1
|
Fang X, Zhang Y, Ke Z, Zhang Y, Lin Y, Huang Y, Zhou J, Su H, Xu J, Liu Y. The m6A reader HNRNPC is a key regulator in DSS-induced colitis by modulating macrophage phenotype. iScience 2025; 28:111812. [PMID: 40124522 PMCID: PMC11927749 DOI: 10.1016/j.isci.2025.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/25/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
m6A regulators were demonstrated to modulate the functions of intestinal epithelial and immune cells in the ulcerative colitis. This study aimed to elucidate whether and how the m6A reader heterogeneous nuclear ribonucleoprotein C (HNRNPC) regulates macrophage function in the colitis. We observed elevated HNRNPC in the inflammatory Raw264.7 cells and macrophages in the dextran sodium sulfate (DSS)-induced colitis. Knocking down HNRNPC can mitigate LPS-induced activation of macrophages in vitro. Furthermore, adoptive transfer of macrophages with HNRNPC knockdown significantly alleviated colitis compared to those transfected with negative control siRNA. Additionally, RNA sequencing illuminated that HNRNPC regulated functions of macrophages by inhibiting alternative mRNA slicing, involving adjusting acute inflammatory response, and promoting cell chemotaxis and migration. Besides, HNRNPC can govern the stability of Itgb7, and Itgb7 might be an effective target for HNRNPC in macrophages. Our findings highlight the crucial role and therapeutic potential of HNRNPC inhibition in macrophages in alleviating colitis.
Collapse
Affiliation(s)
- Xiaohui Fang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yang Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yiken Lin
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yibo Huang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Huiting Su
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| |
Collapse
|
2
|
Chen C, Zhou W, Zhang Q, He D, Zhao Y, Liu Z, Xia P, Li Q, Ye Z. OSGEP, A Negative Ferroptotic Regulator, Alleviates Cerebral Ischemia-Reperfusion Injury Through Modulating m 6A Methylation of GPX4 mRNA. Neurochem Res 2025; 50:122. [PMID: 40100474 DOI: 10.1007/s11064-025-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a devastating condition that triggers neuronal death and cerebral infarction. O-sialoglycoprotein endopeptidase (OSGEP), identified as a crucial element of the highly conserved KEOPS complex, regulated cellular proliferation and mitochondrial metabolism. Despite its known role in cellular homeostasis, the potential contribution of OSGEP to the development of CIRI remains elusive. This study was designed to investigate the potential role of ferroptosis in the pathogenesis of CIRI and indicate whether OSGEP could suppress ferroptosis to alleviate CIRI by modulating GPX4 m6A methylation. To this end, MCAO and OGD/R models were employed to closely simulate the CIRI. The potent ferroptosis inhibitors conferred prominent neuroprotection in both in vivo and in vitro models. Moreover, OSGEP expression level was not only downregulated in MCAO-treated mice and in cultured cerebrocortical neurons subjected to OGD/R, but also it was related to the prognosis of acute ischemic stroke (AIS) cases. Additionally, OSGEP overexpression exerted potent anti-ferroptotic effects in both MCAO and OGD/R models, while OSGEP depletion exhibited the opposite effect. Moreover, OSGEP regulated GPX4 expression by modulating m6A methylation of its mRNA. Furthermore, the inhibitory effect of OSGEP on ferroptosis was dependent on the presence of GPX4. Specifically, OSGEP knockout exacerbated ferroptosis-like cell death under MCAO condition. Besides, OSGEP regulated GPX4 mRNA stability through competition with YTHDC1 for binding to GPX4 mRNA and forming a complex with HNRNPUL1 in the neuronal primary cultures subjected to OGD/R. These findings highlighted the critical role of OSGEP, as a new contributing anti-ferroptotic factor, in the pathogenesis of CIRI.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Dehao He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Yanfei Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Zhu R, Chen F, Wang BW, Jin Y, Yang JJ, Shi BJ, Chen YT, Jiang FG, Wang XH. RBM47 as a potential therapeutic target for thyroid-associated ophthalmopathy. Int Immunopharmacol 2025; 147:113955. [PMID: 39746275 DOI: 10.1016/j.intimp.2024.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
RNA-binding motif 47 (RBM47) is a recently identified RNA-binding protein involved in early vertebrate development, immune homeostasis, and cancer development. This study examined the biological functions of RBM47 in thyroid-associated ophthalmopathy (TAO). Orbital fibroblasts (OFs) were obtained from the control (n = 6) and TAO groups (n = 6). Protein and gene expression in the obtained samples were investigated using immunohistochemistry, western blotting (WB), and RT-PCR. OFs with RBM47 knockdown were established using small interfering RNA. Subsequently, Oil Red O staining, WB, and RT-PCR were performed to assess adipogenesis in the OFs. The IL-1β-induced expression of proinflammatory molecules and hyaluronan (HA) was determined using enzyme-linked immunosorbent assay and RT-PCR. Moreover, TGF-β-induced fibrosis was evaluated using scratch assays, RT-PCR, and WB. RBM47 expression was markedly increased in orbital tissues and OFs obtained from individuals with TAO. RBM47 knockdown decreased adipogenesis and fibrosis in OFs, and downregulated the levels of insulin-like growth factor 1 receptor (IGF-1R), proinflammatory molecules, and HA. Furthermore, low RBM47 expression downregulated IGF-1R, which subsequently inhibited adipocyte differentiation by decreasing extracellular signal-regulated kinase signalling. These findings indicate that RBM47 may be involved in the regulation of adipogenesis, inflammation, HA production, and fibrosis, highlighting its potential of RBM47 as a therapeutic target for TAO.
Collapse
Affiliation(s)
- Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Aier Eye Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo-Wen Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Jin
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun-Jie Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bing-Jie Shi
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Ting Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fa-Gang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xing-Hua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Fatima M, Huang F, Fu X. Emerging influence of RNA post-transcriptional modifications in the synovial homeostasis of rheumatoid arthritis. Front Immunol 2024; 15:1494873. [PMID: 39717780 PMCID: PMC11663879 DOI: 10.3389/fimmu.2024.1494873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function. In general, epigenetic modification is an effective strategy to regulate dynamic balance of synovial homeostasis. Several typical post-transcriptional changes in cellular RNA can control the post-transcriptional modification of RNA structure. It can inhibit important processes, including degradation of RNA and nuclear translocation. Recent studies have found that RNA modification regulates the homeostasis of the synovial micro-environment and forms an intricate network in the "bone-cartilage-synovium" feedback loop. Aberrant regulation of RNA methylation triggers the pathological development of RA. Collectively, this review summarises recent advanced research about RNA modification in modulating synovial homeostasis by making close interaction among resident synovial macrophages, fibroblasts, T cells, and B cells, which could display the dramatic role of RNA modifications in RA pathophysiological process and perform the promising therapeutic target for treating RA.
Collapse
Affiliation(s)
- Madiha Fatima
- Department of Neurology, The Affiliated Yong-chuan Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Neurobiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Huang
- Medical Examination Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohong Fu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Tang B, Wang K, Ren Q, Zhou J, Xu Y, Liu L, Yin B, Zhang Y, Huang Q, Lv R, Luo Z, Zhao H, Shen L. GALNT14-mediated O-glycosylation drives lung adenocarcinoma progression by reducing endogenous reactive oxygen species generation. Cell Signal 2024; 124:111477. [PMID: 39426495 DOI: 10.1016/j.cellsig.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
Collapse
Affiliation(s)
- Bingbing Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Kelong Wang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Junshuo Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuewen Xu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Liaoyuan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Bin Yin
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yaling Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Qian Huang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruiqi Lv
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| |
Collapse
|
6
|
Maceratessi S, Sampaio NG. hnRNPs in antiviral innate immunity. Immunology 2024; 173:425-441. [PMID: 39111743 DOI: 10.1111/imm.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Collapse
Affiliation(s)
- Sofia Maceratessi
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| | - Natalia G Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Zhang H, Wang C, Sun H, Zhou T, Ma C, Han X, Zhang T, Xia J. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics 2024; 24:e2300179. [PMID: 37679095 DOI: 10.1002/pmic.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to clarify the role of glutamine in atherosclerosis and its participating mechanism. Forty C57BL/6J mice were divided into wild control (wild Con), ApoE- /- control (ApoE- /- Con), glutamine + ApoE- /- control (Glut + ApoE- /- Con), ApoE- /- high fat diet (ApoE- /- HFD), and glutamine + ApoE- /- HFD (Glut + ApoE- /- HFD) groups. The degree of atherosclerosis, western blotting, and multiomics were detected at 18 weeks. An in vitro study was also performed. Glutamine treatment significantly decreased the degree of aortic atherosclerosis (p = 0.03). O-GlcNAcylation (O-GlcNAc), IL-1β, IL-1α, and pyruvate kinase M2 (PKM2) in the ApoE- /- HFD group were significantly higher than those in the ApoE- /- Con group (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05), and aggravated by O-GlcNA transferase (OGT) overexpression in the in vitro study (p < 0.05). Multiomics showed that the ApoE- /- HFD group had higher levels of oxidative stress regulatory molecules (guanine deaminase [GUAD], xanthine dehydrogenase [XDH]), proinflammatory regulatory molecules (myristic acid and myristoleic acid), and stress granules regulatory molecules (caprin-1 and deoxyribose-phosphate aldolase [DERA]) (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05). We conclude that glutamine supplementation might alleviate atherosclerosis through downregulation of O-GlcNAc, glycolysis, oxidative stress, and proinflammatory pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Wang
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haichen Sun
- Surgical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian Zhou
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Ma
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuexue Han
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxing Zhang
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinggang Xia
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Lyu CC, Meng Y, Che HY, Suo JL, He YT, Zheng Y, Jiang H, Zhang JB, Yuan B. MSI2 Modulates Unsaturated Fatty Acid Metabolism by Binding FASN in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20359-20371. [PMID: 38059915 DOI: 10.1021/acs.jafc.3c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The regulation of fatty acid metabolism is crucial for milk flavor and quality. Therefore, it is important to explore the genes that play a role in fatty acid metabolism and their mechanisms of action. The RNA-binding protein Musashi2 (MSI2) is involved in the regulation of numerous biological processes and plays a regulatory role in post-transcriptional translation. However, its role in the mammary glands of dairy cows has not been reported. The present study examined MSI2 expression in mammary glands from lactating and dry milk cows. Experimental results in bovine mammary epithelial cells (BMECs) showed that MSI2 was negatively correlated with the ability to synthesize milk fat and that MSI2 decreased the content of unsaturated fatty acids (UFAs) in BMECs. Silencing of Msi2 increased triglyceride accumulation in BMECs and increased the proportion of UFAs. MSI2 affects TAG synthesis and milk fat synthesis by regulating fatty acid synthase (FASN). In addition, RNA immunoprecipitation experiments in BMECs demonstrated for the first time that MSI2 can bind to the 3'-UTR of FASN mRNA to exert a regulatory effect. In conclusion, MSI2 affects milk fat synthesis and fatty acid metabolism by regulating the triglyceride synthesis and UFA content through binding FASN.
Collapse
Affiliation(s)
- Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jin-Long Suo
- Institute of Microsurgery on Extremities, and Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
9
|
Li W, Liang J, Li S, Jiang S, Song M, Xu S, Wang L, Meng H, Zhai D, Tang L, Yang Y, Zhang B. The CXCL12-CXCR4-NLRP3 axis promotes Schwann cell pyroptosis and sciatic nerve demyelination in rats. Clin Exp Immunol 2023; 214:219-234. [PMID: 37497691 PMCID: PMC10714193 DOI: 10.1093/cei/uxad081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Studies have shown that the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is detrimental to the functional recovery of the sciatic nerve, but the regulatory mechanisms of the NLRP3 inflammasome in peripheral nerves are unclear. C-X-C motif chemokine 12 (CXCL12) can bind to C-X-C chemokine receptor type 4 (CXCR4) and participate in a wide range of nerve inflammation by regulating the NLRP3 inflammasome. Based on these, we explore whether CXCL12-CXCR4 axis regulates the NLRP3 inflammasome in the peripheral nerve. We found that CXCR4/CXCL12, NLRP3 inflammasome-related components, pyroptosis-related proteins and inflammatory factors in the sciatic nerve injured rats were markedly increased compared with the sham-operated group. AMD3100, a CXCR4 antagonist, reverses the activation of NLRP3 inflammasome, Schwann cell pyroptosis and sciatic nerve demyelination. We further treated rat Schwann cells with LPS (lipopolysaccharide) and adenosine triphosphate (ATP) to mimic the cellular inflammation model of sciatic nerve injury, and the results were consistent with those in vivo. In addition, both in vivo and in vitro experiments demonstrated that AMD3100 treatment reduced the phosphorylation of nuclear factor κB (NF-κB) and the expression of thioredoxin interacting protein (TXNIP), which contributes to activating NLRP3 inflammasome. Therefore, our findings suggest that, after sciatic nerve injury, CXCL12-CXCR4 axis may promote Schwann cell pyroptosis and sciatic nerve demyelination through activating NLRP3 inflammasome and slow the recovery process of the sciatic nerve.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shaohua Li
- Department of Laboratory Medicine, The Third People’s Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Wang D, Zheng X, Chai L, Zhao J, Zhu J, Li Y, Yang P, Mao Q, Xia H. FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1. eLife 2023; 12:e85659. [PMID: 37643469 PMCID: PMC10446823 DOI: 10.7554/elife.85659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
FAM76B has been reported to be a nuclear speckle-localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1 in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.
Collapse
Affiliation(s)
- Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Translational Medicine Center, Northwest Women’s and Children’s HospitalXi'anChina
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Lihong Chai
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yanqing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Qinwen Mao
- Department of Pathology, University of UtahSalt LakeUnited States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
12
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
13
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
14
|
Lu MK, Jen CI, Chao CH, Hsu YC, Ng LT. SPS, a sulfated galactoglucan of Laetiporus sulphureus, exhibited anti-inflammatory activities. Int J Biol Macromol 2023; 226:1236-1247. [PMID: 36442562 DOI: 10.1016/j.ijbiomac.2022.11.237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Laetiporus sulphureus is an edible and medicinal mushroom. A sulfated galactoglucan (SPS) was isolated by the papain method. Polysaccharides (PS) were isolated by hot water and ethanol precipitation. The medium molecular weight SPS of 100 to 1000 kDa accounted for over half of the SPS mixture. Fucose, galactose, glucose, and mannose were the major monosaccharides in SPS and PS. The amount of sulfate in SPS was 1.09 mmol/g. SPS showed inhibition of tumor necrosis factor-α (TNF-α) release and reversed IκB degradation in LPS-induced RAW264.7 macrophages. The suppression of TNF-α secretion by SPS was through inhibiting the phosphorylation of AKT/extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK). A purified SPS, named SPS-3, was proven to inhibit the LPS-induced phosphorylation of AKT, ERK, and p-38 in RAW264.7 cells. The suppression of interleukin 6 (IL-6) and transforming growth factor beta (TGFβ) secretion by PS was through inhibiting LPS-induced phosphorylation of p-38 and TGF-β receptor II (TGFRII) signaling pathways. This study demonstrates that the isolated SPS and PS from L. sulphureus possessed good anti-inflammatory activity for dietary supplements and functional food.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan.
| | - Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|