1
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. PARP1: A comprehensive review of its mechanisms, therapeutic implications and emerging cancer treatments. Biochim Biophys Acta Rev Cancer 2025; 1880:189282. [PMID: 39947443 DOI: 10.1016/j.bbcan.2025.189282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The Poly (ADP-ribose) polymerase-1 (PARP1) enzyme is involved in several signalling pathways related to homologous repair (HR), base excision repair (BER), and non-homologous end joining (NHEJ). Studies demonstrated that the deregulation of PARP1 function and control mechanisms can lead to cancer emergence. On the other side, PARP1 can be a therapeutic target to maximize cancer treatment. This is done by molecules that can modulate radiation effects, such as DNA repair inhibitors (PARPi). With this approach, tumour cell viability can be undermined by targeting DNA repair mechanisms. Thus, treatment using PARPi represents a new era for cancer therapy, and even new horizons can be attained by coupling these molecules with a nano-delivery system. For this, drug delivery systems such as liposomes encompass all the required features due to its excellent biocompatibility, biodegradability, and low toxicity. This review presents a comprehensive overview of PARP1 biological features and mechanisms, its role in cancer development, therapeutic implications, and emerging cancer treatments by PARPi-mediated therapies. Although there are a vast number of studies regarding PARP1 biological function, some PARP1 mechanisms are not clear yet, and full-length PARP1 structure is missing. Nevertheless, literature reports demonstrate already the high usefulness and vast possibilities offered by combined PARPi cancer therapy.
Collapse
Affiliation(s)
- Carlota J F Conceição
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
2
|
Kodavati M, Hegde ML. A Commentary on Mitochondrial Dysfunction and Compromised DNA Repair in Neurodegeneration: The Emerging Role of FUS in ALS. Neurosci Insights 2024; 19:26331055241305151. [PMID: 39679063 PMCID: PMC11645713 DOI: 10.1177/26331055241305151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's, and Parkinson's disease. Recent discoveries have highlighted the involvement of DNA damage and repair processes, particularly mitochondrial DNA (mtDNA) damage, in these conditions. This commentary reflects on our recent findings, demonstrating the RNA/DNA binding protein fused in sarcoma (FUS)'s crucial role in maintaining mtDNA integrity through interactions with mitochondrial DNA ligase IIIα (mtLig3). Our studies provide direct evidence of increased mtDNA damage in ALS-linked FUS mutant cells, emphasizing the potential of targeting DNA repair pathways to mitigate neurodegeneration. Furthermore, the restoration of mitochondrial function through targeted expression of human DNA ligase 1 (Lig1) in FUS mutant models showcases the therapeutic promise of DNA repair mechanisms in neurodegenerative diseases. These insights offer new molecular understanding and open up future avenues for therapeutic interventions, particularly in FUS-associated ALS and related disorders.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Medical College, New York, NY, USA
| |
Collapse
|
3
|
Khodyreva SN, Dyrkheeva NS, Lavrik OI. Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair. Biomedicines 2024; 12:2808. [PMID: 39767715 PMCID: PMC11673744 DOI: 10.3390/biomedicines12122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders. In this review, we summarize the current understanding of the function of DNA damage repair, in particular, the base excision repair and double-strand break repair pathways as being the most important in nervous system cells. We summarize recent data on the proteins involved in DNA repair associated with neurodegenerative diseases, with particular emphasis on PARP1 and ND-associated proteins, which are involved in DNA repair and have the ability to undergo liquid-liquid phase separation.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
4
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
5
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
6
|
Hinton A, Neikirk K, Le H, Harris C, Oliver A, Martin P, Gaye A. Estrogen receptors in mitochondrial metabolism: age-related changes and implications for pregnancy complications. AGING ADVANCES 2024; 1:154-171. [PMID: 39839811 PMCID: PMC11748122 DOI: 10.4103/agingadv.agingadv-d-24-00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/24/2024] [Indexed: 01/23/2025]
Abstract
Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content. Moreover, estrogen receptors may be the key components in maintaining mitochondrial membrane potential and structure. Although estrogen plays a crucial role in the development of pregnancy, our understanding of how estrogen receptors change with aging during pregnancy remains limited. During pregnancy, estrogen levels are significantly elevated, with a corresponding upregulation of estrogen receptors, which play various roles in pregnancy. However, the exact role of estrogen receptors in pregnancy complications remains to be further investigated. The paper reviews the role of estrogen receptors in the regulation of mitochondrial metabolism and in pregnancy complications, with a special focus on the effect of age-related changes on estrogen levels and estrogen receptors function. We also address how estrogen maintains mitochondrial function, including reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, regulating mitochondrial DNA content, and maintaining mitochondrial membrane potential and structure. However, the effects of estrogen on mitochondria-endoplasmic reticulum contacts have not been well studied. Based on these emergent roles in mitochondria, the differential roles of estrogen receptors in pregnancy complications are of great relevance. The paper emphasizes the association between maternal health and estrogen receptors and indicates the need for future research to elucidate the interdependence of estrogen receptor-regulated maternal health with mitochondrial function and their relationship with the gut microbiome. Overall, we summarize the important role of estrogen receptors during pregnancy and highlight the need for further research to better understand the role of estrogen receptors in aging and pregnancy complications. This not only helps to reveal the mechanism underlying the role of estrogen in maternal health but also has potential clinical implications for the development of new therapies targeting age-related diseases and pregnancy complications.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Chanel Harris
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Ashton Oliver
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
7
|
Pereira de Castro KL, Abril JM, Liao KC, Hao H, Donohue JP, Russell WK, Fagg WS. An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617384. [PMID: 39416098 PMCID: PMC11483029 DOI: 10.1101/2024.10.09.617384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.
Collapse
Affiliation(s)
| | - Jose M. Abril
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Kuo-Chieh Liao
- RNA Genomics and Structure, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR) Singapore
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
de Oliveira AP, Navarro CDC, Dias PRF, Arguello T, Walker BR, Bacman SR, Sousa LM, Castilho RF, Consonni SR, Moraes CT, Kobarg J. NEK10 kinase ablation affects mitochondrial morphology, function and protein phosphorylation status. Proteome Sci 2024; 22:8. [PMID: 39379991 PMCID: PMC11460017 DOI: 10.1186/s12953-024-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND NEK10, a serine/threonine/tyrosine kinase belonging to the NEK (NIMA-related kinases) family, has been associated with diverse cellular processes. However, no specific target pathways have been identified. Our previous work knocking down NEK10 in HeLa cells suggested a functional association with mitochondria, as we observed altered mitochondrial morphology, mitochondrial oxygen consumption, mtDNA integrity, and reactive oxygen species levels. METHODS To better understand this association, we studied human HAP1 cells fully knockout for NEK10 and confirmed that NEK10 has an important role in mitochondrial homeostasis. We performed the study of mitochondrial respiration, mitochondrial morphology, mitochondrial mass, and mtDNA analysis. Additionally, we showed proteome and phosphoproteome data of crude mitochondrial fraction of Parental and NEK10 KO cells using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS In the absence of NEK10 several mitochondrial functions were disturbed. Moreover, proteome and phosphoproteome analyses of mitochondrial fractions showed that NEK10 alters the threonine phosphorylation status of several mitochondrial/endoplasmic reticulum components, including HSP60, NDUFB4, and TOM20. These changes impacted the steady-state levels of a larger group of proteins, preferentially involving respiratory complexes and autophagy pathways. CONCLUSION We concluded that NEK10 plays a key role in mitochondrial function, possibly by modulating the phosphorylation status of mitochondrial proteins.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Claudia D C Navarro
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Pedro Rafael F Dias
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
| | - Tania Arguello
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brittni R Walker
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sandra R Bacman
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lizandra Maia Sousa
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Sílvio R Consonni
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil.
| |
Collapse
|
9
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
10
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
11
|
Johnson OD, Paul S, Gutierrez JA, Russell WK, Ward MC. DNA damage-associated protein co-expression network in cardiomyocytes informs on tolerance to genetic variation and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607863. [PMID: 39185220 PMCID: PMC11343126 DOI: 10.1101/2024.08.14.607863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cardiovascular disease (CVD) is associated with both genetic variants and environmental factors. One unifying consequence of the molecular risk factors in CVD is DNA damage, which must be repaired by DNA damage response proteins. However, the impact of DNA damage on global cardiomyocyte protein abundance, and its relationship to CVD risk remains unclear. We therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging agent Doxorubicin (DOX) and a vehicle control, and identified 4,178 proteins that contribute to a network comprising 12 co-expressed modules and 403 hub proteins with high intramodular connectivity. Five modules correlate with DOX and represent distinct biological processes including RNA processing, chromatin regulation and metabolism. DOX-correlated hub proteins are depleted for proteins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded by loss-of-function intolerant genes. While proteins associated with genetic risk for CVD, such as arrhythmia are enriched in specific DOX-correlated modules, DOX-correlated hub proteins are not enriched for known CVD risk proteins. Instead, they are enriched among proteins that physically interact with CVD risk proteins. Our data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological processes through protein co-expression modules that are relevant for CVD, and that the level of protein connectivity in DNA damage-associated modules influences the tolerance to genetic variation.
Collapse
Affiliation(s)
- Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, USA
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sayan Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jose A. Gutierrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
12
|
Pugel AD, Schoenfeld AM, Alsaifi SZ, Holmes JR, Morrison BE. The Role of NAD + and NAD +-Boosting Therapies in Inflammatory Response by IL-13. Pharmaceuticals (Basel) 2024; 17:226. [PMID: 38399441 PMCID: PMC10893221 DOI: 10.3390/ph17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.
Collapse
Affiliation(s)
- Anton D. Pugel
- Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA;
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Sara Z. Alsaifi
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Jocelyn R. Holmes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Brad E. Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| |
Collapse
|
13
|
Fontana GA, MacArthur MR, Rotankova N, Di Filippo M, Beer HD, Gahlon HL. The mitochondrial DNA common deletion as a potential biomarker of cancer-associated fibroblasts from skin basal and squamous cell carcinomas. Sci Rep 2024; 14:553. [PMID: 38177205 PMCID: PMC10766618 DOI: 10.1038/s41598-023-50213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are components of the tumor microenvironment and represent appealing therapeutic targets for translational studies. Conventional protein-based biomarkers for CAFs have been reported to be limited in their specificity, rendering difficult the identification of CAFs from normal fibroblasts (NFs) in clinical samples and dampening the development of CAF-targeted therapies to treat cancer. In this study, we propose the mitochondrial RNA and the mitochondrial DNA (mtDNA) common deletion (CD) as novel indicators of CAF identity. We found that cancer-activation correlated with decreased levels of the mtDNA CD, a condition not due to altered mitochondria count or cellular redox state, but potentially linked to the generalized overexpression of mtDNA maintenance genes in CAFs. Decreased mtDNA CD content in CAFs was associated with moderate to strong overexpression of mtDNA-encoded genes and to slightly improved mitochondrial function. We identified similar patterns of upregulation of mtDNA-encoded genes in independent single-cell RNA seq data obtained from squamous cell carcinoma (SCC) patients. By using the identified nucleic acids-based indicators, identification of CAFs from NFs could be improved, leading to potential therapeutic benefits in advancing translational and clinical studies.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Cellvie AG, Technoparkstrasse 1, CH-8005 Zürich, Switzerland
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Nadezhda Rotankova
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, 8952, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8952, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
14
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
15
|
Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy-NAD axis in longevity and disease. Trends Cell Biol 2023; 33:788-802. [PMID: 36878731 DOI: 10.1016/j.tcb.2023.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.
Collapse
Affiliation(s)
- Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
16
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Herrmann GK, Yin YW. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Biomolecules 2023; 13:1195. [PMID: 37627260 PMCID: PMC10452840 DOI: 10.3390/biom13081195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Poly(ADP-ribose) (PAR) Polymerase 1 (PARP-1), also known as ADP-ribosyl transferase with diphtheria toxin homology 1 (ARTD-1), is a critical player in DNA damage repair, during which it catalyzes the ADP ribosylation of self and target enzymes. While the nuclear localization of PARP-1 has been well established, recent studies also suggest its mitochondrial localization. In this review, we summarize the differences between mitochondrial and nuclear Base Excision Repair (BER) pathways, the involvement of PARP-1 in mitochondrial and nuclear BER, and its functional interplay with other BER enzymes.
Collapse
Affiliation(s)
- Geoffrey K. Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Piechowiak T, Skóra B. Edible coating enriched with cinnamon oil reduces the oxidative stress and improves the quality of strawberry fruit stored at room temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2389-2400. [PMID: 36683377 DOI: 10.1002/jsfa.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The present study aimed to assess the impact of a starch/gelatine coating containing cinnamon oil on selected quality attributes and redox status in strawberry fruit stored at room temperature (72 h). RESULTS Research showed that the application of cinnamon oil to an edible coating allows an improvement of the quality of strawberry fruit stored at room temperature. The cinnamon oil coating inhibits the development of yeast and mould, and reduces loss of soluble solids and ascorbic acid during 72 h storage at room temperature. Moreover, the coating with cinnamon oil clearly reduced the level of oxidative stress, which was manifested by a lower level of reactive oxygen species, as well as a lower activity of antioxidant enzymes. The elimination of oxidative stress in the cinnamon oil-coated fruit also contributed to lower PARP1 mRNA expression, inhibiting the metabolism of NAD+ and reducing ATP losses. CONCLUSION The coating of strawberry fruit with a starch/gelatine biofilm containing cinnamon oil is an effective method for delaying postharvest senescence of fruit and the storage degradation of tissue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
19
|
Li R, Luo R, Luo Y, Hou Y, Wang J, Zhang Q, Chen X, Hu L, Zhou J. Biological function, mediate cell death pathway and their potential regulated mechanisms for post-mortem muscle tenderization of PARP1: A review. Front Nutr 2022; 9:1093939. [PMID: 36590225 PMCID: PMC9797534 DOI: 10.3389/fnut.2022.1093939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tenderness is a key attribute of meat quality that affects consumers' willingness to purchase meat. Changes in the physiological environment of skeletal muscles following slaughter can disrupt the balance of redox homeostasis and may lead to cell death. Excessive accumulation of reactive oxygen species (ROS) in the myocytes causes DNA damage and activates poly ADP-ribose polymerase 1 (PARP1), which is involved in different intracellular metabolic pathways and is known to affect muscle tenderness during post-slaughter maturation. There is an urgent requirement to summarize the related research findings. Thus, this paper reviews the current research on the protein structure of PARP1 and its metabolism and activation, outlines the mechanisms underlying the function of PARP1 in regulating muscle tenderness through cysteine protease 3 (Caspase-3), oxidative stress, heat shock proteins (HSPs), and energy metabolism. In addition, we describe the mechanisms of PARP1 in apoptosis and necrosis pathways to provide a theoretical reference for enhancing the mature technology of post-mortem muscle tenderization.
Collapse
Affiliation(s)
- Rong Li
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Ruiming Luo
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Yulong Luo
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China,*Correspondence: Yulong Luo,
| | - Yanru Hou
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Jinxia Wang
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Qian Zhang
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Xueyan Chen
- School of Food and Wine, Ningxia University, Yinchuan, China,National R & D Center for Mutton Processing, Yinchuan, China
| | - Lijun Hu
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Julong Zhou
- School of Food and Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
20
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
21
|
Lee JH, Hussain M, Kim EW, Cheng SJ, Leung AKL, Fakouri NB, Croteau DL, Bohr VA. Mitochondrial PARP1 regulates NAD +-dependent poly ADP-ribosylation of mitochondrial nucleoids. Exp Mol Med 2022; 54:2135-2147. [PMID: 36473936 PMCID: PMC9794712 DOI: 10.1038/s12276-022-00894-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 12/12/2022] Open
Abstract
PARPs play fundamental roles in multiple DNA damage recognition and repair pathways. Persistent nuclear PARP activation causes cellular NAD+ depletion and exacerbates cellular aging. However, very little is known about mitochondrial PARP (mtPARP) and poly ADP-ribosylation (PARylation). The existence of mtPARP is controversial, and the biological roles of mtPARP-induced mitochondrial PARylation are unclear. Here, we demonstrate the presence of PARP1 and PARylation in purified mitochondria. The addition of the PARP1 substrate NAD+ to isolated mitochondria induced PARylation, which was suppressed by treatment with the inhibitor olaparib. Mitochondrial PARylation was also evaluated by enzymatic labeling of terminal ADP-ribose (ELTA). To further confirm the presence of mtPARP1, we evaluated mitochondrial nucleoid PARylation by ADP ribose-chromatin affinity purification (ADPr-ChAP) and PARP1 chromatin immunoprecipitation (ChIP). We observed that NAD+ stimulated PARylation and TFAM occupancy on the mtDNA regulatory region D-loop, inducing mtDNA transcription. These findings suggest that PARP1 is integrally involved in mitochondrial PARylation and that NAD+-dependent mtPARP1 activity contributes to mtDNA transcriptional regulation.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Mansoor Hussain
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Departments of Oncology, Genetics Medicine, Molecular Biology & Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Nima Borhan Fakouri
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Computational Biology and Genomic Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
22
|
Piechowiak T, Skóra B, Balawejder M. Ozonation process causes changes in PARP-1 expression and the metabolism of NADPH in strawberry fruit during storage. J Biotechnol 2022; 357:84-91. [PMID: 35985517 DOI: 10.1016/j.jbiotec.2022.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
In this study, the effect of ozonation process on the poly(ADP-ribose) polymerase 1 gene expression (PARP-1) and related the NADPH metabolism in strawberry fruit during storage was determined. Our results showed that ozonation with gas at both 10 and 100 ppm concentrations increased the expression of PARP-1 in the fruit during storage. Furthermore, the ozonation process initially increased the level of NAD+ and NADH in the fruit, which corresponds to a higher ATP level. The storage of the fruit in an ozone atmosphere also contributed to increased activity of the NAD+ kinase, leading to increased levels of NADP+ . In turn, the higher activity of glucose-6-phosphate dehydrogenase caused the ozonated fruit to show a higher level of NADPH. However, as the storage period extended and thus with increasing expression of PARP-1 in the ozonated fruit, the level of NAD+ decreased. In general, the ozonated fruit, which had a higher level of NADPH, showed a higher content of reduced glutathione, which in turn contributed to an increase in the antioxidant activity of the fruit and, ultimately, to a lower accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
23
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
24
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|