1
|
Fujii Y, Asadi Z, Mehla K. Cathepsins: Emerging targets in the tumor ecosystem to overcome cancers. Semin Cancer Biol 2025; 112:150-166. [PMID: 40228591 DOI: 10.1016/j.semcancer.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Cathepsins, a group of lysosomal peptidases, have traditionally been recognized as tumor facilitators. Recent research, however, highlights their critical role in orchestrating cancer and the tumor microenvironment (TME). Primality, cathepsins degrade extracellular matrix, enabling cancer cells to invade and metastasize, while also promoting vascular endothelial infiltration and subsequent angiogenesis. Additionally, cathepsins boost fibroblast growth, thereby supporting tumor progression. More importantly, cathepsins are pivotal in modulating immune cells within the TME by regulating their recruitment, antigen processing and presentation, differentiation, and cell death, primarily contributing to immune suppression. Given their overexpression in tumors and elevated levels in the circulation of cancer patients, it is crucial to consider the systemic effects of cathepsins. Although the comprehensive role of cathepsins in cancer patients' bodies remains underexplored, they likely influence systemic immunity and inflammation, cellular metabolism, muscle wasting, and distant metastasis through their unique proteolytic functions. Notably, cathepsins also confer resistance to chemoradiotherapy by rewriting the cellular profile within the TME. In this context, promising results are emerging from studies combining cathepsin inhibitors with conventional therapies to suppress tumor development effectively. This review aims to decipher the cathepsin-driven networks within cancer cells and the TME, detailing their contribution to chemoradioresistance by reshaping both micro- and macroenvironments. Furthermore, we explore current and future perspectives on therapies targeting cathepsins' interactions, offering insights into innovative treatment strategies.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA
| | - Zahra Asadi
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Mizrachi A, Sadeh M, Ben-Dor S, Dym O, Ku C, Feldmesser E, Zarfin A, Brunson JK, Allen AE, Jinkerson RE, Schatz D, Vardi A. Cathepsin X is a conserved cell death protein involved in algal response to environmental stress. Curr Biol 2025:S0960-9822(25)00361-6. [PMID: 40233752 DOI: 10.1016/j.cub.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Phytoplankton are responsible for half of the global photosynthesis and form vast blooms in aquatic ecosystems. Bloom demise fuels marine microbial life and is suggested to be mediated by programmed cell death (PCD) induced by diverse environmental stressors. Despite its importance, the molecular basis for algal PCD remains elusive. Here, we reveal novel PCD genes conserved across distant algal lineages using cell-to-cell heterogeneity in the response of the diatom Phaeodactylum tricornutum to oxidative stress. Comparative transcriptomics of sorted sensitive and resilient subpopulations following oxidative stress revealed genes directly linked to their contrasting fates of cell death and survival. Comparing these genes with those found in a large-scale mutant screen in the green alga Chlamydomonas reinhardtii identified functionally relevant conserved PCD gene candidates, including the cysteine protease cathepsin X/Z (CPX). CPX mutants in P. tricornutum CPX1 and C. reinhardtii CYSTEINE ENDOPEPTIDASE 12 (CEP12) exhibited resilience to oxidative stress and infochemicals that induce PCD, supporting a conserved function of these genes in algal PCD. Phylogenetic and predictive structural analyses show that CPX is highly conserved in eukaryotes, and algae exhibit strong structural similarity to human Cathepsin X/Z (CTSZ), a protein linked to various diseases. CPX is expressed by diverse algae across the oceans and correlates with upcoming demise events during toxic Pseudo-nitzschia blooms, providing support for its ecological significance. Elucidating PCD components in algae sheds light on the evolutionary origin of PCD in unicellular organisms and on the cellular strategies employed by the population to cope with stressful conditions.
Collapse
Affiliation(s)
- Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mai Sadeh
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amichai Zarfin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John K Brunson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
3
|
Wu Y, Li M, Zhang K, Ma J, Gozal D, Zhu Y, Xu Z. Quantitative Proteomics Analysis of Serum and Urine With DIA Mass Spectrometry Reveals Biomarkers for Pediatric Obstructive Sleep Apnea. Arch Bronconeumol 2025; 61:67-75. [PMID: 39043479 DOI: 10.1016/j.arbres.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Identification of suitable biomarkers that facilitate the screening and evaluation of pediatric obstructive sleep apnea (OSA) and its severity was explored. METHODS Data-independent acquisition quantitative proteomic analysis was employed to identify serum and urine proteins with differential expression patterns between children with OSA and controls. Differentially expressed proteins that gradually increased or decreased with the severity of OSA were retained as potential biomarkers and underwent ELISA validation. RESULTS We found that with increasing severity of OSA, there was a gradual upregulation of 34 proteins in the serum and 124 proteins in the urine, along with a respective downregulation of 10 serum proteins and 64 urinary proteins in the initial cohort of 40 children. These proteins primarily participate in immune activation, the complement pathway, oxygen transport, and reactive oxygen metabolism. Notably, cathepsin Z exhibited a positive correlation with the obstructive apnea hypopnea index, whereas sex hormone-binding globulin (SHBG) was negatively correlated. These proteins were then validated by ELISA in an independent cohort (n=21). Circulating cathepsin Z and SHBG levels displayed acceptable diagnostic performance of OSA with AUC values of 0.863 and 0.738, respectively. CONCLUSIONS We identified two promising circulating proteins as novel biomarkers for clinical diagnosis and assessment of pediatric OSA severity. Furthermore, the comprehensive proteomic profile in pediatric OSA should aid in exploring the underlying pathophysiological mechanisms associated with this prevalent condition.
Collapse
Affiliation(s)
- Yunxiao Wu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Kai Zhang
- Clinical Department of National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - David Gozal
- Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Zhifei Xu
- Clinical Department of National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
4
|
Wang J, Liu N, Hu M, Zhang M. Lysosome-related proteins may have changes in the urinary exosomes of patients with acute gout attack. Eur J Med Res 2025; 30:41. [PMID: 39838438 PMCID: PMC11748523 DOI: 10.1186/s40001-025-02272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The autophagy-lysosome is intricately linked to the development of gout. At present, the diagnosis and monitoring of gout are mainly invasive tests, which cannot predict the occurrence of gout in the acute phase, and bring new pain to patients. This study focuses on the changes of lysosome-related proteins in urinary exosomes of patients with acute gout attack to explore the potential noninvasive biomarkers clinical application value. METHODS Urine samples were collected from the subject and exosomes were extracted. To explore the differentially expressed proteins in urinary exosomes among acute gout patients (AD group), intermittent gout patients (ID group) and normal controls (NC group) by DIA mass spectrometry. Urinary exosomal lysosome associated proteins were analyzed and receiver operating characteristic (ROC) curves of differentially expressed proteins were drawn to evaluate their clinical value in monitoring acute gout attack. RESULTS A total of 1896 proteins were detected between AD group and ID group, of which 121 proteins were differentially expressed (FC > 1.5 and p < 0.05). There were three lysosomal-related proteins differentially expressed in urinary exosomes between AD group and ID group. Compared with the ID group, the expression of Cathepsin Z (CTSZ) and AP-1 complex subunit beta-1 (AP1B1) was increased, while the expression of Lysosome-associated membrane glycoprotein 2 (LAMP2) was decreased in AD group. The ROC analysis showed that CTSZ, AP1B1 and LAMP2 had a strong ability to predict acute gout attack, with AUC of 0.826, 0.847 and 0.882, respectively. CONCLUSIONS There are many specific protein changes in the urinary exosomes of patients with acute gout attack. The urinary exosomes of patients with acute gout attack may exhibit alterations in lysosome-related proteins, particularly CTSZ, AP1B1, and LAMP2, which may become potential biomarkers for monitoring acute gout attack.
Collapse
Affiliation(s)
- Jitu Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Mei Hu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Jiang Y, Qin Q, Wei S. The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105278. [PMID: 39395685 DOI: 10.1016/j.dci.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
6
|
Xu B, Anderson BM, Mintern JD, Edgington-Mitchell LE. TLR9-dependent dendritic cell maturation promotes IL-6-mediated upregulation of cathepsin X. Immunol Cell Biol 2024; 102:787-800. [PMID: 38979698 DOI: 10.1111/imcb.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Barrios EL, Rincon JC, Willis M, Polcz VE, Leary J, Darden DB, Balch JA, Larson SD, Loftus TJ, Mohr AM, Wallet S, Brusko MA, Balzano-Nogueira L, Cai G, Sharma A, Upchurch GR, Kladde MP, Mathews CE, Maile R, Moldawer LL, Bacher R, Efron PA. TRANSCRIPTOMIC DIFFERENCES IN PERIPHERAL MONOCYTE POPULATIONS IN SEPTIC PATIENTS BASED ON OUTCOME. Shock 2024; 62:208-216. [PMID: 38713581 PMCID: PMC11892173 DOI: 10.1097/shk.0000000000002379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
ABSTRACT Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Micah Willis
- Department of Oral Biology, College of Dentistry, Gainesville, FL, USA
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - John Leary
- Department of Biostatistics, College of Medicine, Gainesville, FL, USA
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Jeremy A. Balch
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Shannon Wallet
- Department of Oral Biology, College of Dentistry, Gainesville, FL, USA
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | | | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Ashish Sharma
- Department of Surgery, College of Medicine, Gainesville, FL, USA
| | | | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, Gainesville, FL, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Rhonda Bacher
- Department of Biostatistics, College of Medicine, Gainesville, FL, USA
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, FL, USA
| |
Collapse
|
8
|
Chen H, Wang S, Zhang X, Hua X, Liu M, Wang Y, Wu S, He W. Pharmacological inhibition of RUNX1 reduces infarct size after acute myocardial infarction in rats and underlying mechanism revealed by proteomics implicates repressed cathepsin levels. Funct Integr Genomics 2024; 24:113. [PMID: 38862712 PMCID: PMC11166773 DOI: 10.1007/s10142-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Myocardial infarction (MI) results in prolonged ischemia and the subsequent cell death leads to heart failure which is linked to increased deaths or hospitalizations. New therapeutic targets are urgently needed to prevent cell death and reduce infarct size among patients with MI. Runt-related transcription factor-1 (RUNX1) is a master-regulator transcription factor intensively studied in the hematopoietic field. Recent evidence showed that RUNX1 has a critical role in cardiomyocytes post-MI. The increased RUNX1 expression in the border zone of the infarct heart contributes to decreased cardiac contractile function and can be therapeutically targeted to protect against adverse cardiac remodelling. This study sought to investigate whether pharmacological inhibition of RUNX1 function has an impact on infarct size following MI. In this work we demonstrate that inhibiting RUNX1 with a small molecule inhibitor (Ro5-3335) reduces infarct size in an in vivo rat model of acute MI. Proteomics study using data-independent acquisition method identified increased cathepsin levels in the border zone myocardium following MI, whereas heart samples treated by RUNX1 inhibitor present decreased cathepsin levels. Cathepsins are lysosomal proteases which have been shown to orchestrate multiple cell death pathways. Our data illustrate that inhibition of RUNX1 leads to reduced infarct size which is associated with the suppression of cathepsin expression. This study demonstrates that pharmacologically antagonizing RUNX1 reduces infarct size in a rat model of acute MI and unveils a link between RUNX1 and cathepsin-mediated cell death, suggesting that RUNX1 is a novel therapeutic target that could be exploited clinically to limit infarct size after an acute MI.
Collapse
Affiliation(s)
- Hengshu Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Simiao Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Hou Y, Chu X, Park J, Zhu Q, Hussain M, Li Z, Madsen HB, Yang B, Wei Y, Wang Y, Fang EF, Croteau DL, Bohr VA. Urolithin A improves Alzheimer's disease cognition and restores mitophagy and lysosomal functions. Alzheimers Dement 2024; 20:4212-4233. [PMID: 38753870 PMCID: PMC11180933 DOI: 10.1002/alz.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aβ) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.
Collapse
Affiliation(s)
- Yujun Hou
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Xixia Chu
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Jae‐Hyeon Park
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Qing Zhu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Mansoor Hussain
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Zhiquan Li
- Danish Center for Healthy Aging, ICMMUniversity of CopenhagenCopenhagenDenmark
| | | | - Beimeng Yang
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Yong Wei
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Yue Wang
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Evandro F. Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
- The Norwegian Centre on Healthy Ageing (NO‐Age)OsloAkershusNorway
| | - Deborah L. Croteau
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
- Computational Biology & Genomics Core, LGGNational Institute on AgingBaltimoreMarylandUSA
| | - Vilhelm A. Bohr
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
- Danish Center for Healthy Aging, ICMMUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Xu B, Anderson BM, Mountford SJ, Thompson PE, Mintern JD, Edgington-Mitchell LE. Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate. Biol Chem 2024; 405:351-365. [PMID: 38410910 DOI: 10.1515/hsz-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N, Yang M, Wang H, Xie W, Kong H. NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. Int J Mol Med 2024; 53:25. [PMID: 38240085 PMCID: PMC10836498 DOI: 10.3892/ijmm.2024.5349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenyang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahao Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, Liu Y, Ma R, Tuleta I, Huang S, Venugopal H, Zhu F, Su K, Li J, Zhang J, Zheng D, Frangogiannis NG. Protective effects of macrophage-specific integrin α5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun 2023; 14:7555. [PMID: 37985764 PMCID: PMC10662477 DOI: 10.1038/s41467-023-43369-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Ma
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fenglan Zhu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Akiyama M. Cathepsin and cutaneous disorders of cornification and inflammation: their close links. Br J Dermatol 2023; 189:256-257. [PMID: 37287341 DOI: 10.1093/bjd/ljad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 06/09/2023]
Abstract
As mentioned above, the cathepsin family is a group of important proteases that are deeply involved in the development of various skin disorders of cornification and inflammation, including AiKDs. The cathepsin family members are considered to play essential roles in the keratinocyte proliferation/differentiation and inflammatory pathways in the skin.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
14
|
Malovitski K, Sarig O, Feller Y, Bergson S, Assaf S, Mohamad J, Pavlovsky M, Giladi M, Sprecher E. Defective cathepsin Z affects EGFR expression and causes autosomal dominant palmoplantar keratoderma. Br J Dermatol 2023; 189:302-311. [PMID: 37210216 DOI: 10.1093/bjd/ljad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The abnormal function of epidermal growth factor receptor (EGFR) has recently been shown to underlie various disorders of cornification. OBJECTIVES To delineate the genetic basis of a novel dominant form of palmoplantar keratoderma (PPK). METHODS Whole-exome (WES) and direct sequencing, quantitative real-time polymerase chain reaction, protein modelling, confocal immunofluorescence microscopy, immunoblotting, three-dimensional skin equivalents and an enzyme activity assay were used to delineate the genetic basis of a novel dominant form of PPK. RESULTS WES revealed heterozygous variants (c.274T > C and c.305C > T) in CTSZ (encoding cathepsin Z) in four individuals (belonging to three unrelated families) with focal PPK. Bioinformatics and protein modelling predicted the variants to be pathogenic. Previous studies have suggested that EGFR expression may be subject to cathepsin regulation. Immunofluorescence revealed reduced cathepsin Z expression in the upper epidermal layers and concomitant increased epidermal EGFR expression in patients harbouring CTSZ variants. Accordingly, human keratinocytes transfected with constructs expressing PPK-causing variants in CTSZ displayed reduced cathepsin Z enzymatic activity, as well as increased EGFR expression. In line with the role played by EGFR in the regulation of keratinocyte proliferation, human keratinocytes transfected with the PPK-causing variants showed significantly increased proliferation that was abolished upon exposure to erlotinib, an EGFR inhibitor. Similarly, downregulation of CTSZ resulted in increased EGFR expression and increased proliferation in human keratinocytes, suggestive of a loss-of-function effect of the pathogenic variants. Finally, three-dimensional organotypic skin equivalents grown from CTSZ-downregulated cells showed increased epidermal thickness and EGFR expression as seen in patient skin; here, too, erlotinib was found to rescue the abnormal phenotype. CONCLUSIONS Taken collectively, these observations attribute to cathepsin Z a hitherto unrecognized function in epidermal differentiation.
Collapse
Affiliation(s)
- Kiril Malovitski
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Yarden Feller
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Bergson
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sari Assaf
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janan Mohamad
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Moshe Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine D, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Wu Z, Chen X, Zhang K, Liu Z, Zhang H, Zheng Z, Zhang X, Chen Y, Peng Y, Li H, Huang K, Tang S, Zhao L, Chen D. Identification of Hub Genes in the Pathogenesis of Bronchiolitis Obliterans via Bioinformatic Analysis and Experimental Verification. J Inflamm Res 2023; 16:3303-3317. [PMID: 37576152 PMCID: PMC10422971 DOI: 10.2147/jir.s419845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Background Bronchiolitis obliterans (BO) is a chronic disease that can arise as a complication of severe childhood pneumonia and can also impact the long-term survival of patients after lung transplantation. However, the precise molecular mechanism underlying BO remains unclear. We aimed to identify BO-associated hub genes and their molecular mechanisms. Methods BO-associated transcriptome datasets (GSE52761, GSE137169, and GSE94557) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Additional bioinformatics analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses, were performed to determine functional roles and DEG-associated regulatory networks. Prediction of hub genes using the 12 algorithms available in the Cytohubba plugin of Cytoscape software was also performed. Verification was performed using the BO mouse model. Results Our results revealed 57 DEGs associated with BO, of which 18 were down-regulated and 39 were up-regulated. The Cytohubba plugin data further narrowed down the 57 DEGs into 9 prominent hub genes (CCR2, CD1D, GM2A, TFEC, MPEG1, CTSS, GPNMB, BIRC2, and CTSZ). Genes such as CCR2, TFEC, MPEG1, CTSS, and CTSZ were dysregulated in 2,3-butanedione-induced BO mice, whereas TFEC, CTSS, and CTSZ were dysregulated in nitric acid-induced BO mouse models. Conclusion Our study identified and validated four novel BO biomarkers, which may allow further investigation into the development of distinct BO diagnostic markers and novel therapeutic avenues.
Collapse
Affiliation(s)
- Zhongji Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Xiaowen Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Kangkang Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Zhenwei Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Haidi Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Zhaocong Zheng
- Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Xiaodie Zhang
- Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Yubiao Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510000, People’s Republic of China
| | - Yinghui Peng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Hui Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Kaiyin Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Sixiang Tang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Li Zhao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Dehui Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
16
|
Zhou H, Zhang Q, Huang W, Zhou S, Wang Y, Zeng X, Wang H, Xie W, Kong H. NLRP3 Inflammasome Mediates Silica-induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-derived Organotypic Models. Int J Biol Sci 2023; 19:1875-1893. [PMID: 37063430 PMCID: PMC10092774 DOI: 10.7150/ijbs.80605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Silica-induced lung epithelial injury and fibrosis are vital pathogeneses of silicosis. Although the NOD-like receptor protein 3 (NLRP3) inflammasome contributes to silica-induced chronic lung inflammation, its role in epithelial injury and regeneration remains unclear. Here, using mouse lung stem/progenitor cell-derived organotypic systems, including 2D air-liquid interface and 3D organoid cultures, we investigated the effects of the NLRP3 inflammasome on airway epithelial phenotype and function, cellular injury and regeneration, and the potential mechanisms. Our data showed that silica-induced NLRP3 inflammasome activation disrupted the epithelial architecture, impaired mucociliary clearance, induced cellular hyperplasia and the epithelial-mesenchymal transition in 2D culture, and inhibited organoid development in 3D system. Moreover, abnormal expression of the stem/progenitor cell markers SOX2 and SOX9 was observed in the 2D and 3D organotypic models after sustained silica stimulation. Notably, these silica-induced structural and functional abnormalities were ameliorated by MCC950, a selective NLRP3 inflammasome inhibitor. Further studies indicated that the NF-κB, Shh-Gli and Wnt/β-catenin pathways were involved in NLRP3 inflammasome-mediated abnormal differentiation and dysfunction of the airway epithelium. Thus, prolonged NLRP3 inflammasome activation caused injury and aberrant lung epithelial regeneration, suggesting that the NLRP3 inflammasome is a pivotal target for regulating tissue repair in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiping Xie
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| | - Hui Kong
- ✉ Corresponding authors: Hui Kong, M.D., Ph.D., . Weiping Xie, M.D., Ph.D., . Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China. Tel: +86-25-68136426; Fax: +86-25-68136269
| |
Collapse
|
17
|
CCN1/Integrin α 5β 1 Instigates Free Fatty Acid-Induced Hepatocyte Lipid Accumulation and Pyroptosis through NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14183871. [PMID: 36145246 PMCID: PMC9505842 DOI: 10.3390/nu14183871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5β1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5β1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and β1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5β1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5β1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.
Collapse
|
18
|
Mezzasoma L, Bellezza I, Orvietani P, Manni G, Gargaro M, Sagini K, Llorente A, Scarpelli P, Pascucci L, Cellini B, Talesa VN, Fallarino F, Romani R. Amniotic fluid stem cell-derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THP-1 cells. FASEB J 2022; 36:e22218. [PMID: 35218567 DOI: 10.1096/fj.202101657r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.
Collapse
Affiliation(s)
- Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Pierluigi Orvietani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Paolo Scarpelli
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | | | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Rita Romani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| |
Collapse
|