1
|
Matawali A, Yeap JW, Sulaiman SF, Tan ML. The effects of ketone bodies and ketogenesis on the PI3K/AKT/mTOR signaling pathway: A systematic review. Nutr Res 2025; 139:16-49. [PMID: 40381609 DOI: 10.1016/j.nutres.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
Ketogenesis and the PI3K/AKT/mTOR pathway are linked to metabolic imbalance and disease progression. While ketone metabolism and mTOR inhibition are mechanistically connected, their functional relationship across disease models remains unclear. Although ketogenesis can be induced by ketone ingestion, ketogenic diet, or fasting, their individual effects on this pathway require further clarification. This study systematically reviews the relationship between ketogenesis and PI3K/AKT/mTOR signaling, following PRISMA guidelines across 3 databases. Eligible studies that met the selection criteria were evaluated using the risk of bias tools. In most studies involving the ketogenic diet or ketone bodies, suppression of the signaling pathway may lead to positive outcomes in terms of survival rate, lifespan, improved metabolic homeostasis, enhanced neurovascular function and suppressed progression of tumors. By contrast, β-hydroxybutyrate supplementation is associated with the up-regulation of AKT and downstream markers. It may exert an anabolic activity by activating the mTOR signaling pathway in muscle atrophy models and is associated with muscle recovery. Although fasting increases p-AKT expression, this may not necessarily indicate activation of the downstream mTOR signaling cascade, as it could result from an insulin response or regulatory feedback mechanisms. Regulation of the mTOR signaling by ketogenesis may be tissue-specific. Inhibition of PI3K/AKT/mTOR in ketogenesis-induced circumstances may justify the importance of a ketogenic-based diet regimen in combating metabolic diseases. However, future studies should consider standardizing factors such as the duration of fasting, timing, composition of the ketogenic diet and target tissues as these factors may affect study outcomes.
Collapse
Affiliation(s)
- Azlinah Matawali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Régnier M, Polizzi A, Fougeray T, Fougerat A, Perrier P, Anderson K, Lippi Y, Smati S, Lukowicz C, Lasserre F, Fouche E, Huillet M, Rives C, Tramunt B, Naylies C, Garcia G, Rousseau-Bacquié E, Bertrand-Michel J, Canlet C, Chevolleau-Mege S, Debrauwer L, Heymes C, Burcelin R, Levade T, Gourdy P, Wahli W, Blum Y, Gamet-Payrastre L, Ellero-Simatos S, Guillermet-Guibert J, Hawkins P, Stephens L, Postic C, Montagner A, Loiseau N, Guillou H. Liver gene expression and its rewiring in hepatic steatosis are controlled by PI3Kα-dependent hepatocyte signaling. PLoS Biol 2025; 23:e3003112. [PMID: 40228209 PMCID: PMC12021288 DOI: 10.1371/journal.pbio.3003112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/24/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Insulin and other growth factors are key regulators of liver gene expression, including in metabolic diseases. Most of the phosphoinositide 3-kinase (PI3K) activity induced by insulin is considered to be dependent on PI3Kα. We used mice lacking p110α, the catalytic subunit of PI3Kα, to investigate its role in the regulation of liver gene expression in health and in metabolic dysfunction-associated steatotic liver disease (MASLD). The absence of hepatocyte PI3Kα reduced maximal insulin-induced PI3K activity and signaling, promoted glucose intolerance in lean mice and significantly regulated liver gene expression, including insulin-sensitive genes, in ad libitum feeding. Some of the defective regulation of gene expression in response to hepatocyte-restricted insulin receptor deletion was related to PI3Kα signaling. In addition, though PI3Kα deletion in hepatocytes promoted insulin resistance, it was protective against steatotic liver disease in diet-induced obesity. In the absence of hepatocyte PI3Kα, the effect of diet-induced obesity on liver gene expression was significantly altered, with changes in rhythmic gene expression in liver. Altogether, this study highlights the specific role of p110α in the control of liver gene expression in physiology and in the metabolic rewiring that occurs during MASLD.
Collapse
Affiliation(s)
- Marion Régnier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Prunelle Perrier
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Karen Anderson
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sarra Smati
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Edwin Fouche
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Clémence Rives
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Diabetology Department, CHU de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Géraldine Garcia
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Elodie Rousseau-Bacquié
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Justine Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Metatoul-Lipidomic Facility, MetaboHUB, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sylvie Chevolleau-Mege
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5071, Université de Toulouse, Toulouse, France
- Laboratoire de Biochimie, CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
- Diabetology Department, CHU de Toulouse, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Yuna Blum
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305, Rennes, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5071, Université de Toulouse, Toulouse, France
| | - Phillip Hawkins
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len Stephens
- The Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR1331, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Choi J, Smith DM, Scafidi S, Riddle RC, Wolfgang MJ. Carnitine palmitoyltransferase 1 facilitates fatty acid oxidation in a non-cell-autonomous manner. Cell Rep 2024; 43:115006. [PMID: 39671290 PMCID: PMC11726389 DOI: 10.1016/j.celrep.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
Mitochondrial fatty acid oxidation is facilitated by the combined activities of carnitine palmitoyltransferase 1 (Cpt1) and Cpt2, which generate and utilize acylcarnitines, respectively. We compare the response of mice with liver-specific deficiencies in the liver-enriched Cpt1a or the ubiquitously expressed Cpt2 and discover that they display unique metabolic, physiological, and molecular phenotypes. The loss of Cpt1a or Cpt2 results in the induction of the muscle-enriched isoenzyme Cpt1b in hepatocytes in a Pparα-dependent manner. However, hepatic Cpt1b does not contribute substantively to hepatic fatty acid oxidation when Cpt1a is absent. Liver-specific double knockout of Cpt1a and Cpt1b or Cpt2 eliminates the mitochondrial oxidation of non-esterified fatty acids. However, Cpt1a/Cpt1b double knockout mice retain fatty acid oxidation by utilizing extracellular long-chain acylcarnitines that are dependent on Cpt2. These data demonstrate the non-cell-autonomous intercellular metabolism of fatty acids in hepatocytes.
Collapse
Affiliation(s)
- Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA; Research and Development Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ruppert PMM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metab 2024; 35:107-124. [PMID: 37940485 DOI: 10.1016/j.tem.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 C Odense, Denmark
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Shi MY, Yu HC, Han CY, Bang IH, Park HS, Jang KY, Lee S, Son JB, Kim ND, Park BH, Bae EJ. p21-activated kinase 4 suppresses fatty acid β-oxidation and ketogenesis by phosphorylating NCoR1. Nat Commun 2023; 14:4987. [PMID: 37591884 PMCID: PMC10435519 DOI: 10.1038/s41467-023-40597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
PPARα corepressor NCoR1 is a key regulator of fatty acid β-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid β-oxidation and ketogenesis.
Collapse
Affiliation(s)
- Min Yan Shi
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Hwang Chan Yu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, 21984, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
9
|
Circadian clock controls rhythms in ketogenesis by interfering with PPARα transcriptional network. Proc Natl Acad Sci U S A 2022; 119:e2205755119. [PMID: 36161962 PMCID: PMC9546578 DOI: 10.1073/pnas.2205755119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high-amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [βOHB]) that correlated with liver βOHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic βOHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor α (PPARα) and its transcriptional target hepatokine fibroblast growth factor 21 (FGF21) are primary regulators of ketogenesis. Fgf21 expression and the PPARα transcriptional network became highly rhythmic in the CR liver, which implicated the involvement of the circadian clock. Mechanistically, the circadian clock proteins CLOCK, BMAL1, and cryptochromes (CRYs) interfered with PPARα transcriptional activity. Daily rhythms in the blood βOHB level and in the expression of PPARα target genes were significantly impaired in circadian clock-deficient Cry1,2-/- mice. These data suggest that blood βOHB level is tightly controlled and that the circadian clock is a regulator of diet-induced ketogenesis.
Collapse
|
10
|
Ursino G, Ramadori G, Höfler A, Odouard S, Teixeira PDS, Visentin F, Veyrat-Durebex C, Lucibello G, Firnkes R, Ricci S, Vianna CR, Jia L, Dirlewanger M, Klee P, Elmquist JK, Roth J, Vogl T, Schwitzgebel VM, Jornayvaz FR, Boland A, Coppari R. Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis. Nat Commun 2022; 13:4107. [PMID: 35840613 PMCID: PMC9287425 DOI: 10.1038/s41467-022-31803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis. Excess ketogenesis can lead to ketoacidosis, a serious complication in patients with diabetes. Here the authors report an insulin independent pathway, the hepatic nonparenchymal S100A9-TLR4-mTORC1 axis, that is able to normalize diabetic ketogenesis and pre-clinical data to suggest potential for development of S100A9 based adjunctive therapy to insulin.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Pryscila D S Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Raquel Firnkes
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Serena Ricci
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Claudia R Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Lin Jia
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Klee
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Johannes Roth
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Valérie M Schwitzgebel
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - François R Jornayvaz
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
11
|
Nutraceuticals/Drugs Promoting Mitophagy and Mitochondrial Biogenesis May Combat the Mitochondrial Dysfunction Driving Progression of Dry Age-Related Macular Degeneration. Nutrients 2022; 14:nu14091985. [PMID: 35565950 PMCID: PMC9104458 DOI: 10.3390/nu14091985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria—inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with “healthy” new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.
Collapse
|
12
|
Wolfgang MJ, Choi J, Scafidi S. Functional loss of ketogenesis in odontocete cetaceans. J Exp Biol 2021; 224:272651. [PMID: 34605907 PMCID: PMC8601715 DOI: 10.1242/jeb.243062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Odontocete cetaceans exhibit genomic mutations in key ketogenesis genes. In order to validate an inferred lack of ketogenesis made by observations from genome sequencing, we biochemically analyzed tissues from several odontocete cetacean species and demonstrate that they indeed do not exhibit appreciable hepatic β-hydroxybutyrate (βHB) or its carnitine ester. Furthermore, liver tissue exhibited significantly lower long chain acylcarnitines and increased odd chain acylcarnitines indicative of a decreased reliance on hepatic long chain fatty acid oxidation in these carnivorous mammals. Finally, we performed single molecule, real-time next generation sequencing of liver and brain RNA of Tursiops truncatus and demonstrate that the succinyl-CoA transferase required for acetoacetate catabolism is expressed in the nervous system. These data show that odontocete cetaceans have lost the ability to perform ketogenesis and suggest a hepatocentric coenzyme A recycling function rather than a predominantly systemic-bioenergetic role for ketogenesis in other ketogenic competent mammals such as humans.
Collapse
Affiliation(s)
- Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Choi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susanna Scafidi
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|