1
|
Ma Z, Hao J, Yang Z, Zhang M, Zhang R, Xin J, Bao B, Yin X, Bi H, Guo D. Elevated thiamine level is associated with activating interaction between HIF-1α and SLC19A3 in experimental myopic guinea pigs. Front Med (Lausanne) 2025; 12:1503527. [PMID: 40351473 PMCID: PMC12061867 DOI: 10.3389/fmed.2025.1503527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Background The SLC19 gene family of solute carriers is a family of three transporter proteins with similar structures, of which SLC19A2 and SLC19A3 mediate thiamin transport; HIF is a transcriptionally active nuclear protein that is a key factor activated in hypoxic environments. Myopia is the most common eye disease that damages the visual health of adolescents, and currently, choroidal hypoxia is one of the prevailing doctrines of myopia, as well as the choroid as an ocular nutrient-supporting tissue, in which thiamine may play a role. This study aimed to investigate the process of thiamine changes in choroidal tissue of guinea pigs with negative lens-induced myopia (LIM). Methods The right eyes of guinea pigs in the LIM group wore -6.0D lenses to model experimental myopia. Biological measurements of ocular parameters and choroidal thickness (ChT) were measured after 2, 4, and 6 weeks of modeling. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression of SLC19A2, SLC19A3, and HIF-1α in the choroidal tissues of each guinea pig, ELISA was used to detect the changes of thiamine content in the choroidal tissues, and HE staining was used to observe the morphological changes of the choroidal tissues. Immunofluorescence and immunohistochemistry detected the expression of SLC19A3 and SLC19A3 in choroidal tissues at different modeling times, and protein immunoprecipitation and molecular docking verified the interactions between HIF-1α and SLC19A3. Results Compared with the normal control (NC) group, the LIM group guinea pigs showed a significant increase in axial length and decrease in refractive error, as well as a thinning of choroidal thickness and loosening of tissue structure. In addition, the expression of SLC19A3 was higher than that of the NC group at 2 and 4 weeks, SLC19A2 was higher than that of the NC group at 4 weeks, and HIF-1α was higher than that of the NC group at 2, 4, and 6 weeks. Moreover, protein immunoprecipitation revealed a reciprocal relationship between HIF-1α and SLC19A3, and molecular docking showed their sites of action. Conclusion The current study suggests that the choroidal tissue in myopic eyes is hypoxic and has metabolic abnormalities. Thiamine, a critical molecule for metabolism, may play a significant role in the process. Our findings indicate that changes in thiamine levels within the choroidal tissue are associated with elevated choroidal HIF-1α and activation of SLC19A3, which enhances thiamine transport. This suggests an adaptive regulatory mechanism for thiamine in myopia. Our research highlights thiamine as a potential target for pharmacological inhibitors and could lead to new insights into the study of the molecular mechanisms of myopia, as well as novel strategies for treating the disease.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| |
Collapse
|
2
|
Overton E, Emelyanova A, Bunik VI. Thiamine, gastrointestinal beriberi and acetylcholine signaling. Front Nutr 2025; 12:1541054. [PMID: 40271433 PMCID: PMC12014454 DOI: 10.3389/fnut.2025.1541054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Research has highlighted numerous detrimental consequences of thiamine deficiency on digestive function. These range from impaired gastric and intestinal motility to aberrant changes in pancreatic exocrine function, gastric acidity and disturbances in gut barrier integrity and inflammation. Thiamine and its pharmacological forms, as a primary or adjunctive therapy, have been shown to improve symptoms such as nausea, constipation, dysphagia and intestinal dysmotility, in both humans and animals. This review aims to explore molecular mechanisms underlying the therapeutic action of thiamine in gastrointestinal dysfunction. Our analysis demonstrates that thiamine insufficiency restricted to the gastrointestinal system, i.e., lacking well-known symptoms of dry and wet beriberi, may arise through (i) a disbalance between the nutrient influx and efflux in the gastrointestinal system due to increased demands of thiamine by the organism; (ii) direct exposure of the gastrointestinal system to oral drugs and gut microbiome, targeting thiamine-dependent metabolism in the gastrointestinal system in the first line; (iii) the involvement of thiamine in acetylcholine (ACh) signaling and cholinergic activity in the enteric nervous system and non-neuronal cells of the gut and pancreas, employing both the coenzyme and non-coenzyme actions of thiamine. The coenzyme action relies on the requirement of the thiamine coenzyme form - thiamine diphosphate - for the production of energy and acetylcholine (ACh). The non-coenzyme action involves participation of thiamine and/or derivatives, including thiamine triphosphate, in the regulation of ACh synaptic function, consistent with the early data on thiamine as a co-mediator of ACh in neuromuscular synapses, and in allosteric action on metabolic enzymes. By examining the available evidence with a focus on the gastrointestinal system, we deepen the understanding of thiamine's contribution to overall gastrointestinal health, highlighting important implications of thiamine-dependent mechanisms in functional gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Alina Emelyanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
3
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
4
|
Cristina MO, Elizabeth BR, Jose RAM, Berenice PG, Diego Z, Luis CSJ. Mechanisms and Therapeutic Potential of Key Anti-inflammatory Metabiotics: Trans-Vaccenic Acid, Indole-3-Lactic Acid, Thiamine, and Butyric Acid. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10475-9. [PMID: 39921846 DOI: 10.1007/s12602-025-10475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
Identifying metabolites produced by probiotic bacteria, also known as metabiotics, is becoming increasingly common due to their anti-inflammatory, anti-obesogenic, and immunomodulatory effects. Postbiotics alongside diet, regulate both physical and mental health, as the microbiota members can interact physically with host cells or through secretion of nutrients and metabiotics. These metabiotics also reduce the severity of certain metabolic disorders and support the proper functioning of various organs and systems. In this review, we describe the mechanisms of action of trans-vaccenic acid (TVA), indole-3-lactic acid (ILA), thiamine (vitamin B1), and butyric acid metabolites produced or induced by probiotics such as Lactobacillus and/or Bifidobacterium, among others and previously identified using analytical techniques such as mass spectrometry (LC-MS). Within their mechanisms of action, Trans-vaccenic acid exerts anti-inflammatory effects and helps alleviate complications associated with metabolic diseases. Indole metabolites promote IL-22 production and regulate epithelial cell proliferation and antimicrobial peptide production. Thiamin is essential for energy metabolism regulation, and butyric acid regulates the brain-gut axis and also regulates immune response. This review expands our understanding of the potential therapeutic use of metabiotics.
Collapse
Affiliation(s)
- Muñoz-Olivos Cristina
- Laboratory of Medical and Pharmaceutical Biotechnology, Faculty of Biotechnology, Popular and Autonomous, University of the State of Puebla (UPAEP), 72410, Puebla, Mexico
- Department of Sciences and Engineering, Iberoamerican Puebla University, 71820, Puebla, Mexico
| | - Bautista-Rodriguez Elizabeth
- Laboratory of Medical and Pharmaceutical Biotechnology, Faculty of Biotechnology, Popular and Autonomous, University of the State of Puebla (UPAEP), 72410, Puebla, Mexico.
- Clinical Chemistry, Faculty of Health Sciences, Autonomous University of Tlaxcala, 90750, Tlaxcala, Mexico.
| | | | - Palacios-Gonzalez Berenice
- Healthy Aging Laboratory of the National Institute of Genomic Medicine (INMEGEN) at the Aging Research Center (CIE-CINVESTAV), 14330, CDMX, Mexico
| | - Zacapa Diego
- Faculty of Health Sciences, Autonomous University of Tlaxcala. Tlaxcala, 90750, Medicine, Mexico
- Health Research Office, State Coordination of the Mexican Social Security Institute (IMSS-BIENESTAR), Tlaxcala, Mexico
| | - Cortez-Sanchez Jose Luis
- Faculty of Chemical-Biological Sciences, Autonomous University of Campeche, 24039, Campeche, Mexico
| |
Collapse
|
5
|
Xia Y, Wang L, Qiu Y, Ge W. High-dose thiamine supplementation ameliorates obesity induced by a high-fat and high-fructose diet in mice by reshaping gut microbiota. Front Nutr 2025; 12:1532581. [PMID: 39990607 PMCID: PMC11842239 DOI: 10.3389/fnut.2025.1532581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Thiamine (vitamin B1) in the gut is crucial for maintaining intestinal homeostasis and host health. Our previous study identified significantly lower levels of fecal thiamine in individuals with obesity; however, its potential and mechanisms for alleviating obesity induced by a high-fat and high-fructose diet (HFFD) remain unclear. Therefore, in the present study, the effects of high-dose thiamine supplementation on HFFD-induced obesity and gut microbiota dysbiosis were investigated. Methods HFFD-fed mice were supplemented with high-dose thiamine for eight weeks. Biochemical analysis and histological analysis were conducted to assess phenotypic changes. Fecal 16S rRNA gene sequencing was performed to analyze alterations in the gut microbiota. Results The results showed that high-dose thiamine supplementation for eight weeks could significantly alleviate symptoms of HFFD-induced obesity and improve HFFD-induced intestinal epithelial barrier dysfunction by enhancing the tight junction function. Furthermore, oral administration of high-dose thiamine also regulated HFFD-induced gut microbiota dysbiosis by reshaping its structure and composition of gut microbiota, such as increasing the relative abundance of Actinobacteria and Bifidobacterium pseudolongum, and reducing the relative abundance of Proteobacteria and Ruminococcus gnavus, accompanied by decreased level of gut-derived endotoxin. Finally, significant correlations were found between obesity-related phenotypes and gut microbiota through correlation analysis. Conclusion Our findings suggest that the potential mechanism by which high-dose thiamine supplementation alleviated HFFD-induced obesity might involve reshaping gut microbiota and restoring the intestinal barrier, thereby ameliorating gut microbiota-related endotoxemia.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Qiu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Weihong Ge
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
6
|
Wang Y, Lu J, Xie J, Sun L, Dou B, Zhang S, Xin J, Zhang N. Molecule interaction mechanism between rice starch and thiamine under hydrothermal system and the releasing characteristics of thiamine in vivo. Food Res Int 2025; 202:115691. [PMID: 39967150 DOI: 10.1016/j.foodres.2025.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 02/20/2025]
Abstract
In order to improve the bioavailability of thiamine and solve the bottleneck problem of its poor stability. Controlled hydrothermal treatment technology had been constructed to achieve stable interactions between starch and thiamine (VB1) molecules, resulting in the preparation of starch-thiamine complexes. The formation mechanism, intermolecular interactions, and structural properties between starch and thiamine were investigated and their digestive and physicochemical properties were explored. FTIR, XRD, ROMAN, and NMR results showed thiamine could interact with starch molecules primarily in two ways. One way was that thiamine could be binded to the exterior of the starch helical cavity via hydrogen bond. The other way is that thiamine could enter the starch helical cavity to form V-type crystals through electrostatic adsorption action, where both interaction ways would exhibit thermal competitive effects. After in vitro gastrointestinal digestion simulation, it was found that following the interaction with thiamine, the content of slowly digestible starch and resistant starch in the starch had both increased. Thiamine could slowly release in the colon, successfully achieving its stable and sustained release, thereby extending its retention time in the human body. Overall, starch-thiamine complexes displayed digestion resistance, encapsulate and protect thiamine, and promote controlled release of thiamine, thereby prolonging its retention in vivo for the fermentation.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Jinglai Lu
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Jinhui Xie
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Lirui Sun
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Boxin Dou
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Shuai Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China; State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 PR China
| | - Na Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076 PR China.
| |
Collapse
|
7
|
Ramamoorthy K, Sabui S, Kim G, Flekenstein JM, Sheikh A, Said HM. IQGAP-2: a novel interacting partner with the human colonic thiamin pyrophosphate transporter. Am J Physiol Cell Physiol 2024; 327:C1451-C1461. [PMID: 39401425 PMCID: PMC11684876 DOI: 10.1152/ajpcell.00484.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 01/30/2025]
Abstract
The human colonic thiamin pyrophosphate transporter (hcTPPT) mediates the uptake of the microbiota-generated and phosphorylated form of vitamin B1 (i.e., thiamin pyrophosphate) in the large intestine. Expression of hcTPPT along the absorptive tract is restricted to the large intestine, and the transporter is exclusively localized at the apical membrane domain of the polarized epithelial cells/colonocytes. Previous studies have characterized different physiological/pathophysiological aspects of the hcTPPT system, but nothing is currently known on whether the transporter has interacting partner(s) that affect its physiology/biology. We addressed this issue using a Y2H to screen a human colonic cDNA library and have identified three putative interactors, namely IQGAP-2, SNX-6, and DMXL-1. Focusing on IQGAP-2 (whose expression in human colonocytes is the highest), we found (using fluorescent microscopy imaging and coimmunoprecipitation approaches) the putative interactor to colocalize with hcTPPT and to directly interact with the transporter. Also, overexpressing IQGAP-2 in NCM460 cells and in human primary differentiated colonoid monolayers was found to lead to significant (P < 0.01) induction in TPP uptake, while knocking down (using gene-specific siRNAs) caused significant (P < 0.01 and P < 0.05) decrease in uptake. Furthermore, overexpressing IQGAP-2 in NCM460 cells was found to lead to a significant enhancement in hcTPPT protein stability. Finally, we found the expression of IQGAP-2 to be markedly suppressed in conditions/factors that negatively impact colonic TPP uptake. These results identify the IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and show that this interaction has physiological and biological consequences.NEW & NOTEWORTHY This study reports on the identification of IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and how that impacts the transporter's physiology and cell biology.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Subrata Sabui
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| | - George Kim
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - James M Flekenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, St. Louis, Missouri, United States
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medicine, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| |
Collapse
|
8
|
Anthonymuthu S, Sabui S, Manzon KI, Sheikh A, Fleckenstein JM, Said HM. Bacterial lipopolysaccharide inhibits free thiamin uptake along the intestinal tract via interference with membrane expression of thiamin transporters 1 and 2. Am J Physiol Cell Physiol 2024; 327:C1163-C1177. [PMID: 39246143 PMCID: PMC11559647 DOI: 10.1152/ajpcell.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
This study examined the effect of exposure of small and large intestinal epithelial cells to the bacterial lipopolysaccharide (LPS) on uptake of free form of vitamin B1, i.e., thiamin. The intestinal tract encounters two sources of thiamin: diet and the gut microbiota. Absorption of thiamin in both the small and large intestine occurs via a carrier-mediated process that involves thiamin transporters 1 and 2 (THTR-1 and -2). Complementary in vitro (human duodenal epithelial HuTu-80 cells and human colonic epithelial NCM460 cells), in vivo (mice), and ex vivo (human primary differentiated enteroid and colonoid monolayers) models were used. The results showed that exposure to LPS causes a significant inhibition in carrier-mediated [3H]-thiamin uptake by small and large intestinal epithelia, with no change in the levels of expression of THTR-1 and -2 mRNAs and their total cellular proteins. However, a significant decrease in the fractions of the THTR-1 and -2 proteins that are expressed at the cell membranes of these epithelial cells was observed. These effects of LPS appeared to involve a protein kinase A (PKA) signaling pathway as activating this pathway caused a reversal in the inhibition of thiamin uptake and level of expression of its transporters at the cell membrane. These findings demonstrate that exposure of gut epithelia to LPS (a situation that occurs under different pathological conditions) leads to inhibition in thiamin uptake due to a decrease in level of expression of its transporters at the cell membrane that is likely mediated via a PKA signaling pathway. NEW & NOTEWORTHY This study shows that the exposure of gut epithelial cells to bacterial LPS negatively impact the uptake process of the free form of vitamin B1 (i.e., thiamin). This appears to be mediated via suppression in the level of thiamin transporters 1 and 2 (THTR-1 and -2) expression at the cell membrane and involves a protein kinase A (PKA) signaling pathway.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Subrata Sabui
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| | - Kameron Isaiah Manzon
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, St. Louis, Missouri, United States
| | - Hamid M Said
- Departments of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medicine, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| |
Collapse
|
9
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-resolution plasma metabolomics and thiamine status in critically Ill adult patients. Metabolomics 2024; 20:83. [PMID: 39066851 PMCID: PMC11283406 DOI: 10.1007/s11306-024-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Thiamine (Vitamin B1) is an essential micronutrient and is classically considered a co-factor in energy metabolism. The association between thiamine status and whole-body metabolism in critical illness has not been studied. OBJECTIVES To determine association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites and connected metabolic pathways using high resolution metabolomics (HRM) in critically ill patients. METHODS Cross-sectional study performed at Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were critically ill adults with an expected length of intensive care unit stay longer than 48 h and receiving chronic furosemide therapy. A total of 76 participants were included. Mean age was 69 years (range 33-92 years); 65% were female. Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP was measured by HPLC and plasma HRM was performed using liquid chromatography/mass spectrometry. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies (MWAS). MWAS using the highest and lowest TPP concentration tertiles was performed as a secondary analysis. RESULTS Specific metabolic pathways associated with whole blood TPP levels in regression and tertile analysis included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. CONCLUSIONS Plasma HRM revealed that thiamine status, determined by whole blood TPP concentrations, was significantly associated with metabolites and metabolic pathways related to metabolism of energy, carbohydrates, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
Affiliation(s)
- Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey.
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey.
| | - Mary M Nellis
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Nurhayat T Ozer
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Serap S Ergul
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Gulsah G Sahin
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Sahin Temel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Recep C Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Sami Teeny
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Murat Sungur
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Sabui S, Anthonymuthu S, Ramamoorthy K, Skupsky J, Jennings TSK, Rahmatpanah F, Fleckenstein JM, Said HM. Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am J Physiol Gastrointest Liver Physiol 2024; 327:G36-G46. [PMID: 38713615 PMCID: PMC11376973 DOI: 10.1152/ajpgi.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Humans and mammals obtain vitamin B1 from dietary and gut microbiota sources. A considerable amount of the microbiota-generated vitamin exists in the form of thiamine pyrophosphate (TPP), and colonocytes are capable of absorbing TPP via a specific carrier-mediated process that involves the colonic TPP transporter (cTPPT encoded by SLC44A4). Little is known about the relative contribution of the SLC44A4 transporter toward total colonic carrier-mediated TPP uptake and its role in colon physiology. To address these issues, we generated an Slc44a4 knockout (KO) mouse model (by Cre-Lox recombination) and found a near-complete inhibition in colonic carrier-mediated [3H]TPP uptake in the Slc44a4 KO compared with wild-type (WT) littermates. We also observed a significant reduction in KO mice's body weight and a shortening of their colon compared with WT. Using RNAseq and Ingenuity pathway analysis (IPA) approaches, we found that knocking out the colonic Slc44a4 led to changes in the level of expression of many genes, including upregulation in those associated with intestinal inflammation and colitis. Finally, we found that the Slc44a4 KO mice were more susceptible to the effect of the colitogenic dextran sodium sulfate (DSS) compared with WT animals, a finding that lends support to the recent prediction by multiple genome-wide association studies (GWAS) that SLC44A4 is a possible colitis susceptibility gene. In summary, the results of these investigations show that Slc44a4 is the predominant or only transporter involved in the colonic uptake of TPP, that the transporter is important for colon physiology, and that its deletion increases susceptibility to inflammation.NEW & NOTEWORTHY This study shows that Slc44a4 is the predominant or only transport system involved in the uptake of the gut microbiota-generated thiamine pyrophosphate (TPP) in the colon and that its deletion affects colon physiology and increases its susceptibility to inflammation.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
| | - Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Kalidas Ramamoorthy
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Jonathan Skupsky
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| | - Tara Sinta Kartika Jennings
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| |
Collapse
|
11
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-Resolution Plasma Metabolomics and Thiamine Status in Critically Ill Adult Patients. RESEARCH SQUARE 2023:rs.3.rs-3597052. [PMID: 38014088 PMCID: PMC10680934 DOI: 10.21203/rs.3.rs-3597052/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Thiamine (Vitamin B1) is an essential micronutrient and a co-factor for metabolic functions related to energy metabolism. We determined the association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites using high resolution metabolomics in critically ill patients. Methods Cross-sectional study performed in Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were ≥ 18 years of age, with an expected length of ICU stay longer than 48 hours, receiving furosemide therapy for at least 6 months before ICU admission. Results Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP concentrations were measured using high-performance liquid chromatography (HPLC). Liquid chromatography/mass spectrometry was used for plasma high-resolution metabolomics. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies. We also compared metabolomic features from patients in the highest TPP concentration tertile to patients in the lowest TPP tertile as a secondary analysis. We enrolled 76 participants with a median age of 69 (range, 62.5-79.5) years. Specific metabolic pathways associated with whole blood TPP levels, using both regression and tertile analysis, included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. Conclusions Plasma high-resolution metabolomics analysis showed that whole blood TPP concentrations are significantly associated with metabolites and metabolic pathways linked to the metabolism of energy, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
|
12
|
Ying ZH, Mao CL, Xie W, Yu CH. Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Front Microbiol 2023; 14:1290015. [PMID: 38029106 PMCID: PMC10662086 DOI: 10.3389/fmicb.2023.1290015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that affects individuals of all age groups. Recently, the association between RA and the gut microbiome has led to the investigation of postbiotics as potential therapeutic strategies. Postbiotics refer to inactivated microbial cells, cellular components, or their metabolites that are specifically intended for the microbiota. Postbiotics not only profoundly influence the occurrence and development of RA, but they also mediate various inflammatory pathways, immune processes, and bone metabolism. Although they offer a variety of mechanisms and may even be superior to more conventional "biotics" such as probiotics and prebiotics, research on their efficacy and clinical significance in RA with disruptions to the intestinal microbiota remains limited. In this review, we provide an overview of the concept of postbiotics and summarize the current knowledge regarding postbiotics and their potential use in RA therapy. Postbiotics show potential as a viable adjunctive therapy option for RA.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cheng-Liang Mao
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang University of Technology, Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
13
|
Anthonymuthu S, Sabui S, Sheikh A, Fleckenstein JM, Said HM. Tumor necrosis factor α impedes colonic thiamin pyrophosphate and free thiamin uptake: involvement of JNK/ERK 1/2-mediated pathways. Am J Physiol Cell Physiol 2022; 323:C1664-C1680. [PMID: 36342158 PMCID: PMC9744649 DOI: 10.1152/ajpcell.00458.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to examine the effect of TNFα (i.e., a predominant proinflammatory cytokine produced during chronic gut inflammation) on colonic uptake of thiamin pyrophosphate (TPP) and free thiamin, forms of vitamin B1 that are produced by the gut microbiota and are absorbed via distinct carrier-mediated systems. We utilized human-derived colonic epithelial CCD841 and NCM460 cells, human differentiated colonoid monolayers, and mouse intact colonic tissue preparations together with an array of cellular/molecular approaches in our investigation. The results showed that exposure of colonic epithelial cells to TNFα leads to a significant inhibition in TPP and free thiamin uptake. This inhibition was associated with: 1) a significant suppression in the level of expression of the colonic TPP transporter (cTPPT; encoded by SLC44A4), as well as thiamin transporters-1 & 2 (THTR-1 & -2; encoded by SLC19A2 & SLC19A3, respectively); 2) marked inhibition in activity of the SLC44A4, SLC19A2, and SLC19A3 promoters; and 3) significant suppression in level of expression of nuclear factors that are needed for activity of these promoters (i.e., CREB-1, Elf-3, NF-1A, SP-1). Furthermore, the inhibitory effects were found to be mediated via JNK and ERK1/2 signaling pathways. We also examined the level of expression of cTPPT and THTR-1 & -2 in colonic tissues of patients with active ulcerative colitis and found the levels to be significantly lower than in healthy controls. These findings demonstrate that exposure of colonocytes to TNFα suppresses TPP and free thiamin uptake at the transcriptional level via JNK- and Erk1/2-mediated pathways.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California
| | - Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Veterans Affairs Medical Center, St. Louis, Missouri
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| |
Collapse
|
14
|
Sheikh A, Tumala B, Vickers TJ, Martin JC, Rosa BA, Sabui S, Basu S, Simoes RD, Mitreva M, Storer C, Tyksen E, Head RD, Beatty W, Said HM, Fleckenstein JM. Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic changes in small intestinal epithelia. Nat Commun 2022; 13:6886. [PMID: 36371425 PMCID: PMC9653437 DOI: 10.1038/s41467-022-34687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) produce heat-labile (LT) and/or heat-stable (ST) enterotoxins, and commonly cause diarrhea in resource-poor regions. ETEC have been linked repeatedly to sequelae in children including enteropathy, malnutrition, and growth impairment. Although cellular actions of ETEC enterotoxins leading to diarrhea are well-established, their contributions to sequelae remain unclear. LT increases cellular cAMP to activate protein kinase A (PKA) that phosphorylates ion channels driving intestinal export of salt and water resulting in diarrhea. As PKA also modulates transcription of many genes, we interrogated transcriptional profiles of LT-treated intestinal epithelia. Here we show that LT significantly alters intestinal epithelial gene expression directing biogenesis of the brush border, the major site for nutrient absorption, suppresses transcription factors HNF4 and SMAD4 critical to enterocyte differentiation, and profoundly disrupts microvillus architecture and essential nutrient transport. In addition, ETEC-challenged neonatal mice exhibit substantial brush border derangement that is prevented by maternal vaccination with LT. Finally, mice repeatedly challenged with toxigenic ETEC exhibit impaired growth recapitulating the multiplicative impact of recurring ETEC infections in children. These findings highlight impacts of ETEC enterotoxins beyond acute diarrheal illness and may inform approaches to prevent major sequelae of these common infections including malnutrition that impact millions of children.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brunda Tumala
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim J Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John C Martin
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Subrata Sabui
- Departments of Medicine and Physiology/Biophysics, School of Medicine, University of California-Irvine, Irvine, CA, 92697, USA
- Department of Research, VA Medical Center, Long Beach, CA, 90822, USA
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rita D Simoes
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chad Storer
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik Tyksen
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard D Head
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, School of Medicine, University of California-Irvine, Irvine, CA, 92697, USA
- Department of Research, VA Medical Center, Long Beach, CA, 90822, USA
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Infectious Diseases, Medicine Service, Veterans Affairs Saint Louis Health Care System, Saint Louis, MO, 63106, USA.
| |
Collapse
|