1
|
Challa NL, Sarkar A, Kapettu S, Phanithi PB, Chakrabarti P, Parsa KVL, Misra P. TGS1/PIMT regulates pro-inflammatory macrophage mediated paracrine insulin resistance: Crosstalk between macrophages and skeletal muscle cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166878. [PMID: 37673359 DOI: 10.1016/j.bbadis.2023.166878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Macrophage-driven chronic low-grade inflammatory response is intimately associated with pathogenesis of insulin resistance and type 2 diabetes (T2D). However, the molecular basis for skewing of pro-inflammatory macrophage is still elusive. Here, we describe the mechanism and significance of TGS1/PIMT (PRIP-Interacting protein with Methyl Transferase domain) in regulating macrophage activation and polarization and its impact on the development of insulin resistance in skeletal muscle cells. We show altered expression of TGS1 in M1 polarized cultured macrophages, bone marrow-derived (BMDM) and adipose tissue macrophages. Moreover, in High Fat Diet (HFD)-fed mice enhanced TGS1 expression is predominantly localized to the nucleus of adipose tissue macrophages suggesting its potential functional role. Gain and loss of TGS1 expression in macrophage further established its role in the secretion of pro-inflammatory mediators. Mechanistically, TGS1 controls the transcription of numerous genes linked to inflammation by forming a complex with Histone Acetyl Transferase (HAT)-containing transcriptional co-activators CBP and p300. Functionally, TGS1 mediated macrophage inflammatory response induces the development of insulin resistance in skeletal muscle cells and adipocytes. Our findings thus demonstrate an unexpected contribution of TGS1 in the regulation of macrophage mediated inflammation and insulin resistance highlighting that TGS1 antagonism could be a promising therapeutic target for the management of inflammation and insulin resistance in T2D.
Collapse
Affiliation(s)
- Naga Lakshmi Challa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; Registered as a PhD student with MAHE, Manipal, India
| | - Ankita Sarkar
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Satyamoorthy Kapettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India.
| | - Kishore V L Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| | - Parimal Misra
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life sciences, University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Edwin RK, Acharya LP, Maity SK, Chakrabarti P, Tantia O, Joshi MB, Satyamoorthy K, Parsa KVL, Misra P. TGS1/PIMT knockdown reduces lipid accumulation in adipocytes, limits body weight gain and promotes insulin sensitivity in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166896. [PMID: 37751782 DOI: 10.1016/j.bbadis.2023.166896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
PRIP Interacting protein with Methyl Transferase domain (PIMT/TGS1) is an integral upstream coactivator in the peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional apparatus. PPARγ activation alleviates insulin resistance but promotes weight gain. Herein, we show how PIMT regulates body weight while promoting insulin sensitivity in diet induced obese mice. In vitro, we observed enhanced PIMT levels during adipogenesis. Knockdown of PIMT in 3T3-L1 results in reduced lipid accumulation and alters PPARγ regulated gene expression. Intraperitoneal injection of shPIMT lentivirus in high fat diet (HFD)-fed mice caused reduced adipose tissue size and decreased expression of lipid markers. This was accompanied by significantly lower levels of inflammation, hypertrophy and hyperplasia in the different adipose depots (eWAT and iWAT). Notably, PIMT depletion limits body weight gain in HFD-fed mice along with improved impaired oral glucose clearance. It also enhanced insulin sensitivity revealed by assessment of important insulin resistance markers and increased adiponectin levels. In addition, reduced PIMT levels did not alter the serum free fatty acid and TNFα levels. Finally, the relevance of our studies to human obesity is suggested by our finding that PIMT was upregulated in adipose tissue of obese patients along with crucial fat marker genes. We speculate that PIMT may be a potential target in maintaining energy metabolism, thus regulating obesity.
Collapse
Affiliation(s)
- Rebecca Kristina Edwin
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Lavanya Prakash Acharya
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Sujay K Maity
- Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Partha Chakrabarti
- Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Om Tantia
- Institute of Laparoscopic Surgery Group of Hospitals, DD - 6, Sector I, Salt Lake City, Kolkata 700064, West Bengal, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India; SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka 580009, India.
| | - Kishore V L Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| | - Parimal Misra
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
3
|
Ghimire K, Kale A, Li J, Julovi SM, O'Connell P, Grey ST, Hawthorne WJ, Gunton JE, Rogers NM. A metabolic role for CD47 in pancreatic β cell insulin secretion and islet transplant outcomes. Sci Transl Med 2023; 15:eadd2387. [PMID: 37820008 DOI: 10.1126/scitranslmed.add2387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Diabetes is a global public health burden and is characterized clinically by relative or absolute insulin deficiency. Therapeutic agents that stimulate insulin secretion and improve insulin sensitivity are in high demand as treatment options. CD47 is a cell surface glycoprotein implicated in multiple cellular functions including recognition of self, angiogenesis, and nitric oxide signaling; however, its role in the regulation of insulin secretion remains unknown. Here, we demonstrate that CD47 receptor signaling inhibits insulin release from human as well as mouse pancreatic β cells and that it can be pharmacologically exploited to boost insulin secretion in both models. CD47 depletion stimulated insulin granule exocytosis via activation of the Rho GTPase Cdc42 in β cells and improved glucose clearance and insulin sensitivity in vivo. CD47 blockade enhanced syngeneic islet transplantation efficiency and expedited the return to euglycemia in streptozotocin-induced diabetic mice. Further, anti-CD47 antibody treatment delayed the onset of diabetes in nonobese diabetic (NOD) mice and protected them from overt diabetes. Our findings identify CD47 as a regulator of insulin secretion, and its manipulation in β cells offers a therapeutic opportunity for diabetes and islet transplantation by correcting insulin deficiency.
Collapse
Affiliation(s)
- Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
| | - Atharva Kale
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
| | - Sohel M Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
| | - Philip O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
| | - Jenny E Gunton
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
- Centre for Diabetes, Obesity and Endocrinology, WIMR, University of Sydney, Sydney, NSW 2145, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research (WIMR), University of Sydney, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
4
|
Sharma R, Maity SK, Chakrabarti P, Katika MR, Kapettu S, Parsa KVL, Misra P. PIMT Controls Insulin Synthesis and Secretion through PDX1. Int J Mol Sci 2023; 24:ijms24098084. [PMID: 37175791 PMCID: PMC10179560 DOI: 10.3390/ijms24098084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic beta cell function is an important component of glucose homeostasis. Here, we investigated the function of PIMT (PRIP-interacting protein with methyl transferase domain), a transcriptional co-activator binding protein, in the pancreatic beta cells. We observed that the protein levels of PIMT, along with key beta cell markers such as PDX1 (pancreatic and duodenal homeobox 1) and MafA (MAF bZIP transcription factor A), were reduced in the beta cells exposed to hyperglycemic and hyperlipidemic conditions. Consistently, PIMT levels were reduced in the pancreatic islets isolated from high fat diet (HFD)-fed mice. The RNA sequencing analysis of PIMT knockdown beta cells identified that the expression of key genes involved in insulin secretory pathway, Ins1 (insulin 1), Ins2 (insulin 2), Kcnj11 (potassium inwardly-rectifying channel, subfamily J, member 11), Kcnn1 (potassium calcium-activated channel subfamily N member 1), Rab3a (member RAS oncogene family), Gnas (GNAS complex locus), Syt13 (synaptotagmin 13), Pax6 (paired box 6), Klf11 (Kruppel-Like Factor 11), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1) was attenuated due to PIMT depletion. PIMT ablation in the pancreatic beta cells and in the rat pancreatic islets led to decreased protein levels of PDX1 and MafA, resulting in the reduction in glucose-stimulated insulin secretion (GSIS). The results from the immunoprecipitation and ChIP experiments revealed the interaction of PIMT with PDX1 and MafA, and its recruitment to the insulin promoter, respectively. Importantly, PIMT ablation in beta cells resulted in the nuclear translocation of insulin. Surprisingly, forced expression of PIMT in beta cells abrogated GSIS, while Ins1 and Ins2 transcript levels were subtly enhanced. On the other hand, the expression of genes, PRIP/Asc2/Ncoa6 (nuclear receptor coactivator 6), Pax6, Kcnj11, Syt13, Stxbp1 (syntaxin binding protein 1), and Snap25 (synaptosome associated protein 25) associated with insulin secretion, was significantly reduced, providing an explanation for the decreased GSIS upon PIMT overexpression. Our findings highlight the importance of PIMT in the regulation of insulin synthesis and secretion in beta cells.
Collapse
Affiliation(s)
- Rahul Sharma
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Sujay K Maity
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhumohan R Katika
- Central Research Lab Mobile Virology Research & Diagnostics BSL3 Lab, ESIC Medical College and Hospital, Hyderabad 500038, India
| | - Satyamoorthy Kapettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| |
Collapse
|
5
|
Kapadia B, Behera S, Kumar ST, Shah T, Edwin RK, Babu PP, Chakrabarti P, Parsa KV, Misra P. PIMT regulates hepatic gluconeogenesis in mice. iScience 2023; 26:106120. [PMID: 36866247 PMCID: PMC9972567 DOI: 10.1016/j.isci.2023.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The physiological and metabolic functions of PIMT/TGS1, a third-generation transcriptional apparatus protein, in glucose homeostasis sustenance are unclear. Here, we observed that the expression of PIMT was upregulated in the livers of short-term fasted and obese mice. Lentiviruses expressing Tgs1-specific shRNA or cDNA were injected into wild-type mice. Gene expression, hepatic glucose output, glucose tolerance, and insulin sensitivity were evaluated in mice and primary hepatocytes. Genetic modulation of PIMT exerted a direct positive impact on the gluconeogenic gene expression program and hepatic glucose output. Molecular studies utilizing cultured cells, in vivo models, genetic manipulation, and PKA pharmacological inhibition establish that PKA regulates PIMT at post-transcriptional/translational and post-translational levels. PKA enhanced 3'UTR-mediated translation of TGS1 mRNA and phosphorylated PIMT at Ser656, increasing Ep300-mediated gluconeogenic transcriptional activity. The PKA-PIMT-Ep300 signaling module and associated PIMT regulation may serve as a key driver of gluconeogenesis, positioning PIMT as a critical hepatic glucose sensor.
Collapse
Affiliation(s)
- Bandish Kapadia
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | - Soma Behera
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | - Sireesh T. Kumar
- Department of Biotechnology, University of Hyderabad, Hyderabad 500046, India
| | - Tapan Shah
- Department of Biochemistry, Saurashtra University, Rajkot 360005, India
| | - Rebecca Kristina Edwin
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | | | | | - Kishore V.L. Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India,Corresponding author
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India,Corresponding author
| |
Collapse
|
6
|
PIMT/TGS1: an evolving metabolic molecular switch with conserved methyl transferase activity. Drug Discov Today 2022; 27:2386-2393. [DOI: 10.1016/j.drudis.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
|