1
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Ortiz-Sánchez P, González-Soto S, Villamizar LH, Valencia J, Jiménez E, Sacedón R, Ramírez M, Fariñas I, Varas A, Fernández-Sevilla LM, Vicente Á. Meningeal leukaemic aggregates as foci of cell expansion and chemoresistance in acute lymphoblastic leukaemia metastasis. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01043-y. [PMID: 39937211 DOI: 10.1007/s13402-025-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
PURPOSE Central nervous system (CNS) involvement and/or relapse remains one of the most important causes of morbidity/mortality in paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients. To identify novel therapeutic targets and develop less aggressive therapies, a better understanding of the cellular and molecular microenvironment in leptomeningeal metastases is key. Here, we aimed to investigate the formation of metastatic leptomeningeal aggregates and their relevance to the expansion, survival and chemoresistance acquisition of leukaemia cells. METHODS We used BCP-ALL xenograft mouse models, combined with immunohistofluorescence and flow cytometry, to study the development of CNS metastasis and the contribution of leptomeningeal cells to the organisation of leukaemic aggregates. To in vitro mimic the CNS metastasis, we established co-cultures of three-dimensional (3D) ALL cell spheroids and human leptomeningeal cells (hLMCs) and studied the effects on gene expression, proliferation, cytokine production, and chemoresistance. RESULTS In xenografted mice, ALL cells infiltrated the CNS at an early stage and, after crossing an ER-TR7+ fibroblast-like meningeal cell layer, they proliferated extensively and formed large vascularised leukaemic aggregates supported by a network of podoplanin+ leptomeningeal cells. In leukaemia spheroid-hLMC co-cultures, unlike conventional 2D co-cultures, meningeal cells strongly promoted the proliferation of leukaemic cells and generated a pro-inflammatory microenvironment. Furthermore, in 3D cell aggregates, leukaemic cells also developed chemoresistance, at least in part due to ABC transporter up-regulation. CONCLUSION Our results provide evidence for the formation of metastatic ALL-leptomeningeal cell aggregates, their pro-inflammatory profile and their contribution to leukaemic cell expansion, survival and chemoresistance in the CNS.
Collapse
Affiliation(s)
- Paula Ortiz-Sánchez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Sara González-Soto
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Luz H Villamizar
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Manuel Ramírez
- Department of Paediatric Haematology and Oncology, Advanced Therapies Unit, Niño Jesús University Children's Hospital, Madrid, Spain
- Health Research Institute Hospital La Princesa, Madrid, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology and Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Valencia, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain.
- Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Lidia M Fernández-Sevilla
- Health Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Spain.
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain.
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain.
| |
Collapse
|
3
|
Nara R, Notoh H, Sasaki T, Tsukiji N, Shirai T, Kamata A, Suzuki N, Suzuki A, Okamoto S, Kanematsu T, Suzuki N, Katsumi A, Kojima T, Suzuki-Inoue K, Matsushita T, Tamura S. PDPN/CLEC-2 axis modulates megakaryocyte subtypes in a hematopoietic stem cell-regulating megakaryocyte-dominant manner. Thromb Res 2025; 245:109230. [PMID: 39615442 DOI: 10.1016/j.thromres.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Megakaryocytes are classified into several subtypes including LSP1-positive immune-skewed, MYLK4-positive hematopoietic stem cell (HSC)-regulating, and BMAL1-positive platelet-producing megakaryocytes. Podoplanin (PDPN)-expressing stromal cells generate a microenvironment that promotes megakaryopoiesis in the bone marrow. In this context, PDPN interacts with C-type lectin-like receptor-2 (CLEC-2) on megakaryocyte progenitors, which induces megakaryocyte proliferation. However, the megakaryocyte subtypes developed by the regulation of the PDPN/CLEC-2 axis have not yet been elucidated. MATERIALS AND METHODS We established an immortalized bone marrow PDPN-expressing stromal cell line and a PDPN-knockout line (PDPN WT and KO feeder cells, respectively). Bone marrow hematopoietic progenitors were committed to megakaryocytes in co-culture with PDPN WT or KO feeder cells. The number and ploidy of megakaryocytes, resultant platelets, and the polarization of megakaryocyte subtypes were investigated. RESULTS The number of megakaryocytes was significantly increased in the co-culture with PDPN WT feeder cells compared to that with PDPN KO feeder cells. The megakaryocytes on the PDPN WT and KO feeders showed their main ploidy at 16 N∼32 N and 8 N∼16 N, respectively. The number of platelets was decreased in the co-culture with the PDPN WT feeder compared to that in the co-culture with the PDPN KO feeder. For each megakaryocyte subtype, the percentage of MYLK4-positive megakaryocytes significantly increased and the percentage of BMAL1-positive megakaryocytes significantly decreased when co-cultured with the PDPN WT feeder. These results were also confirmed in the co-culture of CLEC-2 conditional KO megakaryocytes with PDPN WT feeder cells. CONCLUSION The PDPN/CLEC-2 axis modulates megakaryocyte subtype differentiation, with a predominance of HSC-regulating megakaryocytes.
Collapse
Affiliation(s)
- Rikuto Nara
- Graduate School of Health Sciences, Hokkaido University, Japan
| | - Hinako Notoh
- Graduate School of Health Sciences, Hokkaido University, Japan
| | - Tomoyuki Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ayuka Kamata
- Graduate School of Health Sciences, Hokkaido University, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Japan
| | - Shuichi Okamoto
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Naruko Suzuki
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Tetsuhito Kojima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Aichi Health Promotion Foundation, Nagoya, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shogo Tamura
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
5
|
Lan X, Feng M, Lv J, Zhang L, Hu P, Wang Y, Zhang Y, Wang S, Liu C, Liu C. A 23-year bibliometric analysis of the development of global research on hereditary renal carcinoma. Front Oncol 2024; 14:1364997. [PMID: 38887238 PMCID: PMC11180816 DOI: 10.3389/fonc.2024.1364997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Objectives Medical research continues to be extensively devoted to investigating the pathogenesis and treatment approaches of hereditary renal cancer. By aspect including researchers, institutions, countries, journals, and keywords, we conduct a bibliometric analysis of the literature pertaining to hereditary renal cancer over the last 23 years. Methods From the Web of Science Core Collection, we conducted a search for publications published between January 1, 2000 and November 28, 2023. Reviews and original articles were included. Results A cumulative count of 2,194 publications met the specified criteria for inclusion. The studies of the included articles involved a collective of 2,402 institutions representing 80 countries. Notably, the United States exhibited the highest number of published documents, constituting approximately 45.49% of the total. The preeminent institution in this discipline is the National Cancer Institute (NCI), which maintains a publication volume of 8.98%. In addition to being the most prolific author (125 publications), Linehan WM's works received the highest number of citations (11,985). In a comprehensive count, 803 journals have published related articles. In the top 10 most recent occurrences were the terms "hereditary leiomyomatosis" and "fumarate hydratase." Conclusion This is the first bibliometric analysis of the literature on hereditary renal cancer. This article offers a thorough examination of the present status of investigations concerning hereditary renal cancer during the previous 23 years.
Collapse
Affiliation(s)
- Xiaopeng Lan
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Mei Feng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ji Lv
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Luchen Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Pengcheng Hu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhen Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yanhui Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shen Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chunzhao Liu
- Institute of Biochemical Engineering, College of Materials Science and Engineering Qingdao University, Qingdao, China
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
6
|
Notoh H, Yamasaki S, Suzuki N, Suzuki A, Okamoto S, Kanematsu T, Suzuki N, Katsumi A, Kojima T, Matsushita T, Tamura S. Basement membrane extract potentiates the endochondral ossification phenotype of bone marrow-derived mesenchymal stem cell-based cartilage organoids. Biochem Biophys Res Commun 2024; 701:149583. [PMID: 38330731 DOI: 10.1016/j.bbrc.2024.149583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Endochondral ossification is a developmental process in the skeletal system and bone marrow of vertebrates. During endochondral ossification, primitive cartilaginous anlages derived from mesenchymal stem cells (MSCs) undergo vascular invasion and ossification. In vitro regeneration of endochondral ossification is beneficial for research on the skeletal system and bone marrow development as well as their clinical aspects. However, to achieve the regeneration of endochondral ossification, a stem cell-based artificial cartilage (cartilage organoid, Cart-Org) that possesses an endochondral ossification phenotype is required. Here, we modified a conventional 3D culture method to create stem cell-based Cart-Org by mixing it with a basement membrane extract (BME) and further characterized its chondrogenic and ossification properties. BME enlarged and matured the bone marrow MSC-based Cart-Orgs without any shape abnormalities. Histological analysis using Alcian blue staining showed that the production of cartilaginous extracellular matrices was enhanced in Cart-Org treated with BME. Transcriptome analysis using RNA sequencing revealed that BME altered the gene expression pattern of Cart-Org to a dominant chondrogenic state. BME triggered the activation of the SMAD pathway and inhibition of the NK-κB pathway, which resulted in the upregulation of SOX9, COL2A1, and ACAN in Cart-Org. BME also facilitated the upregulation of genes associated with hypertrophic chondrocytes (IHH, PTH1R, and COL10A1) and ossification (SP7, ALPL, and MMP13). Our findings indicate that BME promotes cartilaginous maturation and further ossification of bone marrow MSC-based Cart-Org, suggesting that Cart-Org treated with BME possesses the phenotype of endochondral ossification.
Collapse
Affiliation(s)
- Hinako Notoh
- Graduate School of Health Sciences, Hokkaido University, Japan
| | | | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Japan
| | - Shuichi Okamoto
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Naruko Suzuki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Tetsuhito Kojima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Aichi Health Promotion Foundation, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shogo Tamura
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Guahmich NL, Man L, Wang J, Arazi L, Kallinos E, Topper-Kroog A, Grullon G, Zhang K, Stewart J, Schatz-Siemers N, Jones SH, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Human theca arises from ovarian stroma and is comprised of three discrete subtypes. Commun Biol 2023; 6:7. [PMID: 36599970 DOI: 10.1038/s42003-022-04384-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Theca cells serve multiple essential functions during the growth and maturation of ovarian follicles, providing structural, metabolic, and steroidogenic support. While the function of theca during folliculogenesis is well established, their cellular origins and the differentiation hierarchy that generates distinct theca sub-types, remain unknown. Here, we performed single cell multi-omics analysis of primary cell populations purified from human antral stage follicles (1-3 mm) to define the differentiation trajectory of theca/stroma cells. We then corroborated the temporal emergence and growth kinetics of defined theca/stroma subpopulations using human ovarian tissue samples and xenografts of cryopreserved/thawed ovarian cortex, respectively. We identified three lineage specific derivatives termed structural, androgenic, and perifollicular theca cells, as well as their putative lineage-negative progenitor. These findings provide a framework for understanding the differentiation process that occurs in each primordial follicle and identifies specific cellular/molecular phenotypes that may be relevant to either diagnosis or treatment of ovarian pathologies.
Collapse
Affiliation(s)
- Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jerry Wang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laury Arazi
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ariana Topper-Kroog
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gabriel Grullon
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kimberly Zhang
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Stewart
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nina Schatz-Siemers
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sam H Jones
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|