1
|
Sen A, Thakur S, Rawat P, Jaswal K, Dehury B, Mondal P. Hepatic ChREBP reciprocally modulates systemic insulin sensitivity in NAFLD. J Biol Chem 2025:108556. [PMID: 40311678 DOI: 10.1016/j.jbc.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The relation between hepatic ChREBP level and insulin sensitivity remains equivocal. Our study, however, provides compelling evidence that ChREBP depletion can significantly enhance insulin sensitivity in high-fat and sucrose-fed (HFSD)mice. We have identified that transcriptional induction of hepatic PTEN is driven by ChREBP. Mechanistically, two critical stimuli are elicited in the hepatic ChREBP knockdown condition. The PTEN level is reduced for one stimulus, thereby promoting hepatic insulin sensitivity. The second stimulus, where reduced hepatic PTEN leads to the enhanced release of FGF21, spreads systemic insulin sensitivity. These findings identify hepatic ChREBP as a critical modulator of systemic insulin signaling and suggest that ChREBP downregulation may lead to protection against insulin resistance. Building on this, our molecular dynamics simulation analysis has led to the discovery of a small molecule, Quercetin, that sequesters ChREBP in the cytosol. We report that Quercetin treatment can sequester ChREBP in the cytosol and abrogate HFSD-mediated ChREBP nuclear translocation, thereby mimicking the insulin-sensitizing abilities of the hepatic ChREBP knockdown condition. These findings have significant therapeutic implications, suggesting that liver-selective downregulation of ChREBP could protect against systemic insulin resistance that frequently develops early in the pathogenesis of NAFLD and T2DM.
Collapse
Affiliation(s)
- Aniket Sen
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Shilpa Thakur
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Priya Rawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - Kajal Jaswal
- School of Biosciences and Bioengineering, IIT Mandi, Mandi, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Prosenjit Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India.
| |
Collapse
|
2
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Zhang M, Zhao W, Zhang Z, He M, Zhang Y, Song B, Liu J, Zhang H. FPS-ZM1 attenuates the deposition of lipid in the liver of diabetic mice by sterol regulatory element binding protein-1c. BMC Endocr Disord 2024; 24:164. [PMID: 39210356 PMCID: PMC11360499 DOI: 10.1186/s12902-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) shares common pathogenic mechanisms of type 2 diabetes mellitus (T2DM) with upregulated advanced glycation end products (AGEs). Here, we aim to investigate the effect of FPS-ZM1, an inhibitor for receptor for AGEs (RAGE), on lipid deposition in the liver of mice. METHODS KK-Ay mice were used as models of T2DM with NAFLD, while C57BL/6j mice were controls. Additionally, KK-Ay mice were treated with DMSO (with a concentration of 1%), with or without FPS-ZM1 (3 mg/kg/day, i.p). Lipid deposition in hepatocytes was observed using oil red O stain. Levels of AGEs and RAGE were measured. Sterol regulatory element-binding protein-1c (SREBP-1c), as well as nuclear factor κB p65 (p65 nfκb) and mitogen-activated protein kinase p38 (p38 MAPK), were also detected. RESULTS Lipid deposition is increased in the hepatocytes of KK-Ay mice compared to C57BL/6j mice. In addition, not only were the levels of AGEs elevated in plasma, but also the levels of RAGE in liver tissue. Although total SREBP-1c levels did not change in the liver of diabetic mice, mature SREBP-1c increased in KK-Ay mice with diabetes mellitus. Moreover, diabetic mice showed increased levels of phosphorylated-p65 nfκb (p-p65 nfκb) and phosphorylated-p38 MAPK (p-p38 MAPK). On the contrary, FPS-ZM1 decreased lipid deposition in liver cells, as well as mature SREBP-1c, p-p65 nfκb and p-p38 MAPK levels in liver tissue. CONCLUSION Generally, FPS-ZM1 may attenuate lipid deposition in hepatocytes of diabetic mice via SREBP-1c down-regulation. This may depend on the downregulation of p65 nfκb and p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Mengshu Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wanwan Zhao
- Department of Nephrology, The First Affiliated Hospital of USTC,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhen Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengting He
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ya Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bing Song
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jinlei Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Haoqiang Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
5
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
6
|
Al Jadani JM, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Esculeogenin A, a Glycan from Tomato, Alleviates Nonalcoholic Fatty Liver Disease in Rats through Hypolipidemic, Antioxidant, and Anti-Inflammatory Effects. Nutrients 2023; 15:4755. [PMID: 38004149 PMCID: PMC10675668 DOI: 10.3390/nu15224755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the preventative effects of esculeogenin A (ESGA), a newly discovered glycan from tomato, on liver damage and hepatic steatosis in high-fat-diet (HFD)-fed male rats. The animals were divided into six groups (each of eight rats): a control group fed a normal diet, control + ESGA (200 mg/kg), HFD, and HFD + ESAG in 3 doses (50, 100, and 200 mg/kg). Feeding and treatments were conducted for 12 weeks. Treatment with ESGA did not affect gains in the body or fat weight nor increases in fasting glucose, insulin, and HOMA-IR or serum levels of free fatty acids (FFAs), tumor-necrosis factor-α, and interleukin-6 (IL-6). On the contrary, it significantly reduced the serum levels of gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein cholesterol (LDL-c) in the HFD-fed rats. In addition, it improved the liver structure, attenuating the increase in fat vacuoles; reduced levels of TGs and CHOL, and the mRNA levels of SREBP1 and acetyl CoA carboxylase (ACC); and upregulated the mRNA levels of proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase I (CPT I) in HFD-fed rats. These effects were concomitant with increases in the mRNA, cytoplasmic, and nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO); a reduction in the nuclear activity of nuclear factor-kappa beta (NF-κB); and inhibition of the activity of nuclear factor kappa B kinase subunit beta (IKKβ). All of these effects were dose-dependent effects in which a normal liver structure and normal levels of all measured parameters were seen in HFD + ESGA (200 mg/kg)-treated rats. In conclusion, ESGA prevents NAFLD in HFD-fed rats by attenuating hyperlipidemia, hepatic steatosis, oxidative stress, and inflammation by acting locally on Nrf2, NF-κB, SREBP1, and PPARα transcription factors.
Collapse
Affiliation(s)
- Jwharah M. Al Jadani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Soheir A. Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| |
Collapse
|
7
|
Khalifa O, Ouararhni K, Errafii K, Alajez NM, Arredouani A. Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells. Int J Mol Sci 2023; 24:11606. [PMID: 37511368 PMCID: PMC10380891 DOI: 10.3390/ijms241411606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/β-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khaoula Errafii
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco
| | - Nehad M. Alajez
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
8
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
9
|
Jin Y, Heo KS. Experimental model and novel therapeutic targets for non-alcoholic fatty liver disease development. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:299-310. [PMID: 37386828 PMCID: PMC10316197 DOI: 10.4196/kjpp.2023.27.4.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disorder characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption. It is one of the most common liver diseases worldwide, affecting approximately 25% of the global population. It is closely associated with obesity, type 2 diabetes, and metabolic syndrome. Moreover, NAFLD can progress to non-alcoholic steatohepatitis, which can cause liver cirrhosis, liver failure, and hepatocellular carcinoma. Currently, there are no approved drugs for the treatment of NAFLD. Therefore, the development of effective drugs is essential for NAFLD treatment. In this article, we discuss the experimental models and novel therapeutic targets for NAFLD. Additionally, we propose new strategies for the development of drugs for NAFLD.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Guo Y, Miao X, Sun X, Li L, Zhou A, Zhu X, Xu Y, Wang Q, Li Z, Fan Z. Zinc finger transcription factor Egf1 promotes non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100724. [PMID: 37234276 PMCID: PMC10206499 DOI: 10.1016/j.jhepr.2023.100724] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 05/27/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) contributes to the global epidemic of metabolic syndrome and is considered a prelude to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. During NAFLD pathogenesis, hepatic parenchymal cells (hepatocytes) undergo both morphological and functional changes owing to a rewired transcriptome. The underlying mechanism is not entirely clear. In the present study, we investigated the involvement of early growth response 1 (Egr1) in NAFLD. Methods Quantitative PCR, Western blotting, and histochemical staining were used to assess gene expression levels. Chromatin immunoprecipitation was used to evaluate protein binding to DNA. NAFLD was evaluated in leptin receptor-deficient (db/db) mice. Results We report here that Egr1 was upregulated by pro-NAFLD stimuli in vitro and in vivo. Further analysis revealed that serum response factor (SRF) was recruited to the Egr1 promoter and mediated Egr1 transactivation. Importantly, Egr1 depletion markedly mitigated NAFLD in db/db mice. RNA sequencing revealed that Egr1 knockdown in hepatocytes, on the one hand, boosted fatty acid oxidation (FAO) and, on the other hand, suppressed the synthesis of chemoattractants. Mechanistically, Egr1 interacted with peroxisome proliferator-activated receptor α (PPARα) to repress PPARα-dependent transcription of FAO genes by recruiting its co-repressor NGFI-A binding protein 1 (Nab1), which potentially led to promoter deacetylation of FAO genes. Conclusions Our data identify Egr1 as a novel modulator of NAFLD and a potential target for NAFLD intervention. Impact and Implications Non-alcoholic fatty liver disease (NAFLD) precedes cirrhosis and hepatocellular carcinoma. In this paper, we describe a novel mechanism whereby early growth response 1 (Egr1), a transcription factor, contributes to NAFLD pathogenesis by regulating fatty acid oxidation. Our data provide novel insights and translational potential for NAFLD intervention.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Luyang Li
- Department of Oral Medicine, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xi Zhu
- Department of Infectious Diseases, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yong Xu
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
11
|
Rawat P, Thakur S, Dogra S, Jaswal K, Dehury B, Mondal P. Diet-induced induction of hepatic Serine/Threonine Kinase STK38 triggers proinflammation and hepatic lipid accumulation. J Biol Chem 2023; 299:104678. [PMID: 37028764 DOI: 10.1016/j.jbc.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. Although the involvement of chronic overnutrition, systemic inflammation, and insulin resistance in the development of NAFLD is well-established, however, the associations among these remain to be elucidated. Several studies have reported that chronic overnutrition, such as excessive consumption of fats (High Fat Diet, HFD) can cause insulin resistance and inflammation. However, the mechanisms by which HFD exerts inflammation and thereby promotes insulin resistance and intrahepatic fat accumulation remain poorly understood. Here, we show that HFD induces the expression of hepatic Serine/Threonine Kinase 38 (STK38), which further induces systemic inflammation leading to insulin resistance. Notably, Ectopic expression of STK38 in mouse liver leads to lean NAFLD phenotype with hepatic inflammation, insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia in mice fed on a regular chow diet. Further, depletion of hepatic STK38 in HFD-fed mice remarkably reduces proinflammation, improves hepatic insulin sensitivity, and decreases hepatic fat accumulation. Mechanistically, two critical stimuli are elicited by STK38 action. For one stimulus, STK38 binds to Tank-Binding protein Kinase1 (TBK1) and induces TBK1 phosphorylation to promote NF-κβ nuclear translocation that mobilizes the release of pro-inflammatory cytokines and eventually leads to insulin resistance. The second, stimulus involves intrahepatic lipid accumulation by enhanced de novo lipogenesis via reducing the AMPK-ACC signaling axis. These findings identify STK38 as a novel nutrient-sensitive pro-inflammatory and lipogenic factor in maintaining hepatic energy homeostasis, and it provides a promising target for hepatic and immune health.
Collapse
|
12
|
Ferrigno A, Cagna M, Bosco O, Trucchi M, Berardo C, Nicoletti F, Vairetti M, Di Pasqua LG. MPEP Attenuates Intrahepatic Fat Accumulation in Obese Mice. Int J Mol Sci 2023; 24:ijms24076076. [PMID: 37047048 PMCID: PMC10094379 DOI: 10.3390/ijms24076076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1β and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Oriana Bosco
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Vasarri M, Barletta E, Stio M, Bergonzi MC, Galli A, Degl’Innocenti D. Ameliorative Effect of Posidonia oceanica on High Glucose-Related Stress in Human Hepatoma HepG2 Cells. Int J Mol Sci 2023; 24:ijms24065203. [PMID: 36982278 PMCID: PMC10048879 DOI: 10.3390/ijms24065203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Metabolic disorders characterized by elevated blood glucose levels are a recognized risk factor for hepatocellular carcinoma (HCC). Lipid dysregulation is critically involved in the HCC progression, regulating energy storage, metabolism, and cell signaling. There is a clear link between de novo lipogenesis in the liver and activation of the NF-κB pathway, which is involved in cancer metastasis via regulation of metalloproteinases MMP-2/9. As conventional therapies for HCC reach their limits, new effective and safe drugs need to be found for the prevention and/or adjuvant therapy of HCC. The marine plant Posidonia oceanica (L.) Delile is endemic to the Mediterranean and has traditionally been used to treat diabetes and other health disorders. The phenol-rich leaf extract of Posidonia oceanica (POE) is known to have cell-safe bioactivities. Here, high glucose (HG) conditions were used to study lipid accumulation and fatty acid synthase (FASN) expression in human HepG2 hepatoma cells using Oil Red O and Western blot assays. Under HG conditions, the activation status of MAPKs/NF-κB axis and MMP-2/9 activity were determined by Western blot and gelatin zymography assays. The potential ameliorative role of POE against HG-related stress in HepG2 cells was then investigated. POE reduced lipid accumulation and FASN expression with an impact on de novo lipogenesis. Moreover, POE inhibited the MAPKs/NF-κB axis and, consequently, MMP-2/9 activity. Overall, these results suggest that P. oceanica may be a potential weapon in the HCC additional treatment.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Stio
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| |
Collapse
|
14
|
Wang R, Zhao J, Jin J, Tian Y, Lan L, Wang X, Zhu L, Wang J. WY-14643 attenuates lipid deposition via activation of the PPARα/CPT1A axis by targeting Gly335 to inhibit cell proliferation and migration in ccRCC. Lipids Health Dis 2022; 21:121. [DOI: 10.1186/s12944-022-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Histologically, cytoplasmic deposits of lipids and glycogen are common in clear cell renal cell carcinoma (ccRCC). Owing to the significance of lipid deposition in ccRCC, numerous trials targeting lipid metabolism have shown certain therapeutic potential. The agonism of peroxisome proliferator-activated receptor-α (PPARα) via ligands, including WY-14,643, has been considered a promising intervention for cancers.
Methods
First, the effects of WY-14,643 on malignant behaviors were investigated in ccRCC in vitro. After RNA sequencing, the changes in lipid metabolism, especially neutral lipids and glycerol, were further evaluated. Finally, the underlying mechanisms were revealed.
Results
Phenotypically, the proliferation and migration of ccRCC cells treated with WY-14,643 were significantly inhibited in vitro. A theoretical functional mechanism was proposed in ccRCC: WY-14,643 mediates lipid consumption by recognizing carnitine palmitoyltransferase 1 A (CPT1A). Activation of PPARα using WY-14,643 reduces lipid deposition by increasing the CPT1A level, which also suppresses the NF-κB signaling pathway. Spatially, WY-14,643 binds and activates PPARα by targeting Gly335.
Conclusion
Overall, WY-14,643 suppresses the biological behaviors of ccRCC in terms of cell proliferation, migration, and cell cycle arrest. Furthermore, its anticancer properties are mediated by the inhibition of lipid accumulation, at least in part, through the PPARα/CPT1A axis by targeting Gly335, as part of the process, NF-κB signaling is also suppressed. Pharmacological activation of PPARα might offer a new treatment option for ccRCC.
Collapse
|
15
|
Yang R, Yang H, Jiang D, Xu L, Feng L, Xing Y. Investigation of the potential mechanism of the Shugan Xiaozhi decoction for the treatment of nonalcoholic fatty liver disease based on network pharmacology, molecular docking and molecular dynamics simulation. PeerJ 2022; 10:e14171. [PMID: 36389420 PMCID: PMC9657198 DOI: 10.7717/peerj.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease, the incidence of which increases annually. Shugan Xiaozhi (SGXZ) decoction, a composite traditional Chinese medicinal prescription, has been demonstrated to exert a therapeutic effect on NAFLD. In this study, the potential bioactive ingredients and mechanism of SGXZ decoction against NAFLD were explored via network pharmacology, molecular docking, and molecular dynamics simulation. METHODS Compounds in SGXZ decoction were identified and collected from the literature, and the corresponding targets were predicted through the Similarity Ensemble Approach database. Potential targets related to NAFLD were searched on DisGeNET and GeneCards databases. The compound-target-disease and protein-protein interaction (PPI) networks were constructed to recognize key compounds and targets. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on the targets. Molecular docking was used to further screen the potent active compounds in SGXZ. Finally, molecular dynamics (MD) simulation was applied to verify and validate the binding between the most potent compound and targets. RESULTS A total of 31 active compounds and 220 corresponding targets in SGXZ decoction were collected. Moreover, 1,544 targets of NAFLD were obtained, of which 78 targets intersected with the targets of SGXZ decoction. Key compounds and targets were recognized through the compound-target-disease and PPI network. Multiple biological pathways were annotated, including PI3K-Akt, MAPK, insulin resistance, HIF-1, and tryptophan metabolism. Molecular docking showed that gallic acid, chlorogenic acid and isochlorogenic acid A could combine with the key targets. Molecular dynamics simulations suggested that isochlorogenic acid A might potentially bind directly with RELA, IL-6, VEGFA, and MMP9 in the regulation of PI3K-Akt signaling pathway. CONCLUSION This study investigated the active substances and key targets of SGXZ decoction in the regulation of multiple-pathways based on network pharmacology and computational approaches, providing a theoretical basis for further pharmacological research into the potential mechanism of SGXZ in NAFLD.
Collapse
Affiliation(s)
- Rong Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dansheng Jiang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linyi Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Sahin K, Orhan C, Kucuk O, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Ojalvo SP, Komorowski JR. Effects of magnesium picolinate, zinc picolinate, and selenomethionine co-supplementation on reproductive hormones, and glucose and lipid metabolism-related protein expressions in male rats fed a high-fat diet. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100081. [PMID: 35415682 PMCID: PMC8991512 DOI: 10.1016/j.fochms.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to examine the impacts of the magnesium picolinate (MgPic), zinc picolinate (ZnPic), and selenomethionine (SeMet) alone or as a combination on blood metabolites, oxidative enzymes, reproductive hormones, and glucose and lipid metabolism-related protein expressions in Wistar rats fed a high-fed diet (HFD). The rats were fed either a control, HFD, or HFD supplemented with a single (MgPic, ZnPic, SeMet) or two or three organic mineral combinations. Body weights, visceral fat, serum glucose, insulin, total cholesterol, triglycerides, leptin, malondialdehyde (MDA) concentrations as well as liver sterol regulatory element-binding protein-1c (SREBP-1c), liver X receptor alpha (LXRα), ATP citrate lyase (ACLY), fatty acid synthase (FAS), and nuclear factor kappa B (NF-κB) levels increased, while serum testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), and insulin-like growth factor (IGF-1) concentrations along with liver nuclear factor erythroid 2-related factor 2 (Nrf2) levels declined in HFD rats (P < 0.05). Supplementing each organic mineral, but particularly the combination of HFD + MgPic + ZnPic + SeMet reversed the responses with various degrees. None of the organic elements alone or as a combination of two exerted a prominent effect on parameters measured. Although not additive or synergistic, the combination of all organic minerals added to HFD (HFD + MgPic + ZnPic + SeMet) provided the greatest responses.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Osman Kucuk
- Department of Animal Nutrition, School of Veterinary Medicine, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | - Sara P Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA
| | | |
Collapse
|
17
|
Oh KK, Choi YR, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Kim DJ, Suk KT. Identification of Gut Microbiome Metabolites via Network Pharmacology Analysis in Treating Alcoholic Liver Disease. Curr Issues Mol Biol 2022; 44:3253-3266. [PMID: 35877448 PMCID: PMC9316215 DOI: 10.3390/cimb44070224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022] Open
Abstract
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Korea; (K.-K.O.); (Y.-R.C.); (H.G.); (R.G.); (S.P.S.); (S.-M.W.); (J.-J.J.); (S.-B.L.); (M.-G.C.); (G.-H.K.); (D.-J.K.)
| |
Collapse
|
18
|
New Insights of OLFM2 and OLFM4 in Gut-Liver Axis and Their Potential Involvement in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137442. [PMID: 35806447 PMCID: PMC9267292 DOI: 10.3390/ijms23137442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Olfactomedins (OLFMs) are a family of glycoproteins that play a relevant role in embryonic development and in some pathological processes. Although OLFM2 is involved in the regulation of the energy metabolism and OLFM4 is an important player in inflammation, innate immunity and cancer, the role of OLFMs in NAFLD-related intestinal dysbiosis remains unknown. In this study, we analysed the hepatic mRNA expression of OLFM2 and the jejunal expression of OLFM4 in a well-established cohort of women with morbid obesity (MO), classified according to their hepatic histology into normal liver (n = 27), simple steatosis (n = 26) and nonalcoholic steatohepatitis (NASH, n = 16). Our results showed that OLFM2 hepatic mRNA was higher in NASH, in advanced degrees of steatosis and in the presence of lobular inflammation. Additionally, we obtained positive correlations between hepatic OLFM2 and glucose, cholesterol, trimethylamine N-oxide and deoxycholic acid levels and hepatic fatty acid synthase, and negative associations with weight and jejunal Toll-like receptors (TLR4) and TLR5 expression. Regarding jejunal OLFM4, we observed positive correlations with circulating interleukin (IL)-8, IL-10, IL-17 and jejunal TLR9. In conclusion, OLFM2 in the liver seems to play a relevant role in NAFLD progression, while OLFM4 in the jejunum could be involved in gut dysbiosis-related inflammatory events.
Collapse
|
19
|
Biswas B, Dogra S, Dey G, Murugan NA, Mondal P, Ghosh S. Near-infrared emissive cyanine probes for selective visualization of the physiological and pathophysiological modulation of albumin levels. J Mater Chem B 2022; 10:3657-3666. [PMID: 35421884 DOI: 10.1039/d1tb02613e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the promising advantages of the near-infrared region (NIR) emissive markers for serum albumin becoming very prominent recently, we devised CyG-NHS as the cyanine derived longest NIR-I emissive optical marker possessing albumin selective recognition ability in diverse biological milieu. Multiscale modeling involving molecular docking, molecular dynamics, and implicit solvent binding free energy calculations have been employed to gain insights into the unique binding ability of the developed probe at domain-I of albumin, in contrast to the good number of domain IIA or IIIA binding probes available in the literature reports. The binding free energy was found to be -31.8 kcal mol-1 majorly predominated by hydrophobic interactions. Besides, the conformational dynamics of CyG-NHS in an aqueous medium and the albumin microenvironment have been comprehensively studied and discussed. The potentiality of this optical platform to monitor the intracellular albumin levels in human hepatoma (HepG2) cells in different pathophysiological states has been demonstrated here. Also, the competency of the phenformin drug in restoring the albumin levels in chronic hyperinsulinemic and hypercholesterolemic in vitro models has been established through the visualization approach. Altogether, the findings of this study throw light on the significance of the development of a suitable optical marker for the visualization of critical bioevents related to albumin.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Gourab Dey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden. .,Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| |
Collapse
|
20
|
Daniel PV, Kamthan M, Thakur S, Mondal P. Molecular pathways dysregulated by Pb 2+ exposure prompts pancreatic beta-cell dysfunction. Toxicol Res (Camb) 2022; 11:206-214. [PMID: 35237425 PMCID: PMC8882803 DOI: 10.1093/toxres/tfab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 01/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by reduced insulin sensitivity and dysfunction of β-cells. Although the increasing prevalence of diabetes worldwide is largely attributed to genetic predisposition or lifestyle factors (insufficient physical activity), and caloric intake. Environmental factors, exposure to xenobiotics and heavy metals have also been reported to be causative factors of T2DM. At this juncture, we, through our work unveil a plausible link between Pb2+ exposure and diabetes mellitus, and delineated a comprehensive understanding of the potential mechanisms of Pb2+-induced β-cells dysfunction. In our in vivo observations, we found that Pb2+ exposure strongly reduced glucose-stimulated insulin secretion and diminished functional pancreatic β-cell mass. Mechanistically, we found that Pb2+ downregulates intracellular cAMP level via hyper-activating Ca2+/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C and thereby reduces glucose-stimulated insulin secretion. Further, we report that Pb2+ inhibited mitochondrial adenosine triphosphate production and also identified Pb2+ as a negative regulator of β-cell proliferation via Ca2+/calmodulin-dependent protein kinase kinases-pAMPK-pRaptor axis. Together, our findings strongly reinforce Pb2+ to hijack the physiological role of calcium ions, by mimicking Ca2+ within pancreatic β-cell and thereby stands as a diabetogenic xenobiotic.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Shilpa Thakur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Prosenjit Mondal
- Correspondence address. School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175001, India. Tel: (91)1950267262;
| |
Collapse
|