1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Zhang S, Huang Y, Nachawati R, Huber P, Walther G, Gregor L, Vilotijević I, Stallforth P. Pangenome Analysis of the Plant Pathogen Pseudomonas syringae Reveals Unique Natural Products for Niche Adaptation. Angew Chem Int Ed Engl 2025:e202503679. [PMID: 40192321 DOI: 10.1002/anie.202503679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 05/04/2025]
Abstract
Pseudomonas syringae is a soil-dwelling bacterium that exhibits remarkable niche adaptability, and it is known for its devastating impact as a plant pathogen. This bacterium has an outstanding capability to produce a wide array of biologically active natural products. P. syringae coexists with amoebal predators and fungal strains, which drives the production of secondary metabolites for predator evasion in addition to niche adaptation. In this study, we conducted a broad pangenomic analysis of 18 taxonomically distinct P. syringae strains, leading to the identification of 231 biosynthetic gene clusters (BGCs). Among these, nonribosomal peptide synthetases (NRPSs) were particularly abundant, indicating their potential significance within this ecological context. We discovered and elucidated the structures of two novel classes of bioactive compounds, the syrilipamides and chlorosecimides. Furthermore, a bioinformatic analysis enabled the identification of an undescribed halogenase, SecA, essential for the chlorination of secimide A. We observed that syrilipamides and secimides and in particular mixtures thereof, exhibit amoebicidal activities. Additionally, secimides showed selective antifungal activity. These findings provide valuable insights into the ecological roles of P. syringae natural products and highlight their potential for biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Shuaibing Zhang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Ying Huang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Raed Nachawati
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Philipp Huber
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Lucas Gregor
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, D-07743, Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, D-07743, Jena, Germany
| |
Collapse
|
3
|
Liu Y, Tang Y, Fu Z, Zhu W, Wang H, Zhang H. BGC heteroexpression strategy for production of novel microbial secondary metabolites. Metab Eng 2025; 91:1-29. [PMID: 40158686 DOI: 10.1016/j.ymben.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Biosynthetic gene clusters (BGCs) in microbial genomes play a crucial role in the biosynthesis of diverse secondary metabolites (SMs) with pharmaceutical potential. However, most BGCs remain silent under conventional conditions, resulting in the frequently repeated discovery of known SMs. Fortunately, in the past two decades, the heterologous expression of BGCs in genetically tractable hosts has emerged as a powerful strategy to awaken microbial metabolic pathways for making novel microbial SMs. In this review, we comprehensively delineated the development and application of this strategy, highlighting various BGC cloning and assembly techniques and their technical characteristics. We also summarized 519 novel SMs from BGC hetero-expression-derived strains and described their occurrence, bioactivity, mode of action, and biosynthetic logic. Lastly, current challenges and future perspectives for developing more efficient BGC hetero-expression strategies were discussed in this review.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuqi Tang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiyang Fu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Meka AF, Bekele GK, Abas MK, Gemeda MT. Exploring bioactive compound origins: Profiling gene cluster signatures related to biosynthesis in microbiomes of Sof Umer Cave, Ethiopia. PLoS One 2025; 20:e0315536. [PMID: 40048434 PMCID: PMC11884727 DOI: 10.1371/journal.pone.0315536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
Sof Umer Cave is an unexplored extreme environment that hosts novel microbes and potential genetic resources. Microbiomes from caves have been genetically adapted to produce various bioactive metabolites, allowing them to survive and tolerate harsh conditions. However, the biosynthesis-related gene cluster signatures in the microbiomes of Sof Umer Cave have not been explored. Therefore, high-throughput shotgun sequencing was used to explore biosynthesis-related gene clusters (BGCs) in the microbiomes of Sof Umer Cave. The GeneAll DNA Soil Mini Kit was used to extract high-molecular-weight DNA from homogenized samples, and the purified DNA was sequenced using a NovaSeq PE150. According to the Micro-RN database, the most common microbial genera in Sof Umer Cave are Protobacteria, Actinobacteria, Verrucomicrobiota, and Cyanobacteria. The biosynthesis-related gene clusters were annotated and classified, and the BGCs were predicted using antiSMASH and NAPDOS1. A total of 460 putative regions of BGCs encoding a wide range of secondary metabolites were identified, including RiPP (47.82%), terpene (19.57%), NRPS (13.04%), hybrid (2.18%), and other newly annotated (10.87%) compounds. Additionally, the NAPDOS pipeline identified a calcium-dependent antibiotic gene cluster from Streptomyces coelicolor, an actinomycin gene cluster from Streptomyces chrysomallus, and a bleomycin gene cluster from Streptomyces verticillus. These findings highlight the untapped biosynthetic potential of the Sof Umer Cave microbiome, as well as its potential for the discovery of natural products.
Collapse
Affiliation(s)
- Abu Feyisa Meka
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biology, Bule Hora University, Bule Hora, Ethiopia
| | - Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Musin Kelel Abas
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Du M, Ren Y, Zhang Y, Li W, Yang H, Chu H, Zhao Y. CSEL-BGC: A Bioinformatics Framework Integrating Machine Learning for Defining the Biosynthetic Evolutionary Landscape of Uncharacterized Antibacterial Natural Products. Interdiscip Sci 2025; 17:27-41. [PMID: 39348072 DOI: 10.1007/s12539-024-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.
Collapse
Affiliation(s)
- Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuxiang Ren
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongtao Yang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiying Chu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Yang J, Balutowski A, Trivedi M, Wencewicz TA. Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases. Biochemistry 2025; 64:719-734. [PMID: 39847710 DOI: 10.1021/acs.biochem.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain Acinetobacter baumannii. We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, in vitro reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2-N-to-O-acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Megan Trivedi
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
8
|
Butkovich LV, Vining OB, O'Malley MA. New approaches to secondary metabolite discovery from anaerobic gut microbes. Appl Microbiol Biotechnol 2025; 109:12. [PMID: 39831966 PMCID: PMC11747023 DOI: 10.1007/s00253-024-13393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. KEY POINTS: • Gut microbial secondary metabolites have therapeutic and biotechnological potential • Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery • Anaerobic biofoundries enable high-throughput workflows for metabolite discovery.
Collapse
Affiliation(s)
- Lazarina V Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Oliver B Vining
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Sweeney D, Bogdanov A, Chase AB, Castro-Falcón G, Trinidad-Javier A, Dahesh S, Nizet V, Jensen PR. Pattern-Based Genome Mining Guides Discovery of the Antibiotic Indanopyrrole A from a Marine Streptomycete. JOURNAL OF NATURAL PRODUCTS 2024; 87:2768-2778. [PMID: 39575834 PMCID: PMC11686505 DOI: 10.1021/acs.jnatprod.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Terrestrial actinomycetes in the genus Streptomyces have long been recognized as prolific producers of small-molecule natural products, including many clinically important antibiotics and cytotoxic agents. Although Streptomyces can also be isolated from marine environments, their potential for natural product biosynthesis remains underexplored. The MAR4 clade of largely marine-derived Streptomyces has been a rich source of novel halogenated natural products of diverse structural classes. To further explore the biosynthetic potential of this group, we applied pattern-based genome mining, leading to the discovery of the first halogenated pyrroloketoindane natural products, indanopyrrole A (1) and B (2), and the bioinformatic linkage of these compounds to an orphan biosynthetic gene cluster (BCG) in 20 MAR4 genomes. Indanopyrrole A displays potent broad-spectrum antibiotic activity against clinically relevant pathogens. A comparison of the putative indanopyrrole BGC with that of the related compound indanomycin provides new insights into the terminal cyclization and offloading mechanisms in pyrroloketoindane biosynthesis. Broader searches of public databases reveal the rarity of this BGC while also highlighting opportunities for discovering additional compounds in this uncommon class.
Collapse
Affiliation(s)
- Douglas Sweeney
- Scripps
Institution of Oceanography, University
of California−San Diego, La Jolla, California 92093, United States
| | - Alexander Bogdanov
- Scripps
Institution of Oceanography, University
of California−San Diego, La Jolla, California 92093, United States
| | - Alexander B. Chase
- Department
of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States
| | - Gabriel Castro-Falcón
- Scripps
Institution of Oceanography, University
of California−San Diego, La Jolla, California 92093, United States
| | - Alma Trinidad-Javier
- Scripps
Institution of Oceanography, University
of California−San Diego, La Jolla, California 92093, United States
| | - Samira Dahesh
- Department
of Pediatrics, University of California−San
Diego, La Jolla, California 92093, United States
| | - Victor Nizet
- Department
of Pediatrics, University of California−San
Diego, La Jolla, California 92093, United States
- Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California−San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Scripps
Institution of Oceanography, University
of California−San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Sweeney D, Bogdanov A, Chase AB, Castro-Falcón G, Trinidad-Javier A, Dahesh S, Nizet V, Jensen PR. Pattern-based genome mining guides discovery of the antibiotic indanopyrrole A from a marine streptomycetef. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620887. [PMID: 39554111 PMCID: PMC11565753 DOI: 10.1101/2024.10.29.620887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Terrestrial actinomycetes in the genus Streptomyces have long been recognized as prolific producers of small molecule natural products, including many clinically important antibiotics and cytotoxic agents. Although Streptomyces can also be isolated from marine environments, their potential for natural product biosynthesis remains underexplored. The MAR4 clade of largely marine-derived Streptomyces has been a rich source of novel halogenated natural products of diverse structural classes. To further explore the biosynthetic potential of this group, we applied pattern-based genome mining leading to the discovery of the first halogenated pyrroloketoindane natural products, indanopyrrole A (1) and B (2), and the bioinformatic linkage of these compounds to an orphan biosynthetic gene cluster (BCG) in 20 MAR4 genomes. Indanopyrrole A displays potent broad-spectrum antibiotic activity against clinically relevant pathogens. A comparison of the putative indanopyrrole BGC with that of the related compound indanomycin provides new insights into the terminal cyclization and offloading mechanisms in pyrroloketoindane biosynthesis. Broader searches of public databases reveal the rarity of this BGC while also highlighting opportunities for discovering additional compounds in this uncommon class.
Collapse
Affiliation(s)
- Douglas Sweeney
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B. Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Gabriel Castro-Falcón
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alma Trinidad-Javier
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul R. Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Seibel E, Um S, Bodawatta KH, Komor AJ, Decker T, Fricke J, Murphy R, Maiah G, Iova B, Maus H, Schirmeister T, Jønsson KA, Poulsen M, Beemelmanns C. Bacteria from the Amycolatopsis genus associated with a toxic bird secrete protective secondary metabolites. Nat Commun 2024; 15:8524. [PMID: 39358325 PMCID: PMC11446937 DOI: 10.1038/s41467-024-52316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Uropygial gland secretions of birds consist of host and bacteria derived compounds and play a major sanitary and feather-protective role. Here we report on our microbiome studies of the New Guinean toxic bird Pachycephala schlegelii and the isolation of a member of the Amycolatopsis genus from the uropygial gland secretions. Bioactivity studies in combination with co-cultures, MALDI imaging and HR-MS/MS-based network analyses unveil the basis of its activity against keratinolytic bacteria and fungal skin pathogens. We trace the protective antimicrobial activity of Amycolatopsis sp. PS_44_ISF1 to the production of rifamycin congeners, ciromicin A and of two yet unreported compound families. We perform NMR and HR-MS/MS studies to determine the relative structures of six members belonging to a yet unreported lipopeptide family of pachycephalamides and of one representative of the demiguisins, a new hexapeptide family. We then use a combination of phylogenomic, transcriptomic and knock-out studies to identify the underlying biosynthetic gene clusters responsible for the production of pachycephalamides and demiguisins. Our metabolomics data allow us to map molecular ion features of the identified metabolites in extracts of P. schlegelii feathers, verifying their presence in the ecological setting where they exert their presumed active role for hosts. Our study shows that members of the Actinomycetota may play a role in avian feather protection.
Collapse
Affiliation(s)
- Elena Seibel
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy Yonsei University, Songdogwahak-ro 85, Incheon, 21983, Republic of Korea
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Tanya Decker
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- Papua New Guinea National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, P.O. Box 50007, SE-10405, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, Campus, 66123, Saarbrücken, Germany.
| |
Collapse
|
12
|
Borgio JF, Alhujaily R, Alfaraj AS, Alabdullah MJ, Alaqeel RK, Kaabi A, Alquwaie R, Alhur NF, AlJindan R, Almofty S, Almohazey D, Natarajan A, Dhas TS, AbdulAzeez S, Almandil NB. Genome-Guided Identification of Surfactin-Producing Bacillus halotolerans AQ11M9 with Anti- Candida auris Potential. Int J Mol Sci 2024; 25:10408. [PMID: 39408762 PMCID: PMC11476397 DOI: 10.3390/ijms251910408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of multidrug-resistant fungi Candida auris is a worldwide health crisis connected with high rates of mortality. There is a critical need to find novel and unique antifungal compounds for treating infections of multidrug-resistant fungi such as C. auris. This study aimed to illustrate that biosynthetic gene clusters in native bacterial isolates are able to produce antifungal compounds against the multidrug-resistant fungus C. auris. It was successfully achieved using large-scale antifungal activity screening, cytotoxicity analysis, and whole genome sequencing integrated with genome mining-guided analysis and liquid chromatography-mass spectrometry (LC/MS). A list of possible gene candidates was initially identified with genome mining methods to predict secondary metabolite gene clusters of antifungal-compound-producing bacteria. Then, gene clusters present in the antifungal-compound-producing bacteria were identified and aligned with the reference genome using comparative genomic approaches. Bacillus halotolerans AQ11M9 was identified through large-scale antifungal activity screening as a natural compound-producer against multidrug-resistant C. auris, while it was nontoxic to normal human skin fibroblast cells (confirmed using a cell viability assay). The genome (4,197,347 bp) of B. halotolerans AQ11M9 with 2931 predicted genes was first mined for detecting and characterizing biosynthetic gene clusters, which revealed 10 candidate regions with antifungal activity. Clusters of AQ11M9 encoded non-ribosomal peptide synthase (NRPS) (bacilysin, bacillibactin, paenibactin, surfactin, plipastin, and fengycin) and polyketide (macrobrevin). The presence of gene clusters with anti-C. auris activity, and surfactin identified through LC/MS, from AQ11M9 suggests the potential of utilizing it as a source for a novel and powerful anti-C. auris compound.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute (Deemed to be University), Dindigul 624302, India
| | - Tharmathass Stalin Dhas
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
13
|
Liu L, Yang C, Liang F, Li C, Zeng Q, Han S, Li S, Liu Y. Genome-wide survey of the bipartite structure and pathogenesis-related genes of Neostagonosporella sichuanensis, a causal agent of Fishscale bamboo rhombic-spot disease. Front Microbiol 2024; 15:1456993. [PMID: 39360322 PMCID: PMC11444983 DOI: 10.3389/fmicb.2024.1456993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Bamboo resources have garnered significant global attention due to their excellent capacity for regeneration and high yield. Rhombic-spot disease, a substantial threat to fishscale bamboo (Phyllostachys heteroclada), is primarily caused by Neostagonosporella sichuanensis. This study first reported the genome assemblies and characteristics of two N. sichuanensis isolates using PacBio and Illumina sequencing platforms. The genomes of N. sichuanensis strain SICAUCC 16-0001 and strain SICAUCC 23-0140, with sizes of 48.0 Mb and 48.4 Mb, respectively, revealed 10,289 and 10,313 protein-coding genes. Additionally, they contained 34.99 and 34.46% repetitive sequences within AT-rich regions, with notable repeat-induced point mutation activity. Comparative genome analysis identified 1,049 contracted and 45 expanded gene families in the genome of N. sichuanensis, including several related to pathogenicity. Several gene families involved in mycotoxin metabolism, secondary metabolism, sterol biosynthesis and transport, and cell wall degradation were contracted. Compared to most analyzed necrotrophic, hemibiotrophic, and phaeosphaeriacous pathogens, the genomes of two N. sichuanensis isolates exhibited fewer secondary metabolite enzymes, carbohydrate-active enzymes, plant cell wall degrading enzymes, secreted proteins, and effectors. Comparative genomics analysis suggested that N. sichuanensis shares more similar characteristics with hemibiotrophic pathogens. Based on single carbon source tests, N. sichuanensis strains demonstrated a higher potential for xylan decomposition than pectin and cellulose. The proportion of cell wall-degrading enzyme effectors occupied a high proportion of the total effectors of the N. sichuanensis genomes. These findings provide valuable insights into uncovering the pathogenesis of N. sichuanensis toward the efficient management of rhombic-spot disease of fishscale bamboo.
Collapse
Affiliation(s)
- Lijuan Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang Liang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chengsong Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qian Zeng
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Sanchez LRS, Untiveros DPM, Tengco MTT, Cao EP. Genome assembly, characterization, and mining of biosynthetic gene clusters (BGCs) from Chlorogloeopsis sp. ULAP02 isolated from Mt. Ulap, Itogon, Benguet, Philippines. Front Genet 2024; 15:1422274. [PMID: 39280101 PMCID: PMC11392904 DOI: 10.3389/fgene.2024.1422274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Libertine Rose S Sanchez
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Danica Pearl M Untiveros
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Theresa T Tengco
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ernelea P Cao
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
15
|
Samak ME, Solyman SM, Hanora A, Zakeer S. Metagenomic mining of two Egyptian Red Sea sponges associated microbial community. BMC Microbiol 2024; 24:315. [PMID: 39192220 DOI: 10.1186/s12866-024-03299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 08/29/2024] Open
Abstract
The Red Sea is a promising habitat for the discovery of new bioactive marine natural products. Sponges associated microorganisms represent a wealthy source of compounds with unique chemical structures and diverse biological activities. Metagenomics is an important omics-based culture-independent technique that is used as an effective tool to get genomic and functional information on sponge symbionts. In this study, we used metagenomic analysis of two Egyptian Red Sea sponges Hyrtios erectus and Phorbas topsenti microbiomes to study the biodiversity and the biosynthetic potential of the Red Sea sponges to produce bioactive compounds. Our data revealed high biodiversity of the two sponges' microbiota with phylum Proteobacteria as the most dominant phylum in the associated microbial community with an average of 31% and 70% respectively. The analysis also revealed high biosynthetic potential of sponge Hyrtios erectus microbiome through detecting diverse types of biosynthetic gene clusters (BGCs) with predicted cytotoxic, antibacterial and inhibitory action. Most of these BGCs were predicted to be novel as they did not show any similarity with any MIBiG database known cluster. This study highlights the importance of the microbiome of the collected Red Sea sponge Hyrtios erectus as a valuable source of new bioactive natural products.
Collapse
Affiliation(s)
- Manar El Samak
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar M Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai Unvirsity Elkantra Branch, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Kifle BA, Sime AM, Gemeda MT, Woldesemayat AA. Shotgun metagenomic insights into secondary metabolite biosynthetic gene clusters reveal taxonomic and functional profiles of microbiomes in natural farmland soil. Sci Rep 2024; 14:15096. [PMID: 38956049 PMCID: PMC11220033 DOI: 10.1038/s41598-024-63254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.
Collapse
Affiliation(s)
- Bezayit Amare Kifle
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Amsale Melkamu Sime
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
17
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Yang L, Yi L, Gong B, Chen L, Li M, Zhu X, Duan Y, Huang Y. Chalkophomycin Biosynthesis Revealing Unique Enzyme Architecture for a Hybrid Nonribosomal Peptide Synthetase and Polyketide Synthase. Molecules 2024; 29:1982. [PMID: 38731473 PMCID: PMC11085572 DOI: 10.3390/molecules29091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.
Collapse
Affiliation(s)
- Long Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
| | - Liwei Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Department of Pharmacy, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bang Gong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- College of Pharmacy, Hunan Vocational College of Science and Technology, Changsha 410004, China
| | - Lili Chen
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
| | - Miao Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yong Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
| |
Collapse
|
19
|
Kawato S, Nozaki R, Kondo H, Hirono I. Metagenome-assembled genomes of three Hepatoplasmataceae provide insights into isopod-mollicute symbiosis. Access Microbiol 2024; 6:000592.v3. [PMID: 38482369 PMCID: PMC10928387 DOI: 10.1099/acmi.0.000592.v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 01/08/2024] [Indexed: 11/07/2024] Open
Abstract
The digestive organs of terrestrial isopods harbour bacteria of the recently proposed mollicute family Hepatoplasmataceae. The only complete genome available so far for Hepatoplasmataceae is that of 'Candidatus Hepatoplasma crinochetorum'. The scarcity of genome sequences has hampered our understanding of the symbiotic relationship between isopods and mollicutes. Here, we present four complete metagenome-assembled genomes (MAGs) of uncultured Hepatoplasmataceae members identified from shotgun sequencing data of isopods. We propose genomospecies names for three MAGs that show substantial sequence divergence from any previously known Hepatoplamsataceae members: 'Candidatus Tyloplasma litorale' identified from the semiterrestrial isopod Tylos granuliferus, 'Candidatus Hepatoplasma vulgare' identified from the common pill bug Armadillidium vulgare, and 'Candidatus Hepatoplasma scabrum' identified from the common rough woodlouse Porcellio scaber. Phylogenomic analysis of 155 mollicutes confirmed that Hepatoplasmataceae is a sister clade of Metamycoplasmataceae in the order Mycoplasmoidales. The 16S ribosomal RNA gene sequences and phylogenomic analysis showed that 'Candidatus Tyloplasma litorale' and other semiterrestrial isopod-associated mollicutes represent the placeholder genus 'g_Bg2' in the r214 release of the Genome Taxonomy Database, warranting their assignment to a novel genus. Our analysis also revealed that Hepatoplasmataceae lack major metabolic pathways but has a likely intact type IIA CRISPR-Cas9 machinery. Although the localization of the Hepatoplasmatacae members have not been verified microscopically in this study, these genomic characteristics are compatible with the idea that these mollicutes have an ectosymbiotic lifestyle with high nutritional dependence on their host, as has been demonstrated for other members of the family. We could not find evidence that Hepatoplasmataceae encode polysaccharide-degrading enzymes that aid host digestion. If they are to provide nutritional benefits, it may be through extra-copy nucleases, peptidases, and a patatin-like lipase. Exploration of potential host-symbiont interaction-associated genes revealed large, repetitive open reading frames harbouring beta-sandwich domains, possibly involved with host cell adhesion. Overall, genomic analyses suggest that isopod-mollicute symbiosis is not characterized by carbohydrate degradation, and we speculate on their potential role as defensive symbionts through spatial competition with pathogens to prevent infection.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
20
|
Bianchini G, Sánchez‐Baracaldo P. TreeViewer: Flexible, modular software to visualise and manipulate phylogenetic trees. Ecol Evol 2024; 14:e10873. [PMID: 38314311 PMCID: PMC10834882 DOI: 10.1002/ece3.10873] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
Phylogenetic trees illustrate evolutionary relationships between taxa or genes. Tree figures are crucial when presenting results and data, and by creating clear and effective plots, researchers can describe many kinds of evolutionary patterns. However, producing tree plots can be a time-consuming task, especially as multiple different programs are often needed to adjust and illustrate all data associated with a tree. We present TreeViewer, a new software to draw phylogenetic trees. TreeViewer is flexible, modular, and user-friendly. Plots are produced as the result of a user-defined pipeline, which can be finely customised and easily applied to different trees. Every feature of the program is documented and easily accessible, either in the online manual or within the program's interface. We show how TreeViewer can be used to produce publication-ready figures, saving time by not requiring additional graphical post-processing tools. TreeViewer is freely available for Windows, macOS, and Linux operating systems and distributed under an AGPLv3 licence from https://treeviewer.org. It has a graphical user interface (GUI), as well as a command-line interface, which is useful to work with very large trees and for automated pipelines. A detailed user manual with examples and tutorials is also available. TreeViewer is mainly aimed at users wishing to produce highly customised, publication-quality tree figures using a single GUI software tool. Compared to other GUI tools, TreeViewer offers a richer feature set and a finer degree of customisation. Compared to command-line-based tools and software libraries, TreeViewer's graphical interface is more accessible. The flexibility of TreeViewer's approach to phylogenetic tree plotting enables the program to produce a wide variety of publication-ready figures. Users are encouraged to create their own custom modules to expand the functionalities of the program. This sets the scene for an ever-expanding and ever-adapting software framework that can easily adjust to respond to new challenges.
Collapse
|
21
|
Syiemiong D, Rabha J. Unveiling nature's treasures: actinobacteria from Meghalaya's mining sites as sources of bioactive compounds. Arch Microbiol 2024; 206:64. [PMID: 38224372 DOI: 10.1007/s00203-023-03791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/16/2024]
Abstract
Coal and sillimanite mining sites present unique ecological niches favoring the growth of actinobacteria, a group of Gram-positive bacteria known for producing a wide array of bioactive compounds. Isolating these bacteria from such environments could unveil novel compounds with potential biotechnological applications. This study involved the isolation of actinobacteria from two mining sites in Meghalaya, India. The dominant genera from both sites were Streptomyces, Amycolatopsis, Nocardia, and Streptosporangium. Metabolic pathway prediction from 16S rRNA gene revealed several pathways beneficial for plant growth. Exploration of biosynthetic genes indicated a prevalence of the type-II polyketide synthase gene. Sequencing the ketosynthase-alpha domain of the gene led to predictions of various bioactive secondary metabolites. Around 44% of the isolates demonstrated antimicrobial properties, with some also displaying plant growth-promoting traits. Amycolatopsis SD-15 exhibited promising results in planta when tested on tomato plants. These findings highlight the potential of actinobacteria from Meghalaya's mining sites across medical, agricultural, and industrial domains.
Collapse
Affiliation(s)
- Debulman Syiemiong
- Department of Botany, St. Edmund's College, Shillong, 793003, India.
- Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, India.
| | - Jintu Rabha
- Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
22
|
Li X, Gadar-Lopez AE, Chen L, Jayachandran S, Cruz-Morales P, Keasling JD. Mining natural products for advanced biofuels and sustainable bioproducts. Curr Opin Biotechnol 2023; 84:103003. [PMID: 37769513 DOI: 10.1016/j.copbio.2023.103003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023]
Abstract
Recently, there has been growing interest in the sustainable production of biofuels and bioproducts derived from renewable sources. Natural products, the largest and more structurally diverse group of metabolites, hold significant promise as sources for such bio-based products. However, there are two primary challenges in harnessing natural products' potential: precise mining of biosynthetic gene clusters (BGCs) that can be used as scaffolds or bioparts and their functional expression for biofuel and bioproduct manufacture. In this review, we explore recent advances in the development of bioinformatic tools for BGC mining and the manipulation of various hosts for natural product-based biofuels and bioproducts manufacture. Moreover, we discuss potential strategies for expanding the chemical diversity of biofuels and bioproducts and enhancing their overall yield.
Collapse
Affiliation(s)
- Xiaowei Li
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Adrian E Gadar-Lopez
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA 94720, USA; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
23
|
Schwitalla JW, Le NTH, Um S, Schalk F, Brönstrup M, Baunach M, Beemelmanns C. Heterologous expression of the cryptic mdk gene cluster and structural revision of maduralactomycin A. RSC Adv 2023; 13:34136-34144. [PMID: 38019997 PMCID: PMC10663993 DOI: 10.1039/d3ra05931f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
After conducting an in silico analysis of the cryptic mdk cluster region and performing transcriptomic studies, an integrative Streptomyces BAC Vector containing the mdk gene sequence was constructed. The heterologous expression of the mdk cluster in Streptomyces albus J1074 resulted in the production of the angucyclic product, seongomycin, which allowed for the assesment of its antibacterial, antiproliferative, and antiviral activities. Heterologous production was further confirmed by targeted knock-out experiments involving key regulators of the biosynthetic pathways. We were further able to revise the core structure of maduralactomycin A, using a computational approach.
Collapse
Affiliation(s)
- Jan W Schwitalla
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8 66123 Saarbrücken Germany
| | - Ngoc-Thao-Hien Le
- Department of Pharmaceutical Sciences, Natural Products and Food Research and Analysis (NatuRA), University of Antwerp Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University Incheon 21983 South Korea
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 D-38124 Braunschweig Germany
| | - Martin Baunach
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8 66123 Saarbrücken Germany
- Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
24
|
Huang H, Yue L, Deng F, Wang X, Wang N, Chen H, Li H. NMR-Metabolomic Profiling and Genome Mining Drive the Discovery of Cyclic Decapeptides from a Marine Streptomyces. JOURNAL OF NATURAL PRODUCTS 2023; 86:2122-2130. [PMID: 37672645 DOI: 10.1021/acs.jnatprod.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The integration of NMR-metabolomic and genomic analyses can provide enhanced identification of structural properties as well as key biosynthetic information, thus achieving the targeted discovery of new natural products. For this purpose, NMR-based metabolomic profiling of the marine-derived Streptomyces sp. S063 (CGMCC 14582) was performed, by which N-methylated peptides possessing unusual negative 1H NMR chemical shift values were tracked. Meanwhile, genome mining of this strain revealed the presence of an unknown NRPS gene cluster (len) with piperazic-acid-encoding genes (lenE and lenF). Under the guidance of the combined information, two cyclic decapeptides, lenziamides D1 (1) and B1 (2), were isolated from Streptomyces sp. S063, which contains piperazic acids with negative 1H NMR values. The structures of 1 and 2 were determined by extensive spectroscopic analysis combined with Marfey's method and ECD calculations. Furthermore, we provided a detailed model of lenziamide (1 and 2) biosynthesis in Streptomyces sp. S063. In the cytotoxicity evaluation, 1 and 2 showed moderate growth inhibition against the human cancer cells HEL, H1975, H1299, and drug-resistant A549-taxol with IC50 values of 8-24 μM.
Collapse
Affiliation(s)
- Huiming Huang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Liangguang Yue
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Fayu Deng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Xiaoyu Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Ning Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Hu Chen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
25
|
Muangkaew P, De Roo V, Zhou L, Girard L, Cesa-Luna C, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. Stereomeric Lipopeptides from a Single Non-Ribosomal Peptide Synthetase as an Additional Source of Structural and Functional Diversification in Pseudomonas Lipopeptide Biosynthesis. Int J Mol Sci 2023; 24:14302. [PMID: 37762605 PMCID: PMC10531924 DOI: 10.3390/ijms241814302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In Pseudomonas lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive). Here, we report the unprecedented observation of an E/C-domain that acts 'on and off', giving rise to the production of two diastereoisomeric lipopeptides by a single non-ribosomal peptide synthetase system. Using dereplication based on solid-phase peptide synthesis and NMR fingerprinting, we first show that the two cyclic lipopeptides produced by Pseudomonas entomophila COR5 correspond to entolysin A and B originally described for P. entomophila L48. Next, we prove that both are diastereoisomeric homologues differing only in the configuration of a single amino acid. This configurational variability is maintained in multiple Pseudomonas strains and typically occurs in a 3:2 ratio. Bioinformatic analysis reveals a possible correlation with the composition of the flanking sequence of the N-terminal secondary histidine motif characteristic for dual-function E/C-type domains. In permeabilization assays, using propidium iodide entolysin B has a higher antifungal activity compared to entolysin A against Botrytis cinerea and Pyricularia oryzae spores. The fact that configurational homologues are produced by the same NRPS system in a Pseudomonas strain adds a new level of structural and functional diversification to those already known from substrate flexibility during the recruitment of the amino acids and fatty acids and underscores the importance of complete stereochemical elucidation of non-ribosomal lipopeptide structures.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Vic De Roo
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Catherine Cesa-Luna
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.Z.); (M.H.)
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium; (L.G.); (C.C.-L.); (R.D.M.)
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium; (P.M.); (V.D.R.); (A.M.)
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
26
|
Borgio JF, Alhujaily R, Alquwaie R, Alabdullah MJ, AlHasani E, Alothman W, Alaqeel RK, Alfaraj AS, Kaabi A, Alhur NF, Akhtar S, AlJindan R, Almofty S, Almandil NB, AbdulAzeez S. Mining the nanotube-forming Bacillus amyloliquefaciens MR14M3 genome for determining anti- Candida auris and anti- Candida albicans potential by pathogenicity and comparative genomics analysis. Comput Struct Biotechnol J 2023; 21:4261-4276. [PMID: 37701018 PMCID: PMC10493893 DOI: 10.1016/j.csbj.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
There is a global health concern associated with the emergence of the multidrug-resistant (MDR) fungus Candida auris, which has significant mortality rates. Finding innovative and distinctive anti-Candida compounds is essential for treating infections caused by MDR C. auris. A bacterial strain with anti-Candida activity was isolated and identified using 16 S rRNA gene sequencing. The whole genome was sequenced to identify biosynthesis-related gene clusters. The pathogenicity and cytotoxicity of the isolate were analyzed in Candida and HFF-1 cell lines, respectively. This study set out to show that whole-genome sequencing, cytotoxicity testing, and pathogenicity analysis combined with genome mining and comparative genomics can successfully identify biosynthesis-related gene clusters in native bacterial isolates that encode antifungal natural compounds active against Candida albicans and C. auris. The native isolate MR14M3 has the ability to inhibit C. auris (zone of inhibition 25 mm) and C. albicans (zone of inhibition 25 mm). The 16 S rRNA gene sequence of MR14M3 aligned with Bacillus amyloliquefaciens with similarity (100%). Bacillus amyloliquefaciens MR14M3 establishes bridges of intercellular nanotubes (L 258.56 ± 35.83 nm; W 25.32 ± 6.09 nm) connecting neighboring cells. Candida cell size was reduced significantly, and crushed phenotypes were observed upon treatment with the defused metabolites of B. amyloliquefaciens MR14M3. Furthermore, the pathogenicity of B. amyloliquefaciens MR14M3 on Candida cells was observed through cell membrane disruption and lysed yeast cells. The whole-genome alignment of the MR14M3 genome (3981,643 bp) using 100 genes confirmed its affiliation with Bacillus amyloliquefaciens. Genome mining analysis revealed that MR14M3-coded secondary metabolites are involved in the biosynthesis of polyketides (PKs) and nonribosomal peptide synthases (NRPSs), including 11 biosynthesis-related gene clusters with one hundred percent similarity. Highly conserved biosynthesis-related gene clusters with anti-C. albicans and anti-C. auris potentials and cytotoxic-free activity of B. amyloliquefaciens MR14M3 proposes the utilization of Bacillus amyloliquefaciens MR14M3 as a biofactory for an anti-Candida auris and anti-C. albicans compound synthesizer.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eman AlHasani
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wojod Alothman
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia)
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
27
|
Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One 2023; 18:e0287559. [PMID: 37352186 PMCID: PMC10289310 DOI: 10.1371/journal.pone.0287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Collapse
Affiliation(s)
- Jaycee Augusto Gumiran Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Jung A. Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
28
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, Barbosa da Silva E, O’Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small Molecule in situ Resin Capture - A Compound First Approach to Natural Product Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530684. [PMID: 37398257 PMCID: PMC10312467 DOI: 10.1101/2023.03.02.530684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microbial natural products remain an important resource for drug discovery. Yet, commonly employed discovery techniques are plagued by the rediscovery of known compounds, the relatively few microbes that can be cultured, and laboratory growth conditions that do not elicit biosynthetic gene expression among myriad other challenges. Here we introduce a culture independent approach to natural product discovery that we call the Small Molecule In situ Resin Capture (SMIRC) technique. SMIRC exploits in situ environmental conditions to elicit compound production and represents a new approach to access poorly explored chemical space by capturing natural products directly from the environments in which they are produced. In contrast to traditional methods, this compound-first approach can capture structurally complex small molecules across all domains of life in a single deployment while relying on Nature to provide the complex and poorly understood environmental cues needed to elicit biosynthetic gene expression. We illustrate the effectiveness of SMIRC in marine habitats with the discovery of numerous new compounds and demonstrate that sufficient compound yields can be obtained for NMR-based structure assignment. Two new compound classes are reported including one novel carbon skeleton that possesses a functional group not previously observed among natural products and a second that possesses potent biological activity. We introduce expanded deployments, in situ cultivation, and metagenomics as methods to facilitate compound discovery, enhance yields, and link compounds to producing organisms. This compound first approach can provide unprecedented access to new natural product chemotypes with broad implications for drug discovery.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam N. Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B. Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchell N. Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul R. Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
He R, Zhang J, Shao Y, Gu S, Song C, Qian L, Yin WB, Li Z. Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. PLoS Comput Biol 2023; 19:e1011100. [PMID: 37186644 DOI: 10.1371/journal.pcbi.1011100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/25/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Non-ribosomal peptide synthetase (NRPS) is a diverse family of biosynthetic enzymes for the assembly of bioactive peptides. Despite advances in microbial sequencing, the lack of a consistent standard for annotating NRPS domains and modules has made data-driven discoveries challenging. To address this, we introduced a standardized architecture for NRPS, by using known conserved motifs to partition typical domains. This motif-and-intermotif standardization allowed for systematic evaluations of sequence properties from a large number of NRPS pathways, resulting in the most comprehensive cross-kingdom C domain subtype classifications to date, as well as the discovery and experimental validation of novel conserved motifs with functional significance. Furthermore, our coevolution analysis revealed important barriers associated with re-engineering NRPSs and uncovered the entanglement between phylogeny and substrate specificity in NRPS sequences. Our findings provide a comprehensive and statistically insightful analysis of NRPS sequences, opening avenues for future data-driven discoveries.
Collapse
Affiliation(s)
- Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
30
|
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023:7151336. [PMID: 37140036 DOI: 10.1093/nar/gkad344] [Citation(s) in RCA: 922] [Impact Index Per Article: 461.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Microorganisms produce small bioactive compounds as part of their secondary or specialised metabolism. Often, such metabolites have antimicrobial, anticancer, antifungal, antiviral or other bio-activities and thus play an important role for applications in medicine and agriculture. In the past decade, genome mining has become a widely-used method to explore, access, and analyse the available biodiversity of these compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free to use web server and as a standalone tool under an OSI-approved open source licence. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in archaea, bacteria, and fungi. Here, we present the updated version 7 of antiSMASH. antiSMASH 7 increases the number of supported cluster types from 71 to 81, as well as containing improvements in the areas of chemical structure prediction, enzymatic assembly-line visualisation and gene cluster regulation.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Hannah E Augustijn
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Zachary L Reitz
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics. Frankfurt am Main, Germany
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Artem Fetter
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - William W Metcalf
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics. Frankfurt am Main, Germany
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs.Lyngby, Denmark
| |
Collapse
|
31
|
Vind K, Brunati C, Simone M, Sosio M, Donadio S, Iorio M. Megalochelin, a Tridecapeptide Siderophore from a Talented Streptomycete. ACS Chem Biol 2023; 18:861-874. [PMID: 36920304 PMCID: PMC10127220 DOI: 10.1021/acschembio.2c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Streptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.
Collapse
Affiliation(s)
- Kristiina Vind
- NAICONS
Srl, 20139 Milan, Italy
- Host-Microbe
Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
El Samak M, Zakeer S, Hanora A, Solyman SM. Metagenomic and metatranscriptomic exploration of the Egyptian Red Sea sponge Theonella sp. associated microbial community. Mar Genomics 2023; 70:101032. [PMID: 37084583 DOI: 10.1016/j.margen.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Marine sponges associated microorganisms are considered to be prolific source of bioactive natural products. Omics-based techniques such as metagenomics and metatranscriptomics have been used as effective tools to discover natural products. In this study, we used integrated metagenomic and metatranscriptomic analysis of three samples of the Egyptian Red Sea sponge Theonella sp. microbiome to obtain a complete picture of its biosynthetic activity to produce bioactive compounds. Our data revealed high biodiversity of the Egyptian sponge microbiota represented by 38 bacterial phyla with Candidate Phylum Poribacteria as the most abundant phyla with an average of 27.5% of the microbial community. The analysis also revealed high biosynthetic activity of the sponge microbiome through detecting different types of biosynthetic gene clusters (BGCs) with predicted antibacterial, cytotoxic and inhibitory bioactivity and the majority of these clusters were found to be actively transcribed. The complete BGCs of the cytotoxic theonellamide and misakinolide were detected and found to be actively transcribed. The majority of the detected BGCs were predicted to be novel as they did not show any similarity with any known cluster in the MIBiG database.
Collapse
Affiliation(s)
- Manar El Samak
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt.
| | - Samar M Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University- Elkantara branch, Egypt
| |
Collapse
|
33
|
Chase AB, Bogdanov A, Demko AM, Jensen PR. Biogeographic patterns of biosynthetic potential and specialized metabolites in marine sediments. THE ISME JOURNAL 2023:10.1038/s41396-023-01410-3. [PMID: 37061583 DOI: 10.1038/s41396-023-01410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
While the field of microbial biogeography has largely focused on the contributions of abiotic factors to community patterns, the potential influence of biotic interactions in structuring microbial communities, such as those mediated by the production of specialized metabolites, remains largely unknown. Here, we examined the relationship between microbial community structure and specialized metabolism at local spatial scales in marine sediment samples collected from the Long-Term Ecological Research (LTER) site in Moorea, French Polynesia. By employing a multi-omic approach to characterize the taxonomic, functional, and specialized metabolite composition within sediment communities, we find that biogeographic patterns were driven by local scale processes (e.g., biotic interactions) and largely independent of dispersal limitation. Specifically, we observed high variation in biosynthetic potential (based on Bray-Curtis dissimilarity) between samples, even within 1 m2 plots, that reflected uncharacterized chemical space associated with site-specific metabolomes. Ultimately, connecting biosynthetic potential to community metabolomes facilitated the in situ detection of natural products and revealed new insights into the complex metabolic dynamics associated with sediment microbial communities. Our study demonstrates the potential to integrate biosynthetic genes and metabolite production into assessments of microbial community dynamics.
Collapse
Affiliation(s)
- Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA.
| | - Alexander Bogdanov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
McBride CM, Miller EL, Charkoudian LK. An updated catalogue of diverse type II polyketide synthase biosynthetic gene clusters captured from large-scale nucleotide databases. Microb Genom 2023; 9:mgen000965. [PMID: 36951894 PMCID: PMC10132072 DOI: 10.1099/mgen.0.000965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/20/2023] [Indexed: 03/24/2023] Open
Abstract
Nature serves as a rich source of molecules with immense chemical diversity. Aptly named, these 'natural products' boast a wide variety of environmental, medicinal and industrial applications. Type II polyketides, in particular, confer substantial medicinal benefits, including antibacterial, antifungal, anticancer and anti-inflammatory properties. These molecules are produced by enzyme assemblies known as type II polyketide synthases (PKSs), which use domains such as the ketosynthase chain-length factor and acyl carrier protein to produce polyketides with varying lengths, cyclization patterns and oxidation states. In this work, we use a novel bioinformatic workflow to identify biosynthetic gene clusters (BGCs) that code for the core type II PKS enzymes. This method does not rely on annotation and thus was able to unearth previously 'hidden' type II PKS BGCs. This work led us to identify over 6000 putative type II PKS BGCs spanning a diverse set of microbial phyla, nearly double those found in most recent studies. Notably, many of these newly identified BGCs were found in non-actinobacteria, which are relatively underexplored as sources of type II polyketides. Results from this work lay an important foundation for future bioprospecting and engineering efforts that will enable sustainable access to diverse and structurally complex molecules with medicinally relevant properties.
Collapse
Affiliation(s)
| | - Eric L. Miller
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
35
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
36
|
Singh HW, Creamer KE, Chase AB, Klau LJ, Podell S, Jensen PR. Metagenomic Data Reveal Type I Polyketide Synthase Distributions Across Biomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523365. [PMID: 36711755 PMCID: PMC9882069 DOI: 10.1101/2023.01.09.523365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.
Collapse
|
37
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|