HFs. Instead, the expression of macrophage migration inhibiting factor (MIF), another HF IP guardian, was reduced. CONCLUSION Together, this work shows that dandruff is associated with epidermal T-cell infiltration and a weakened HF IP in the suprabulbar ORS of HFs in dandruff lesional scalp.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Department of Dermatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Coral Gables, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON, Hamburg, Germany
| |
Collapse
|
6
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
7
|
Suzuki T, Chéret J, Scala FD, Rajabi-Estarabadi A, Akhundlu A, Demetrius DL, Gherardini J, Keren A, Harries M, Rodriguez-Feliz J, Epstein G, Lee W, Purba T, Gilhar A, Paus R. Interleukin-15 is a hair follicle immune privilege guardian. J Autoimmun 2024; 145:103217. [PMID: 38581915 DOI: 10.1016/j.jaut.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The autoimmunity-promoting cytokine, Interleukin-15 (IL-15), is often claimed to be a key pathogenic cytokine in alopecia areata (AA). Yet, rhIL-15 promotes human hair follicle (HF) growth ex vivo. We have asked whether the expression of IL-15 and its receptor (IL-15R) isoforms is altered in human AA and how IL-15 impacts on human HF immune privilege (HF-IP) in the presence/absence of interferon-γ (IFNγ), the well-documented key AA-pathogenic cytokine, as well as on hair regrowth after experimental AA induction in vivo. Quantitative immunohistomorphometry showed the number of perifollicular IL-15+ T cells in AA skin biopsies to be significantly increased compared to healthy control skin, while IL-15, IL-15Rα, and IL-15Rγ protein expression within the hair bulb were significantly down-regulated in AA HFs. In organ-cultured human scalp HFs, rhIL-15 significantly reduced hair bulb expression of MICA, the key "danger" signal in AA pathogenesis, and increased production of the HF-IP guardian, α-MSH. Crucially, ex vivo, rhIL-15 prevented IFNγ-induced HF-IP collapse, restored a collapsed HF-IP by IL-15Rα-dependent signaling (as documented by IL-15Rα-silencing), and protected AA-preventive immunoinhibitory iNKT10 cells from IFNγ-induced apoptosis. rhIL-15 even promoted hair regrowth after experimental AA induction in human scalp skin xenotransplants on SCID/beige mice in vivo. Our data introduce IL-15 as a novel, functionally important HF-IP guardian whose signaling is constitutively defective in scalp HFs of AA patients. Our data suggest that selective stimulation of intrafollicular IL-15Rα signaling could become a novel therapeutic approach in AA management, while blocking it pharmacologically may hinder both HF-IP restoration and hair re-growth and may thus make HFs more vulnerable to AA relapse.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fernanda D Scala
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ali Rajabi-Estarabadi
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Dermatology, Broward Health, Fort Lauderdale, FL, USA
| | - Aysun Akhundlu
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dana-Lee Demetrius
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | | | - Gorana Epstein
- Foundation for Hair Restoration, 33143, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Talveen Purba
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; CUTANEON - Skin & Hair Innovations, Hamburg, Germany.
| |
Collapse
|
8
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
9
|
Zheng M, Kim MH, Park SG, Kim WS, Oh SH, Sung JH. CXCL12 Neutralizing Antibody Promotes Hair Growth in Androgenic Alopecia and Alopecia Areata. Int J Mol Sci 2024; 25:1705. [PMID: 38338982 PMCID: PMC10855715 DOI: 10.3390/ijms25031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Min-Ho Kim
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Sang-Gyu Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| | - Won-Serk Kim
- Department of Dermatology, School of Medicine, Sungkyunkwan University, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea;
| | - Sang-Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| |
Collapse
|
10
|
Asfour L, Bokhari L, Bhoyrul B, Eisman S, Moussa A, Rees H, Sinclair RD. Comment on ‘Treatment of moderate-to-severe alopecia areata in preadolescent children with baricitinib’: authors’ reply. Br J Dermatol 2023; 190:136-137. [PMID: 37596774 DOI: 10.1093/bjd/ljad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
In this response to a recent article on the off-label use of baricitinib for paediatric alopecia areata (AA), we raise additional points regarding the relationship between viral infections and AA relapse on Janus kinase inhibitor (JAKi) therapy, and the potential benefits of concomitant oral minoxidil therapy in mitigating the risk of relapse during JAKi dose reduction or discontinuation.
Collapse
Affiliation(s)
| | | | | | | | | | - Huw Rees
- University of Melbourne, Melbourne,Australia
| | | |
Collapse
|
11
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
12
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
13
|
Edelkamp J, Lousada MB, Pinto D, Chéret J, Calabrese FM, Jiménez F, Erdmann H, Wessel J, Phillip B, Angelis MD, Rinaldi F, Bertolini M, Paus R. Management of the human hair follicle microbiome by a synthetic odorant. J Dermatol Sci 2023; 112:99-108. [PMID: 37858476 DOI: 10.1016/j.jdermsci.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany.
| | - Marta B Lousada
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Zoological Institute, Christian-Albrechts, University Kiel, Kiel, Germany
| | | | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Francisco Jiménez
- Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Julia Wessel
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Bodo Phillip
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
14
|
Tu W, Cao YW, Sun M, Liu Q, Zhao HG. mTOR signaling in hair follicle and hair diseases: recent progress. Front Med (Lausanne) 2023; 10:1209439. [PMID: 37727765 PMCID: PMC10506410 DOI: 10.3389/fmed.2023.1209439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway is a major regulator of cell proliferation and metabolism, playing significant roles in proliferation, apoptosis, inflammation, and illness. More and more evidences showed that the mTOR signaling pathway affects hair follicle circulation and maintains the stability of hair follicle stem cells. mTOR signaling may be a critical cog in Vitamin D receptor (VDR) deficiency-mediated hair follicle damage and degeneration and related alopecia disorders. This review examines the function of mTOR signaling in hair follicles and hair diseases, and talks about the underlying molecular mechanisms that mTOR signaling regulates.
Collapse
Affiliation(s)
| | | | | | | | - Heng-Guang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Xiong J, Chen G, Liu Z, Wu X, Xu S, Xiong J, Ji S, Wu M. Construction of regulatory network for alopecia areata progression and identification of immune monitoring genes based on multiple machine-learning algorithms. PRECISION CLINICAL MEDICINE 2023; 6:pbad009. [PMID: 37333624 PMCID: PMC10268596 DOI: 10.1093/pcmedi/pbad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Alopecia areata (AA) is an autoimmune-related non-cicatricial alopecia, with complete alopecia (AT) or generalized alopecia (AU) as severe forms of AA. However, there are limitations in early identification of AA, and intervention of AA patients who may progress to severe AA will help to improve the incidence rate and prognosis of severe AA. Methods We obtained two AA-related datasets from the gene expression omnibus database, identified the differentially expressed genes (DEGs), and identified the module genes most related to severe AA through weighted gene co-expression network analysis. Functional enrichment analysis, construction of a protein-protein interaction network and competing endogenous RNA network, and immune cell infiltration analysis were performed to clarify the underlying biological mechanisms of severe AA. Subsequently, pivotal immune monitoring genes (IMGs) were screened through multiple machine-learning algorithms, and the diagnostic effectiveness of the pivotal IMGs was validated by receiver operating characteristic. Results A total of 150 severe AA-related DEGs were identified; the upregulated DEGs were mainly enriched in immune response, while the downregulated DEGs were mainly enriched in pathways related to hair cycle and skin development. Four IMGs (LGR5, SHISA2, HOXC13, and S100A3) with good diagnostic efficiency were obtained. As an important gene of hair follicle stem cells stemness, we verified in vivo that LGR5 downregulation may be an important link leading to severe AA. Conclusion Our findings provide a comprehensive understanding of the pathogenesis and underlying biological processes in patients with AA, and identification of four potential IMGs, which is helpful for the early diagnosis of severe AA.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sha Xu
- Institute of Translational Medicine, Naval Military Medical University, Shanghai 200433, China
| | - Jun Xiong
- Department of Histology and Embryology, Naval Military Medical University, Shanghai 200433, China
| | | | | |
Collapse
|
16
|
Nicu C, Jackson J, Shahmalak A, Pople J, Ansell D, Paus R. Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo. Arch Dermatol Res 2023; 315:603-612. [PMID: 34854998 DOI: 10.1007/s00403-021-02291-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Adiponectin reportedly stimulates proliferation and elongation of human scalp hair follicles (HFs) ex vivo. In the current study, we investigated how adiponectin oligomers produced by perifollicular dermal white adipose tissue (dWAT), a potent source of adiponectin isoforms, influence human HF proliferation and pigmentation. To do so, we treated microdissected, organ-cultured HFs in the presence or absence of dWAT with a recombinant human adiponectin oligomer mix, or inhibited dWAT-derived adiponectin using a neutralizing antibody. Multiplex qPCR (Fluidigm) revealed that adiponectin oligomers downregulated pigmentation genes KITLG, PMEL and TYRP1 and Wnt genes AXIN2, LEF1 and WNT10B. In situ hybridization showed that adiponectin downregulated AXIN2 and LEF1, and up-regulated DKK1 within the dermal papilla (DP), a highly unusual transcriptional profile for a putative hair growth-promoting agent. Adiponectin oligomers also downregulated protein expression of the HGF receptor c-Met within the matrix and DP. However, adiponectin did not alter hair matrix keratinocyte proliferation within 48 h ex vivo, irrespective of the presence/absence of dWAT; HF pigmentation (Masson-Fontana histochemistry, tyrosinase activity) was also unchanged. In contrast, neutralizing adiponectin isoforms within HF + dWAT increased proliferation, melanin content and tyrosinase activity but resulted in fewer melanocytes and melanocytic dendrites, as assessed by gp100 immunostaining. These seemingly contradictory effects suggest that adiponectin exerts complex effects upon human HF biology, likely in parallel with the pro-pigmentation effects of dWAT- and DP-derived HGF. Our data suggest that dWAT-derived ratios of adiponectin isoforms and the cleaved, globular version of adiponectin may in fact determine how adiponectin impacts upon follicular pigmentation and growth.
Collapse
Affiliation(s)
- Carina Nicu
- Centre for Dermatology Research, University of Manchester, Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK.
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer Jackson
- Centre for Dermatology Research, University of Manchester, Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| | | | - Jenny Pople
- Unilever R&D Colworth, Colworth Science Park, Bedford, UK
| | - David Ansell
- Centre for Dermatology Research, University of Manchester, Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Monasterium Laboratory, Münster, Germany
| |
Collapse
|
17
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
18
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
19
|
Renert-Yuval Y, da Rosa JC, Garcet S, Pavel AB, Bares J, Chima M, Hawkes JE, Gilleaudeau P, Sullivan-Whalen M, Singer GK, Krueger JG, Guttman-Yassky E. Analysis of alopecia areata surveys suggests a threshold for improved patient-reported outcomes. Br J Dermatol 2022; 187:539-547. [PMID: 35656793 PMCID: PMC10291970 DOI: 10.1111/bjd.21696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although alopecia areata (AA) greatly impacts patients' quality of life (QoL), there is no adequate validation of AA-targeted QoL surveys in clinical trials, hindering sufficient representation of patient-reported outcomes. OBJECTIVES Better understanding of patient-reported outcomes may guide treatment goals and future clinical trials. METHODS In a recent randomized controlled trial testing dupilumab in AA, patients were administered the Alopecia Areata Quality of Life Index (AA-QLI) and the Alopecia Areata Symptom Impact Scale (AASIS) surveys, specifically evaluating QoL in patients with AA. An in-depth analysis was performed to assess the utility of these questionnaires in this patient population, both at baseline and after treatment, and to determine a threshold for improved patient-reported outcomes. RESULTS While AASIS correlated with baseline Severity of Alopecia Tool (SALT) scores and with therapeutic response, AA-QLI showed no correlation with AA severity before or after treatment. Itch strongly correlated with serum IgE levels across both surveys. Using various approaches to estimate a discriminative threshold for decreased impact of AA on QoL (by AASIS) following treatment, a SALT score of 20 points or less post-treatment was associated with improved patient-reported outcomes, including both AA-related symptoms and items within the daily activities/feelings domain such as 'feeling sad' and 'feeling anxious or worry'. CONCLUSIONS AASIS is better than AA-QLI to assess patient-reported outcomes. SALT ≤ 20 following treatment should be considered as a threshold for meaningful therapeutic outcome and as a clinical endpoint in future clinical trials for AA. What is already known about this topic? Alopecia areata greatly compromises quality of life, and affected patients have increased prevalences of depression, anxiety and social phobia. Despite the significant negative impact of the disease on patients' wellbeing, validation of targeted questionnaires in alopecia areata is lacking, and a therapeutic response threshold for improved patient-reported outcomes is unknown. What does this study add? This study investigated the utility of two different alopecia areata-targeted questionnaires - Alopecia Areata Quality of Life Index and Alopecia Areata Symptom Impact Scale (AASIS) - in a clinical trial setting. AASIS was found to correlate strongly with alopecia areata severity and clinical response. What are the clinical implications of this work? Patients with ≤ 20% scalp hair loss after treatment reported improvement in multiple quality-of-life items, suggesting this as a meaningful therapeutic outcome that may guide clinicians and improve the development of future clinical trials.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Correa da Rosa
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Sandra Garcet
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B. Pavel
- Department of Biomedical Engineering, University of Mississippi, Oxford, MS, USA
| | - Jennifer Bares
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margot Chima
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason E. Hawkes
- Department of Dermatology, UC Davis Medical Center, University of California Davis Health System, Sacramento, CA, USA
| | - Patricia Gilleaudeau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Mary Sullivan-Whalen
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Giselle K. Singer
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Gherardini J, Rivas KE, Chéret J, Strbo N, Paus R. Down-regulation of pathogenic MICA-NKG2D interactions as a novel strategy in alopecia areata management: a new rationale for adjunct statin therapy? J Eur Acad Dermatol Venereol 2022; 36:e1013-e1015. [PMID: 35841295 DOI: 10.1111/jdv.18423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Gherardini
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K E Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - N Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Paus
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Monasterium Laboratory, Münster, Germany.,CUTANEON, Hamburg, Germany
| |
Collapse
|
21
|
Zheng M, Oh SH, Choi N, Choi YJ, Kim J, Sung JH. CXCL12 inhibits hair growth through CXCR4. Biomed Pharmacother 2022; 150:112996. [PMID: 35462338 DOI: 10.1016/j.biopha.2022.112996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022] Open
Abstract
CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth. CXCL12 was highly expressed in dermal fibroblasts (DFs) and its level was elevated throughout the catagen and telogen phases of the hair cycle. CXCR4 is expressed in the dermal papilla (DP) and outer root sheath (ORS). In hair organ culture, hair loss was induced by recombinant CXCL12 therapy, which delayed the telogen-to-anagen transition and decreased hair length. In contrast, the suppression of CXCL12 using a neutralizing antibody and siRNA triggered the telogen-to-anagen transition and increased hair length in hair organ culture. Neutralization of CXCR7, one of the two receptors for CXCL12, only slightly affected hair growth. However, inhibition of CXCR4, the other receptor for CXCL12, increased hair growth to a considerable extent. In addition, in hair organ culture, the conditioned medium from DFs with CXCL12 siRNA considerably increased the hair length and induced proliferation of DP and ORS cells. CXCL12, through CXCR4 activation, increased STAT3 and STAT5 phosphorylation in DP and ORS cells. In contrast, blocking CXCL12 and CXCR4 decreased the phosphorylation of STAT3 and STAT5. In summary, these findings suggest that CXCL12 inhibits hair growth via the CXCR4/STAT signaling pathway and that CXCL12/CXCR4 pathway inhibitors are a promising treatment option for hair growth.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, South Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Nahyun Choi
- Epi Biotech Co., Ltd., Incheon 21983, South Korea
| | | | - Jino Kim
- New Hair Institute, Seoul 06134, South Korea
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea.
| |
Collapse
|
22
|
Senna MM, Peterson E, Jozic I, Chéret J, Paus R. Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID INNOVATIONS 2022; 2:100113. [PMID: 35521043 PMCID: PMC9062486 DOI: 10.1016/j.xjidi.2022.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary, lymphocytic cicatricial hair loss disorders. These model epithelial stem cell (SC) diseases are thought to result from a CD8+ T-cell‒dominated immune attack on the hair follicle (HF) SC niche (bulge) after the latter has lost its immune privilege (IP) for as yet unknown reasons. This induces both apoptosis and pathological epithelial‒mesenchymal transition in epithelial SCs, thus depletes the bulge, causes fibrosis, and ultimately abrogates the HFs' capacity to regenerate. In this paper, we synthesize recent progress in LPP and FFA pathobiology research, integrate our limited current understanding of the roles that genetic, hormonal, environmental, and other factors may play, and define major open questions. We propose that LPP and FFA share a common initial pathobiology, which then bifurcates into two distinct clinical phenotypes, with macrophages possibly playing a key role in phenotype determination. As particularly promising translational research avenues toward direly needed progress in the management of these disfiguring, deeply distressful cicatricial alopecia variants, we advocate to focus on the development of bulge IP and epithelial SC protectants such as, for example, topically effective, HF‒penetrating and immunoinhibitory preparations that contain tacrolimus, peroxisome proliferator-activated receptor-γ, and/or CB1 agonists.
Collapse
Key Words
- 5ARI, 5α-reductase inhibitor
- AA, alopecia areata
- AGA, androgenetic alopecia
- CRH, corticotropin-releasing hormone
- EMT, epithelial‒mesenchymal transition
- FFA, frontal fibrosing alopecia
- HF, hair follicle
- IP, immune privilege
- K, keratin
- KC, keratinocyte
- LPP, lichen planopilaris
- MAC, macrophage
- MHC, major histocompatibility complex
- PCA, primary cicatricial alopecia
- PCP, personal care product
- PPAR-γ, peroxisome proliferator–activated receptor-γ
- SC, stem cell
- SP, substance P
- eHFSC, epithelial hair follicle stem cell
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Maryanne Makredes Senna
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Peterson
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,CUTANEON, Hamburg, Germany
| |
Collapse
|