1
|
Luo X, Cui X, Wang R, Cheng Y, Zhu R, Tai Y, Wu C, He J. An interpretable machine learning scoring tool for estimating time to recurrence readmissions in stroke patients. Int J Med Inform 2025; 194:105704. [PMID: 39561668 DOI: 10.1016/j.ijmedinf.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Stroke recurrence readmission poses an additional burden on both patients and healthcare systems. Risk stratification aims to accurately divide patients into groups to provide targeted interventions at reducing readmission. To accurately predict short and intermediate-term risks of readmission and provide information for further temporal risk stratification, we developed and validated an interpretable machine learning risk scoring tool. METHODS In this retrospective study, all stroke admission episodes from January 1st 2015 to December 31st 2019 were obtained from the Shanghai Health and Health Development Research Centre database, which covers medical records of all patients hospitalized in 436 medical institutes in Shanghai. The outcome was time to stroke recurrence readmission within 90 days post discharge. The Score for Stroke Recurrence Readmission Prediction (SSRRP) tool was derived via an interpretable machine learning-based system for time-to-event outcomes. SSRRP as six-variable survival score includes sequelae, length of stay, type of stroke, random plasma glucose, medical expense payment, and number of hospitalizations. RESULTS A total of 339,212 S admission episodes were finally included in the whole cohort. Among them, 217,393 episodes were included in the training dataset, 54,347 episodes in the internal validation dataset, and 67,472 in the temporal validation dataset. Readmission within 90 days was documented in 33922(9.97 %) episodes, with a median time to emergency readmission of 19 days (Interquartile range: 8-43). In the temporal validation dataset, the SSRRP achieved an integrated area under the curve of 0.730(95 % CI, 0.724-0.737). In addition, SSRRP demonstrated good calibration and clinical benefit rate. CONCLUSIONS In this retrospective cohort study, the SSRRP, a parsimonious and point-based scoring tool, was developed to predict the risk of recurrent readmission for stroke. It also provided accurate information on the time to stroke readmission, enabling further temporal risk stratification and informed clinical decision-making.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Xin Cui
- Shanghai Health Statistics Center, Shanghai 200040, China
| | - Rui Wang
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Yi Cheng
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Ronghui Zhu
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Yaoyong Tai
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Cheng Wu
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China.
| | - Jia He
- Department of Military Health Statistics, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yang H, Chang J, He W, Wee CF, Yit JST, Feng M. Frailty Modeling Using Machine Learning Methodologies: A Systematic Review With Discussions on Outstanding Questions. IEEE J Biomed Health Inform 2025; 29:631-642. [PMID: 39024091 DOI: 10.1109/jbhi.2024.3430226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Studying frailty is crucial for enhancing the health and quality of life among older adults, refining healthcare delivery methods, and tackling the obstacles linked to an aging demographic. Approaches to frailty modeling often utilise simple analytic techniques rather than available advanced machine learning methods, which may be sub-optimal. There is no large-scale systematic review on applications of machine learning methods on frailty modeling. In this study we explore the use of machine learning methods to predict or classify frailty in older persons in routinely collected data. We reviewed 181 research articles, and categorised analytic methods into three categories: generalised linear models, survival models, and non-linear models. These methods have a moderate agreement with existing frailty scores and predictive validity for adverse outcomes. Limited evidence suggests that non-linear methods outperform generalised linear methods. The top-three predictor/input variables are specific diagnosis or groups of diagnoses, functional performance (e.g., ADLs), and impaired cognition. Mortality, hospital admissions and prolonged hospital stay are the mainly predicted outcomes. Most studies utilise classical machine learning methods with cross-sectional data. Longitudinal data collected by wearable sensors have been used for frailty modeling. We also discuss the opportunities to use more advanced machine learning methods with high dimensional longitudinal data for more personalised and accessible frailty tools.
Collapse
|
3
|
Yau STY, Hung CT, Leung EYM, Chong KC, Lee A, Yeoh EK. Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. J Clin Med 2024; 14:4. [PMID: 39797086 PMCID: PMC11720987 DOI: 10.3390/jcm14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Previous epidemiological studies have shown that diabetes is associated with an increased risk of several cancers, including bladder cancer. However, prediction models for bladder cancer among diabetes patients remain scarce. This study aims to develop a scoring system for bladder cancer risk prediction among diabetes patients who receive routine care in general outpatient clinics using a machine learning-guided approach. Methods: A territory-wide retrospective cohort study was conducted using electronic health records of Hong Kong. Patients who received diabetes care in public general outpatient clinics between 2010 and 2019 without a history of malignancy were identified and followed up until December 2019. To develop a scoring system for bladder cancer risk prediction, random survival forest was employed to guide variable selection, and Cox regression was subsequently applied for weight assignment. Results: Of the 382,770 patients identified, 644 patients developed bladder cancer during follow-up (median: 6.2 years). The incidence rate was 0.29 per 1000 person-years. In the final time-to-event scoring system, age, serum creatinine, sex, and smoking were included as predictors. Serum creatinine ≥94 µmol/L appeared to be associated with an increased risk of developing bladder cancer. The 2-year and 5-year AUCs on test set were 0.88 (95%CI: 0.84-0.92) and 0.86 (95%CI: 0.80-0.92) respectively. Conclusions: Renal dysfunction could be a potential predictor of bladder cancer among diabetes patients. The proposed scoring system could be potentially useful for providing individualized risk prediction among diabetes patients.
Collapse
Affiliation(s)
| | | | - Eman Yee Man Leung
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Eng Kiong Yeoh
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Yau STY, Leung EYM, Hung CT, Wong MCS, Chong KC, Lee A, Yeoh EK. Scoring System for Predicting the Risk of Liver Cancer among Diabetes Patients: A Random Survival Forest-Guided Approach. Cancers (Basel) 2024; 16:2310. [PMID: 39001373 PMCID: PMC11240698 DOI: 10.3390/cancers16132310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Most liver cancer scoring systems focus on patients with preexisting liver diseases such as chronic viral hepatitis or liver cirrhosis. Patients with diabetes are at higher risk of developing liver cancer than the general population. However, liver cancer scoring systems for patients in the absence of liver diseases or those with diabetes remain rare. This study aims to develop a risk scoring system for liver cancer prediction among diabetes patients and a sub-model among diabetes patients without cirrhosis/chronic viral hepatitis. METHODS A retrospective cohort study was performed using electronic health records of Hong Kong. Patients who received diabetes care in general outpatient clinics between 2010 and 2019 without cancer history were included and followed up until December 2019. The outcome was diagnosis of liver cancer during follow-up. A risk scoring system was developed by applying random survival forest in variable selection, and Cox regression in weight assignment. RESULTS The liver cancer incidence was 0.92 per 1000 person-years. Patients who developed liver cancer (n = 1995) and those who remained free of cancer (n = 1969) during follow-up (median: 6.2 years) were selected for model building. In the final time-to-event scoring system, presence of chronic hepatitis B/C, alanine aminotransferase, age, presence of cirrhosis, and sex were included as predictors. The concordance index was 0.706 (95%CI: 0.676-0.741). In the sub-model for patients without cirrhosis/chronic viral hepatitis, alanine aminotransferase, age, triglycerides, and sex were selected as predictors. CONCLUSIONS The proposed scoring system may provide a parsimonious score for liver cancer risk prediction among diabetes patients.
Collapse
Affiliation(s)
- Sarah Tsz-Yui Yau
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Eman Yee-Man Leung
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Tim Hung
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin Chi-Sang Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Chun Chong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Albert Lee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Eng-Kiong Yeoh
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Xie F, Ning Y, Liu M, Li S, Saffari SE, Yuan H, Volovici V, Ting DSW, Goldstein BA, Ong MEH, Vaughan R, Chakraborty B, Liu N. A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes. STAR Protoc 2023; 4:102302. [PMID: 37178115 PMCID: PMC10200969 DOI: 10.1016/j.xpro.2023.102302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),1 Xie et al. (2022)2, Saffari et al. (2022)3 and the online tutorial https://nliulab.github.io/AutoScore/.
Collapse
Affiliation(s)
- Feng Xie
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yilin Ning
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Mingxuan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Siqi Li
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Yuan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, 3015 GD Rotterdam, the Netherlands; Department of Public Health, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Daniel Shu Wei Ting
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; SingHealth AI Office, Singapore Health Services, Singapore 168582, Singapore
| | - Benjamin Alan Goldstein
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; Health Services Research Centre, Singapore Health Services, Singapore 169856, Singapore; Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Roger Vaughan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bibhas Chakraborty
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth AI Office, Singapore Health Services, Singapore 168582, Singapore; Institute of Data Science, National University of Singapore, Singapore 117602, Singapore.
| |
Collapse
|
6
|
Yu JY, Heo S, Xie F, Liu N, Yoon SY, Chang HS, Kim T, Lee SU, Hock Ong ME, Ng YY, Do shin S, Kajino K, Cha WC. Development and Asian-wide validation of the Grade for Interpretable Field Triage (GIFT) for predicting mortality in pre-hospital patients using the Pan-Asian Trauma Outcomes Study (PATOS). THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 34:100733. [PMID: 37283981 PMCID: PMC10240358 DOI: 10.1016/j.lanwpc.2023.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 03/07/2023]
Abstract
Background Field triage is critical in injury patients as the appropriate transport of patients to trauma centers is directly associated with clinical outcomes. Several prehospital triage scores have been developed in Western and European cohorts; however, their validity and applicability in Asia remains unclear. Therefore, we aimed to develop and validate an interpretable field triage scoring systems based on a multinational trauma registry in Asia. Methods This retrospective and multinational cohort study included all adult transferred injury patients from Korea, Malaysia, Vietnam, and Taiwan between 2016 and 2018. The outcome of interest was a death in the emergency department (ED) after the patients' ED visit. Using these results, we developed the interpretable field triage score with the Korea registry using an interpretable machine learning framework and validated the score externally. The performance of each country's score was assessed using the area under the receiver operating characteristic curve (AUROC). Furthermore, a website for real-world application was developed using R Shiny. Findings The study population included 26,294, 9404, 673 and 826 transferred injury patients between 2016 and 2018 from Korea, Malaysia, Vietnam, and Taiwan, respectively. The corresponding rates of a death in the ED were 0.30%, 0.60%, 4.0%, and 4.6% respectively. Age and vital sign were found to be the significant variables for predicting mortality. External validation showed the accuracy of the model with an AUROC of 0.756-0.850. Interpretation The Grade for Interpretable Field Triage (GIFT) score is an interpretable and practical tool to predict mortality in field triage for trauma. Funding This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI19C1328).
Collapse
Affiliation(s)
- Jae Yong Yu
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Digital & Smart Health Office, Tan Tock Seng Hospital, Singapore
| | - Sejin Heo
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Feng Xie
- Programme in Health Services and Systems Research, Duke–National University of Singapore Medical School, Singapore
- Department of Biomedical Data Science, Stanford University, Stanford, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, USA
| | - Nan Liu
- Programme in Health Services and Systems Research, Duke–National University of Singapore Medical School, Singapore
- Health Service Research Centre, Singapore Health Services, Singapore
- Institute of Data Science, National University of Singapore, Singapore
| | - Sun Yung Yoon
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Han Sol Chang
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Taerim Kim
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Se Uk Lee
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke–National University of Singapore Medical School, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| | - Yih Yng Ng
- Digital & Smart Health Office, Tan Tock Seng Hospital, Singapore
| | - Sang Do shin
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kentaro Kajino
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Moriguchi, Japan
| | - Won Chul Cha
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Digital Innovation Center, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
7
|
Xie F, Zhou J, Lee JW, Tan M, Li S, Rajnthern LS, Chee ML, Chakraborty B, Wong AKI, Dagan A, Ong MEH, Gao F, Liu N. Benchmarking emergency department prediction models with machine learning and public electronic health records. Sci Data 2022; 9:658. [PMID: 36302776 PMCID: PMC9610299 DOI: 10.1038/s41597-022-01782-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop prediction models and decision support systems to address these challenges. To date, there is no widely accepted clinical prediction benchmark related to the ED based on large-scale public EHRs. An open-source benchmark data platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. Based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we created a benchmark dataset and proposed three clinical prediction benchmarks. This study provides future researchers with insights, suggestions, and protocols for managing data and developing predictive tools for emergency care.
Collapse
Affiliation(s)
- Feng Xie
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Zhou
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jin Wee Lee
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Mingrui Tan
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siqi Li
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Logasan S/O Rajnthern
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Marcel Lucas Chee
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Bibhas Chakraborty
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - An-Kwok Ian Wong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, NC, USA
| | - Alon Dagan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- MIT Critical Data, Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus Eng Hock Ong
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
| | - Fei Gao
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine and Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth AI Health Program, Singapore Health Services, Singapore, Singapore.
- Institute of Data Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Ning Y, Li S, Ong MEH, Xie F, Chakraborty B, Ting DSW, Liu N. A novel interpretable machine learning system to generate clinical risk scores: An application for predicting early mortality or unplanned readmission in a retrospective cohort study. PLOS DIGITAL HEALTH 2022; 1:e0000062. [PMID: 36812536 PMCID: PMC9931273 DOI: 10.1371/journal.pdig.0000062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Risk scores are widely used for clinical decision making and commonly generated from logistic regression models. Machine-learning-based methods may work well for identifying important predictors to create parsimonious scores, but such 'black box' variable selection limits interpretability, and variable importance evaluated from a single model can be biased. We propose a robust and interpretable variable selection approach using the recently developed Shapley variable importance cloud (ShapleyVIC) that accounts for variability in variable importance across models. Our approach evaluates and visualizes overall variable contributions for in-depth inference and transparent variable selection, and filters out non-significant contributors to simplify model building steps. We derive an ensemble variable ranking from variable contributions across models, which is easily integrated with an automated and modularized risk score generator, AutoScore, for convenient implementation. In a study of early death or unplanned readmission after hospital discharge, ShapleyVIC selected 6 variables from 41 candidates to create a well-performing risk score, which had similar performance to a 16-variable model from machine-learning-based ranking. Our work contributes to the recent emphasis on interpretability of prediction models for high-stakes decision making, providing a disciplined solution to detailed assessment of variable importance and transparent development of parsimonious clinical risk scores.
Collapse
Affiliation(s)
- Yilin Ning
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Siqi Li
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore,Health Services Research Centre, Singapore Health Services, Singapore, Singapore,Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
| | - Feng Xie
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore,Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Bibhas Chakraborty
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore,Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore,Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Daniel Shu Wei Ting
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore,SingHealth AI Health Program, Singapore Health Services, Singapore, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore,Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore,Health Services Research Centre, Singapore Health Services, Singapore, Singapore,SingHealth AI Health Program, Singapore Health Services, Singapore, Singapore,Institute of Data Science, National University of Singapore, Singapore, Singapore,* E-mail:
| |
Collapse
|
9
|
Yuan H, Xie F, Eng Hock Ong M, Ning Y, Lucas Chee M, Ehsan Saffari S, Rizal Abdullah H, Alan Goldstein B, Chakraborty B, Liu N. AutoScore-Imbalance: An Interpretable Machine Learning Tool for Development of Clinical Scores with Rare Events Data. J Biomed Inform 2022; 129:104072. [PMID: 35421602 DOI: 10.1016/j.jbi.2022.104072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Medical decision-making impacts both individual and public health. Clinical scores are commonly used among various decision-making models to determine the degree of disease deterioration at the bedside. AutoScore was proposed as a useful clinical score generator based on machine learning and a generalized linear model. However, its current framework still leaves room for improvement when addressing unbalanced data of rare events. METHODS Using machine intelligence approaches, we developed AutoScore-Imbalance, which comprises three components: training dataset optimization, sample weight optimization, and adjusted AutoScore. Baseline techniques for performance comparison included the original AutoScore, full logistic regression, stepwise logistic regression, least absolute shrinkage and selection operator (LASSO), full random forest, and random forest with a reduced number of variables. These models were evaluated based on their area under the curve (AUC) in the receiver operating characteristic analysis and balanced accuracy (i.e., mean value of sensitivity and specificity). By utilizing a publicly accessible dataset from Beth Israel Deaconess Medical Center, we assessed the proposed model and baseline approaches to predict inpatient mortality. RESULTS AutoScore-Imbalance outperformed baselines in terms of AUC and balanced accuracy. The nine-variable AutoScore-Imbalance sub-model achieved the highest AUC of 0.786 (0.732-0.839), while the eleven-variable original AutoScore obtained an AUC of 0.723 (0.663-0.783), and the logistic regression with 21 variables obtained an AUC of 0.743 (0.685-0.800). The AutoScore-Imbalance sub-model (using a down-sampling algorithm) yielded an AUC of 0.771 (0.718-0.823) with only five variables, demonstrating a good balance between performance and variable sparsity. Furthermore, AutoScore-Imbalance obtained the highest balanced accuracy of 0.757 (0.702-0.805), compared to 0.698 (0.643-0.753) by the original AutoScore and the maximum of 0.720 (0.664-0.769) by other baseline models. CONCLUSIONS We have developed an interpretable tool to handle clinical data imbalance, presented its structure, and demonstrated its superiority over baselines. The AutoScore-Imbalance tool can be applied to highly unbalanced datasets to gain further insight into rare medical events and facilitate real-world clinical decision-making.
Collapse
Affiliation(s)
- Han Yuan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Feng Xie
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcus Eng Hock Ong
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Emergency Medicine, Singapore General Hospital, Singapore; Health Services Research Centre, Singapore Health Services, Singapore
| | - Yilin Ning
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcel Lucas Chee
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | | | - Hairil Rizal Abdullah
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Anaesthesiology, Singapore General Hospital, Singapore
| | - Benjamin Alan Goldstein
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Bibhas Chakraborty
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States; Department of Statistics and Data Science, National University of Singapore, Singapore
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore; Health Services Research Centre, Singapore Health Services, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Xie F, Liu N, Yan L, Ning Y, Lim KK, Gong C, Kwan YH, Ho AFW, Low LL, Chakraborty B, Ong MEH. Development and validation of an interpretable machine learning scoring tool for estimating time to emergency readmissions. EClinicalMedicine 2022; 45:101315. [PMID: 35284804 PMCID: PMC8904223 DOI: 10.1016/j.eclinm.2022.101315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Emergency readmission poses an additional burden on both patients and healthcare systems. Risk stratification is the first step of transitional care interventions targeted at reducing readmission. To accurately predict the short- and intermediate-term risks of readmission and provide information for further temporal risk stratification, we developed and validated an interpretable machine learning risk scoring system. METHODS In this retrospective study, all emergency admission episodes from January 1st 2009 to December 31st 2016 at a tertiary hospital in Singapore were assessed. The primary outcome was time to emergency readmission within 90 days post discharge. The Score for Emergency ReAdmission Prediction (SERAP) tool was derived via an interpretable machine learning-based system for time-to-event outcomes. SERAP is six-variable survival score, and takes the number of emergency admissions last year, age, history of malignancy, history of renal diseases, serum creatinine level, and serum albumin level during index admission into consideration. FINDINGS A total of 293,589 ED admission episodes were finally included in the whole cohort. Among them, 203,748 episodes were included in the training cohort, 50,937 episodes in the validation cohort, and 38,904 in the testing cohort. Readmission within 90 days was documented in 80,213 (27.3%) episodes, with a median time to emergency readmission of 22 days (Interquartile range: 8-47). For different time points, the readmission rates observed in the whole cohort were 6.7% at 7 days, 10.6% at 14 days, 13.6% at 21 days, 16.4% at 30 days, and 23.0% at 60 days. In the testing cohort, the SERAP achieved an integrated area under the curve of 0.737 (95% confidence interval: 0.730-0.743). For a specific 30-day readmission prediction, SERAP outperformed the LACE index (Length of stay, Acuity of admission, Charlson comorbidity index, and Emergency department visits in past six months) and the HOSPITAL score (Hemoglobin at discharge, discharge from an Oncology service, Sodium level at discharge, Procedure during the index admission, Index Type of admission, number of Admissions during the last 12 months, and Length of stay). Besides 30-day readmission, SERAP can predict readmission rates at any time point during the 90-day period. INTERPRETATION Better performance in risk prediction was achieved by the SERAP than other existing scores, and accurate information about time to emergency readmission was generated for further temporal risk stratification and clinical decision-making. In the future, external validation studies are needed to evaluate the SERAP at different settings and assess their real-world performance. FUNDING This study was supported by the Singapore National Medical Research Council under the PULSES Center Grant, and Duke-NUS Medical School.
Collapse
Affiliation(s)
- Feng Xie
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Nan Liu
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Health Services Research Centre, Singapore Health Services, Singapore
- Institute of Data Science, National University of Singapore, Singapore
- Corresponding author at: Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Linxuan Yan
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Yilin Ning
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Ka Keat Lim
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Changlin Gong
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Heng Kwan
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Andrew Fu Wah Ho
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| | - Lian Leng Low
- Department of Family Medicine and Continuing Care, Singapore General Hospital, Singapore
- Department of Post-Acute and Continuing Care, Outram Community Hospital, Singapore
- SingHealth Duke-NUS Family Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Bibhas Chakraborty
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Statistics and Data Science, National University of Singapore, Singapore
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Health Services Research Centre, Singapore Health Services, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| |
Collapse
|