1
|
Sinha S, Callow BW, Farfel AP, Roy S, Chen S, Rajendran S, Buschhaus JM, Espinoza CR, Luker KE, Ghosh P, Luker GD. Breast Cancers That Disseminate to Bone Marrow Acquire Aggressive Phenotypes through CX43-related Tumor-Stroma Tunnels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533175. [PMID: 36993616 PMCID: PMC10055300 DOI: 10.1101/2023.03.18.533175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network-analyses workflow to identify a comprehensive catalog of contact-induced changes. Conditioned media from MSCs failed to recapitulate genes and proteins, some borrowed and others tumor-intrinsic, induced in cancer cells by direct contact. Protein-protein interaction networks revealed the rich connectome between 'borrowed' and 'intrinsic' components. Bioinformatics prioritized one of the 'borrowed' components, CCDC88A /GIV, a multi-modular metastasis-related protein that has recently been implicated in driving a hallmark of cancer, growth signaling autonomy. MSCs transferred GIV protein to ER+ breast cancer cells (that lack GIV) through tunnelling nanotubes via connexin (Cx)43-facilitated intercellular transport. Reinstating GIV alone in GIV-negative breast cancer cells reproduced ∼20% of both the 'borrowed' and the 'intrinsic' gene induction patterns from contact co-cultures; conferred resistance to anti-estrogen drugs; and enhanced tumor dissemination. Findings provide a multiomic insight into MSC→tumor cell intercellular transport and validate how transport of one such candidate, GIV, from the haves (MSCs) to have-nots (ER+ breast cancer) orchestrates aggressive disease states.
Collapse
|
2
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
4
|
Abd El-Hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-proteins. iScience 2023; 26:105973. [PMID: 36756378 PMCID: PMC9900518 DOI: 10.1016/j.isci.2023.105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•βγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gβγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nina Sun
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pranavi Chamarthi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| |
Collapse
|
5
|
Zou Z, Sun Y, Wang L, Ma S, Sun C, Zhou Y, Yang G. GIV is a promising novel poor prognostic factor in liver hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e29645. [PMID: 35960100 PMCID: PMC9371552 DOI: 10.1097/md.0000000000029645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have implicated Gα-interacting, vesicle-associated protein (GIV) in the development and metastasis of various cancers. However, its role remains unclear in liver hepatocellular carcinoma (LIHC). We aimed to demonstrate the relationship between GIV and LIHC based on The Cancer Genome Atlas database. We use the Gene Expression Profiling Interactive Analysis and UALCAN to explore the expression of GIV and the survive analysis of GIV in patients with LIHC, genetic alteration analysis, immune infiltration analysis, functional enrichment, protein-protein interaction network analyses, and transcription factor targets of GIV-correlated genes and GIV-interacting genes were performed this study. GIV expression was significantly elevated in LIHC tissues. Remarkable correlation was established between GIV expression and LIHC pathological stage. Low expression of GIV in tumor tissues had a better prognosis than GIV-high expression. GIV alteration frequency was 1.44% in patients with LIHC. GIV-unaltered patients had better survival than GIV-altered ones. Moreover, GIV expression level in LIHC significantly correlated with the infiltration level of immune cells and cancer-associated fibroblasts. The functions of differentially expressed GIVs are associated with the cell cycle pathway. Our data imply that E2F4, E2F1, MYC, and MYCN are key transcription factors for GIV-correlated genes and GIV-interacted genes. GIV may be an adverse prognostic factor for patients with LIHC; it also can be a potential therapeutic target against LIHC. Further studies are required to validate our findings.
Collapse
Affiliation(s)
- Zhenzhen Zou
- Department of Laboratory, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Yibin Sun
- Department of Gastroenterology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Lin Wang
- Department of Laboratory, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Sai Ma
- Department of Central Laboratory, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Chunrong Sun
- Department of General Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yu Zhou
- Department of General Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Souzhou Jiangsu, China
- * Correspondence: Yu Zhou, Department of General Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd., Suzhou, Jiangsu Province 215000, China (e-mail: )
| | - Guorong Yang
- Department of General Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Abd El-hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-protein Signaling.. [DOI: 10.1101/2021.07.21.452842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractUpon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DNA damage hinges on the guanine nucleotide-exchange modulator of heterotrimeric G-protein, Giα•βγ, GIV/Girdin. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1’s BRCT-modules via both phospho-dependent and -independent mechanisms. GIV promotes NHEJ, and binds and activates Gi and enhances the ‘free’ Gβγ→PI-3-kinase→Akt pathway, thus revealing the enigmatic origin of prosurvival Akt signals during dsDNA repair. Absence of GIV, or the loss of either of its two functions impaired DNA repair, and induced cell death when challenged with numerous cytotoxic agents. That GIV selectively binds few other BRCT-containing proteins suggests convergent signaling such that heterotrimeric G-proteins may finetune sensing, repair, and outcome after DNA damage.GRAPHIC ABSTRACTHIGHLIGHTSNon-receptor G protein modulator, GIV/Girdin binds BRCA1Binding occurs in both canonical and non-canonical modesGIV sequesters BRCA1 away from dsDNA breaks, suppresses HRActivation of Gi by GIV enhances Akt signals, favors NHEJIN BRIEFIn this work, the authors show that heterotrimeric G protein signaling that is triggered by non-receptor GEF, GIV/Girdin, in response to double-stranded DNA breaks is critical for decisive signaling events which favor non-homologous end-joining (NHEJ) and inhibit homologous recombination (HR).
Collapse
|
7
|
Qiao L, Sinha S, El-hafeez AAA, Lo I, Midde KK, Ngo T, Aznar N, Lopez-sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotes.. [DOI: 10.1101/2021.03.18.436048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTCancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell’s ability to ‘secrete-and-sense’ growth factors: a poorly understood phenomenon. Using an integrated systems and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control (CLC), allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint growth factors (e.g., the epidermal growth factor; EGF) as a key stimuli for such self-sustenance. Findings highlight how enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.SYNOPSIS IMAGESTANDFIRST TEXTThis work defines the inner workings of a Golgi-localized molecular circuitry comprised of coupled GTPases, which empowers cells to achieve self-sufficiency in growth factor signaling by creating a secrete-and-sense autocrine loop.HIGHLIGHTS/MAIN FINDINGSModeling and experimental approaches were used to dissect a coupled GTPase circuit.Coupling enables closed loop feedback and mutual control of GTPases.Coupling generates dose response alignment behavior of sensing and secretion of growth factors.Coupling is critical for multiscale feedback control to achieve secretion-coupled autonomy.
Collapse
|