1
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. These enzymes rely on dynamic, highly conserved active site domains such as the so-called "trigger loop" (TL) to accomplish steps in the transcription cycle. Mutations in the RNA polymerase II (Pol II) TL confer a spectrum of biochemical and genetic phenotypes that suggest two main classes, which decrease or increase catalysis or other nucleotide addition cycle (NAC) events. The Pol II active site relies on networks of residue interactions to function and mutations likely perturb these networks in ways that may alter mechanisms. We have undertaken a structural genetics approach to reveal residue interactions within and surrounding the Pol II TL - determining its "interaction landscape" - by deep mutational scanning in Saccharomyces cerevisiae Pol II. This analysis reveals connections between TL residues and surrounding domains, demonstrating that TL function is tightly coupled to its specific enzyme context.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
3
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. Genetics 2024; 228:iyae172. [PMID: 39446980 PMCID: PMC11631520 DOI: 10.1093/genetics/iyae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Carbone J, Paradis NJ, Brunt D, Wu C. Binding Mechanism of the Active Form of Molnupiravir to RdRp of SARS-CoV-2 and Designing Potential Analogues: Insights from Molecular Dynamics Simulations. ACS OMEGA 2024; 9:41583-41598. [PMID: 39398139 PMCID: PMC11465654 DOI: 10.1021/acsomega.4c05469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Molnupiravir, an FDA-approved nucleoside prodrug for treating COVID-19, converts into N4-hydroxycytidine triphosphate (NHC-TP), which integrates into SARS-CoV-2 RNA by its RNA-dependent RNA polymerase (RdRp) causing lethal mutations in viral proteins. Due to the risk of RdRp-mediated drug resistance and potential off-target effects on host polymerases (e.g., human polymerase II/HPolII), it is crucial to understand NHC-TP interactions at polymerase active sites for developing new, resistance-proof treatments. In this study, we used molecular dynamics (MD) simulations to probe key interactions between NHC-TP and SARS-CoV-2 RdRp and designed novel NHC-TP analogues with greater selectivity for SARS-CoV-2 RdRp over HPolII by a virtual screening workflow. We docked NHC-TP to a modified SARS-CoV-2 RdRp-Remdesivir triphosphate structure (PDB ID: 7BV2) and generated 71 NHC-TP analogues with bulky substituents to increase the interaction with RdRP and to reduce HPolII incorporation. MD simulations assessed the stability, binding affinity, and site interactions of these analogues. The top 7 candidates, with favorable ADMET properties, likely inhibit replication via potential dual mechanisms (the replicative stalling and the induction of lethal mutations) while maintaining selectivity for SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Justin Carbone
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Nicholas J. Paradis
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Dylan Brunt
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
5
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576280. [PMID: 38293233 PMCID: PMC10827151 DOI: 10.1101/2024.01.20.576280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
7
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
8
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
9
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|