1
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Malhotra Y, John J, Yadav D, Sharma D, Vanshika, Rawal K, Mishra V, Chaturvedi N. Advancements in protein structure prediction: A comparative overview of AlphaFold and its derivatives. Comput Biol Med 2025; 188:109842. [PMID: 39970826 DOI: 10.1016/j.compbiomed.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
This review provides a comprehensive analysis of AlphaFold (AF) and its derivatives (AF2 and AF3) in protein structure prediction. These tools have revolutionized structural biology with their highly accurate predictions, driving progress in protein modeling, drug discovery, and the study of protein dynamics. Its exceptional accuracy has redefined our understanding of protein folding, which enables groundbreaking advancements in protein design, disease research and discusses future integration with experimental techniques. In addition, their achievement features, architectures, important case studies, and noteworthy effects in the field of biology and medicine were evaluated. In consideration of the fact that AF2 is a relatively recent innovation, it has already been taken into account in many studies that highlight its applications in many ways. Moreover, the limitations of AF2 that directed to the introduction of AF3 are also reported, which is a great improvement as it provides precise predictions of the structures and interactions of proteins, DNA, RNA, and ligands, thereby aiding in the understanding of the molecular level. Addressing current challenges and forecasting future developments, this work underscores the lasting significance of AF in reshaping the scientific landscape of protein research.
Collapse
Affiliation(s)
- Yuktika Malhotra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Jerry John
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Deepika Yadav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Deepshikha Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Vanshika
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Kamal Rawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Vaibhav Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, 201303, India
| | - Navaneet Chaturvedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
3
|
Roddy K, Grzesik P, Smith BJ, Ko N, Vashee S, Desai PJ. The loss of both pUL16 and pUL21 in HSV-1-infected cells alters capsid-tegument composition, nuclear membrane architecture, cytoplasmic maturation and cell-to-cell spread. J Gen Virol 2025; 106:002083. [PMID: 40080412 PMCID: PMC11912938 DOI: 10.1099/jgv.0.002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 03/15/2025] Open
Abstract
Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1) strain KOS. To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation-associated recombination. Using this method, we generated null mutations in five tegument protein-coding genes as well as different combinations of these mutants. The single-locus mutants were all able to plaque on Vero cells. However, one multi-locus combination, ∆UL16/UL21, proved lethal for virus replication in non-permissive cells. The proteins encoded by the genes UL16 and UL21 are of interest because they are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1-infected cells are unclear. Both are dispensable for HSV-1 replication; however, in HSV-2, their mutation results in nuclear retention of assembled capsids and has activities that impact nuclear membrane integrity as well as activities of proteins that function in nuclear egress. We thus characterized these HSV-1 viruses that carry the single and double mutants. What we found was that the single mutants could replicate within cells and spread from infected to uninfected cells, albeit at significantly reduced levels. However, the double mutant (∆16/21) could not produce infectious progeny in a 24 h growth cycle and could not spread from cell to cell. Confocal microscopy of VP16-Venus expressed by these viruses as well as immunofluorescence assays for glycoprotein B showed perturbation of the nuclear membrane, which was pronounced in ∆21 and ∆16/21 infected cells. All the mutants assembled DNA-filled capsids as judged by ultrastructural analyses and sedimentation studies. Electron microscopy revealed the presence of numerous mature viruses in WT-infected cells but fewer such particles in the ∆16- and ∆21-infected cells. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident, but mature enveloped particles were not detected. The capsid particles isolated from all the single- and multi-locus mutant-infected cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the WT capsids. This reduced incorporation may be related to the loss of the integrity of the architecture of the nuclear membrane. Interestingly, the incorporation of pUL16 was not affected by the absence of pUL21 and vice versa, as judged by immunoblots. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16, the complex of pUL16 and pUL21 should be considered as important mediators of maturation and cell-to-cell spread of the particle.
Collapse
Affiliation(s)
- Kellen Roddy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Grzesik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara J. Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Ko
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, USA
| | - Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kirmpaki MA, Saied EM, Schumacher F, Prause K, Kleuser B, Arenz C. Live-Cell Identification of Inhibitors of the Lipid Transfer Protein CERT Using Nanoluciferase Bioluminescence Resonance Energy Transfer (NanoBRET). Angew Chem Int Ed Engl 2024; 63:e202413562. [PMID: 39450584 DOI: 10.1002/anie.202413562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
A BRET system is described, in which Nanoluciferase was fused to the lipid transfer protein CERT for efficient energy transfer to a Nile red-labeled ceramide, which is either directly bound to CERT or transported to the adjacent Golgi membrane. Bulk formation of sphingomyelin, a major plasma membrane component in mammals, is dependent on CERT-mediated transfer of its predecessor ceramide. CERT is considered a promising drug target but no direct cell-based methods exist to efficiently identify inhibitors. The utility of the method was demonstrated by a library of 140 derivatives of the CERT inhibitor HPA-12. These were obtained in a combinatorial synthesis using solid-phase transacylation. Screening of the library led to six compounds that were picked and confirmed to be superior to HPA-12 in a subsequent dose-response study and also in an orthogonal lipidomics analysis.
Collapse
Affiliation(s)
- Maria-Anna Kirmpaki
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Fabian Schumacher
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, Berlin, Germany
| | - Kevin Prause
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Burkhard Kleuser
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, Berlin, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
5
|
Roddy K, Grzesik P, Smith B, Ko N, Vashee S, Desai PJ. The loss of both pUL16 and pUL21 in HSV-1 infected cells abolishes cytoplasmic envelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622843. [PMID: 39574695 PMCID: PMC11581036 DOI: 10.1101/2024.11.10.622843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1). To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation associated recombination. The eleven fragments or "parts" spanned the 152 kb genome and recombination was achieved because of the overlapping homologous sequences between each fragment. To demonstrate the robustness of this genome assembly method for reverse genetics, we engineered different mutations that were located in distant loci on the genome and built a collection of HSV-1 genomes that contained single and different combination of mutations in 5 conserved HSV-1 genes. The five genes: UL7, UL11, UL16, UL21 and UL51 encode virion structural proteins and have varied functions in the infected cell. Each is dispensable for virus replication in cell culture, however, combinatorial analysis of deletions in the five genes revealed "synthetic-lethality" of some of the genetic mutations. Thus, it was discovered that any virus that carried a UL21 mutation in addition to the other gene was unable to replicate in Vero cells. Replication was restored in a complementing cell line that provided pUL21 in trans. One particular combination (UL16-UL21) was of interest because the proteins encoded by these genes are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1 infected cells are unclear. Both are dispensable for HSV-1 replication, however, in HSV-2 their mutation results in nuclear retention of assembled capsids. We thus characterized these viruses that carry the single and double mutant. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident but did not mature into enveloped particles. The capsid particles isolated from these cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the wild-type capsids. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16; the complex of pUL16 and pUL21 should be considered as important mediators of cytoplasmic maturation of the particle.
Collapse
Affiliation(s)
- Kellen Roddy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Peter Grzesik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore
| | - Nathan Ko
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, USA
| | - Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
6
|
Finnen RL, Muradov JH, Le Sage V, Banfield BW. Disruption of herpes simplex virus type 2 pUL21 phosphorylation impairs secondary envelopment of cytoplasmic nucleocapsids. J Virol 2024; 98:e0065624. [PMID: 39136460 PMCID: PMC11406914 DOI: 10.1128/jvi.00656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The multifunctional tegument protein pUL21 of HSV-2 is phosphorylated in infected cells. We have identified two residues in the unstructured linker region of pUL21, serine 251 and serine 253, as phosphorylation sites. Both phosphorylation sites are absent in HSV-1 pUL21, which likely explains why phosphorylated pUL21 was not detected in cells infected with HSV-1. Cells infected with HSV-2 strain 186 viruses deficient in pUL21 phosphorylation exhibited reductions in both cell-cell spread of virus infection and virus replication. Defects in secondary envelopment of cytoplasmic nucleocapsids were also observed in cells infected with viruses deficient in pUL21 phosphorylation as well as in cells infected with multiple strains of HSV-2 and HSV-1 deleted for pUL21. These results confirm a role for HSV pUL21 in the secondary envelopment of cytoplasmic nucleocapsids and indicate that phosphorylation of HSV-2 pUL21 is required for this activity. Phosphorylation of pUL21 was substantially reduced in cells infected with HSV-2 strain 186 mutants lacking the viral serine/threonine kinase pUL13, indicating a requirement for pUL13 in pUL21 phosphorylation. IMPORTANCE It is well known that post-translational modification of proteins by phosphorylation can regulate protein function. Here, we determined that phosphorylation of the multifunctional HSV-2 tegument protein pUL21 requires the viral serine/threonine kinase pUL13. In addition, we identified serine residues within HSV-2 pUL21 that can be phosphorylated. Phenotypic analysis of mutant HSV-2 strains with deficiencies in pUL21 phosphorylation revealed reductions in both cell-cell spread of virus infection and virus replication. Deficiencies in pUL21 phosphorylation also compromised the secondary envelopment of cytoplasmic nucleocapsids, a critical final step in the maturation of all herpes virions. Unlike HSV-2 pUL21, phosphorylation of HSV-1 pUL21 was not detected. This fundamental difference between HSV-2 and HSV-1 may underlie our previous observations that the requirements for pUL21 differ between HSV species.
Collapse
Affiliation(s)
- Renée L. Finnen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Jamil H. Muradov
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Valerie Le Sage
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Butt BG, Fischer D, Rep AR, Schauflinger M, Read C, Böck T, Hirner M, Wienen F, Graham SC, von Einem J. Human cytomegalovirus deploys molecular mimicry to recruit VPS4A to sites of virus assembly. PLoS Pathog 2024; 20:e1012300. [PMID: 38900818 PMCID: PMC11218997 DOI: 10.1371/journal.ppat.1012300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/02/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
The AAA-type ATPase VPS4 is recruited by proteins of the endosomal sorting complex required for transport III (ESCRT-III) to catalyse membrane constriction and membrane fission. VPS4A accumulates at the cytoplasmic viral assembly complex (cVAC) of cells infected with human cytomegalovirus (HCMV), the site where nascent virus particles obtain their membrane envelope. Here we show that VPS4A is recruited to the cVAC via interaction with pUL71. Sequence analysis, deep-learning structure prediction, molecular dynamics and mutagenic analysis identify a short peptide motif in the C-terminal region of pUL71 that is necessary and sufficient for the interaction with VPS4A. This motif is predicted to bind the same groove of the N-terminal VPS4A Microtubule-Interacting and Trafficking (MIT) domain as the Type 2 MIT-Interacting Motif (MIM2) of cellular ESCRT-III components, and this viral MIM2-like motif (vMIM2) is conserved across β-herpesvirus pUL71 homologues. However, recruitment of VPS4A by pUL71 is dispensable for HCMV morphogenesis or replication and the function of the conserved vMIM2 during infection remains enigmatic. VPS4-recruitment via a vMIM2 represents a previously unknown mechanism of molecular mimicry in viruses, extending previous observations that herpesviruses encode proteins with structural and functional homology to cellular ESCRT-III components.
Collapse
Affiliation(s)
- Benjamin G. Butt
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniela Fischer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Alison R. Rep
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Thomas Böck
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Manuel Hirner
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Frederik Wienen
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
10
|
Kim JY, Min YJ, Lee MH, An YR, Ashktorab H, Smoot DT, Kwon SW, Lee SK. Ceramide promotes lytic reactivation of Epstein-Barr virus in gastric carcinoma. J Virol 2024; 98:e0177623. [PMID: 38197630 PMCID: PMC10878077 DOI: 10.1128/jvi.01776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min-Hyeok Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yea Rim An
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Duane T. Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
11
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
12
|
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer's disease. Front Aging Neurosci 2023; 15:1245904. [PMID: 37744399 PMCID: PMC10512732 DOI: 10.3389/fnagi.2023.1245904] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.
Collapse
Affiliation(s)
- Shu Feng
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhenfeng Shu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhuxi Cheng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- International Department, Beijing Bayi School, Beijing, China
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
13
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
14
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|