1
|
Kazemi A, Arshi AR, Akbarzadeh MR. Mathematical description of proprioception through muscle activation signal generation in core musculoskeletal system. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
New Procedure for the Kinematic and Power Analysis of Cyclists in Indoor Training. SENSORS 2020; 20:s20216135. [PMID: 33126665 PMCID: PMC7663547 DOI: 10.3390/s20216135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022]
Abstract
In this research, the performance and movements of amateur and professional cyclists were analyzed. For this, reflective markers have been used on different parts of the body of the participants in conjunction with sports cameras and a mobile power meter. The trajectories of the markers have been obtained with the software Kinovea and subsequently analyzed using error ellipses. It is demonstrated that the error ellipses help determine movement patterns in the knees, back, and hip. The covariance of the error ellipses can be indicative of the alignment and symmetry of the frontal movement of the knees. In addition, it allows verifying the alignment of the spine and the symmetry of the hip. Finally, it is shown that it is necessary to consider the uncertainty of the power devices since it considerably affects the evaluation of the cyclists’ performance. Devices with high uncertainty will demand a greater effort from the cyclist to meet the power required in the endurance test developed. The statistical magnitudes considered help to analyze power and evaluate the cyclists’ performance.
Collapse
|
3
|
Babu Rajendra Kurup N, Puchinger M, Gföhler M. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study. Comput Methods Biomech Biomed Engin 2018; 22:55-63. [PMID: 30398368 PMCID: PMC6457274 DOI: 10.1080/10255842.2018.1527321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Push-rim wheelchair propulsion is biomechanically inefficient and physiologically stressful to the musculoskeletal structure of human body. This study focuses to obtain a new, optimized propulsion shape for wheelchair users, which is within the ergonomic ranges of joint motion, thus reducing the probability of injuries. To identify the propulsion movement, forward dynamic optimization was performed on a 3D human musculoskeletal model linked to a handle based propulsion mechanism, having shape and muscle excitations as optimization variables. The optimization resulted in a handle path shape with a circularity ratio of 0.95, and produced a net propulsion power of 34.7 watts for an isokinetic propulsion cycle at 50 rpm. Compared to push-rim propulsion, the compact design of the new propulsion mechanism along with the ergonomically optimized propulsion shape may help to reduce the risk of injuries and thus improve the quality of life for wheelchair users.
Collapse
Affiliation(s)
| | - Markus Puchinger
- a Research Division for Biomechanics and Rehabilitation Engineering , TU Wien , Vienna , Austria
| | - Margit Gföhler
- a Research Division for Biomechanics and Rehabilitation Engineering , TU Wien , Vienna , Austria
| |
Collapse
|
4
|
Martin JC, Nichols JA. Simulated work loops predict maximal human cycling power. ACTA ACUST UNITED AC 2018; 221:jeb.180109. [PMID: 29773685 DOI: 10.1242/jeb.180109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
Fish, birds and lizards sometimes perform locomotor activities with maximized muscle power. Whether humans maximize muscle power is unknown because current experimental techniques cannot be applied non-invasively. This study leveraged simulated muscle work loops to examine whether voluntary maximal cycling is characterized by maximized muscle power. The simulated work loops used experimentally measured joint angles, anatomically realistic muscle parameters (muscle-tendon lengths, velocities and moment arms) and a published muscle model to calculate power and force for 38 muscles. For each muscle, stimulation onset and offset were optimized to maximize muscle work and power for the complete shortening/lengthening cycle. Simulated joint power and total leg power (i.e. summed muscle power) were compared with previously reported experimental joint and leg power. Experimental power values were closely approximated by simulated maximal power for the leg [intraclass correlation coefficient (ICC)=0.91], the hip (ICC=0.92) and the knee (ICC=0.95), but less closely for the ankle (ICC=0.74). Thus, during maximal cycling, humans maximize muscle power at the hip and knee, but the ankle acts to transfer (instead of maximize) power. Given that only the timing of muscle stimulation onset and offset were altered, these results suggest that human motor control strategies may optimize muscle activation to maximize power. The simulations also provide insight into biarticular muscle function by demonstrating that the power values at each joint spanned by a biarticular muscle can be substantially greater than the net power produced by the muscle. Our work-loop simulation technique may be useful for examining clinical deficits in muscle power production.
Collapse
Affiliation(s)
- James C Martin
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S. 1850 E. Room 214, Salt Lake City, UT 84112-0920, USA
| | - Jennifer A Nichols
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Abstract
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOWecc = 1.13; HIGHecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGHecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGHecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGHecc. Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Collapse
|
6
|
Zeller S, Abel T, Smith PM, Strueder HK. Influence of noncircular chainring on male physiological parameters in hand cycling. ACTA ACUST UNITED AC 2016; 52:211-20. [PMID: 26237195 DOI: 10.1682/jrrd.2014.03.0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 12/18/2014] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to examine the influence of a noncircular chainring (NCC) compared with a conventional circular chainring (CC) on hand cycling performance. Eleven nondisabled male participants with no hand cycling experience initially completed an incremental exercise test. Afterward, the participants completed two 20 s sprint tests, followed by a 20 min endurance test and then another two 20 s sprint tests. An NCC and a CC were used in random order on two separate occasions. To compare the effects of the NCC and CC on power data of the sprint tests and metabolic response during the endurance test, a two-way analysis of variance for repeated measures was used. Average power values of the sprint tests showed no significant difference between NCC and CC, but over time, values of the first and third sprint tests were higher than those of the second and fourth sprint tests for both chainrings. Values of energy expenditure (kilojoules), gross efficiency (percentage), and net efficiency (percentage) after 10 and 20 min during the endurance test using NCC and CC showed no significant differences (p > 0.05) either between tests or over time. Under the current test conditions and focusing on physiological parameters, a performance optimization using an NCC in hand cycling could not be proven.
Collapse
Affiliation(s)
- Sebastian Zeller
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
7
|
Hintzy F, Horvais N. Non-circular chainring improves aerobic cycling performance in non-cyclists. Eur J Sport Sci 2015; 16:427-32. [PMID: 26406359 DOI: 10.1080/17461391.2015.1086817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-circular chainrings alter the crank velocity profile over a pedalling cycle. The aim of this study was to investigate the effect of this altered crank velocity profile on the aerobic performance compared to a circular chainring (CC). Ten male non-cyclists performed two incremental maximal tests at 80 rpm on a cycle ergometer: one with a circular (Shimano) and the other with a non-circular chainring Osymetric® (Somovedi), at least 50 h apart. Each test started with a workload of 100 W lasting 3 min. During the first 12 min, the workload was increased by 30 W every 3 min. Thereafter, the workload was increased by 30 W every 2 min until exhaustion. The power output, the intra-cycle crank angular velocity and the physiological parameters were monitored continuously, averaged over the last 30 s of each increment and at exhaustion, and compared for the two chainrings. Results showed a higher maximal aerobic power attained with the non-circular chainring (362.6 ± 37.9 vs. 338.8 ± 32.6 W, p < .001; moderate effect), which could be explained by a significantly lower energy expenditure during the first increment at 100 W. It could be hypothesised that the use of the non-circular chainring allowed saving a small part of energy expenditure throughout the test, allowing the exhaustion of the subject at a higher increment for a similar maximal energy expenditure, in comparison with a CC. Although this improvement is obtained only for non-cyclists, it allowed highlighting the link between cycling equipment modifying the pedalling motion and physiological responses.
Collapse
Affiliation(s)
- Frédérique Hintzy
- a Exercise Physiology Laboratory , University of Savoy Mont-Blanc , Bourget du Lac , France
| | - Nicolas Horvais
- a Exercise Physiology Laboratory , University of Savoy Mont-Blanc , Bourget du Lac , France
| |
Collapse
|
8
|
Strutzenberger G, Wunsch T, Kroell J, Dastl J, Schwameder H. Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomech 2014; 13:97-108. [PMID: 25122995 DOI: 10.1080/14763141.2014.908946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Non-circular chainrings theoretically enhance cycling performance by increasing effective chainring diameter and varying crank velocity, but research has failed to consistently reproduce the benefits in cycling trials. The aim of this study was (1) to investigate the effect of different chainring shapes on sagittal knee joint moment and sagittal lower limb joint powers and (2) to investigate whether alterations are affected by cadence and workload. Fourteen elite cyclists cycled in six conditions (70, 90 and 110 rpm, each at 180 and 300 W), for 2 min each, using three chainrings of different ovalities (1.0-1.215). Kinematic data and pedal forces were collected. For most conditions, only the chainring with the highest ovality (1.215) was characterised by smaller sagittal knee joint moments, smaller relative sagittal knee joint power contribution and larger relative sagittal hip joint power contribution, which suggests a change from maximising efficiency to maximising power production. Effect sizes increased with higher cadences, but not with higher workload. This study has application for athletes, clinicians and sports equipment industry as a non-circular chainring can change joint-specific power generation and decrease knee joint moment, but certain ovality seems to be necessary to provoke this effect.
Collapse
|
9
|
Abstract
Previous authors have reported power-pedaling rate relationships for maximal cycling. However, the joint-specific power-pedaling rate relationships that contribute to pedal power have not been reported. We determined absolute and relative contributions of joint-specific powers to pedal power across a range of pedaling rates during maximal cycling. Ten cyclists performed maximal 3 s cycling trials at 60, 90, 120, 150, and 180 rpm. Joint-specific powers were averaged over complete pedal cycles, and extension and flexion actions. Effects of pedaling rate on relative joint-specific power, velocity, and excursion were assessed with regression analyses and repeated-measures ANOVA. Relative ankle plantar flexion power (25 to 8%; P = .01; R(2) = .90) decreased with increasing pedaling rate, whereas relative hip extension power (41 to 59%; P < .01; R(2) = .92) and knee flexion power (34 to 49%; P < .01; R(2) = .94) increased with increasing pedaling rate. Knee extension powers did not differ across pedaling rates. Ankle joint angular excursion decreased with increasing pedaling rate (48 to 20 deg) whereas hip joint excursion increased (42 to 48 deg). These results demonstrate that the often-reported quadratic power-pedaling rate relationship arises from combined effects of dissimilar joint-specific power-pedaling rate relationships. These dissimilar relationships are likely influenced by musculoskeletal constraints (ie, muscle architecture, morphology) and/or motor control strategies.
Collapse
|
10
|
From bicycle chain ring shape to gear ratio: Algorithm and examples. J Biomech 2014; 47:281-3. [DOI: 10.1016/j.jbiomech.2013.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 11/22/2022]
|
11
|
Celik H, Piazza SJ. Simulation of aperiodic bipedal sprinting. J Biomech Eng 2013; 135:81008. [PMID: 23722442 DOI: 10.1115/1.4024577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/15/2013] [Indexed: 11/08/2022]
Abstract
Synthesis of legged locomotion through dynamic simulation is useful for exploration of the mechanical and control variables that contribute to efficient gait. Most previous simulations have made use of periodicity constraints, a sensible choice for investigations of steady-state walking or running. Sprinting from rest, however, is aperiodic by nature and this aperiodicity is central to the goal of the movement, as performance is determined in large part by a rapid acceleration phase early in the race. The purpose of this study was to create a novel simulation of aperiodic sprinting using a modified spring-loaded inverted pendulum (SLIP) biped model. The optimal control problem was to find the set of controls that minimized the time for the model to run 20 m, and this problem was solved using a direct multiple shooting algorithm that converts the original continuous time problem into piecewise discrete subproblems. The resulting nonlinear programming problem was solved iteratively using a sequential quadratic programming method. The starting point for the optimizer was an initial guess simulation that was a slow alternating-gait "jogging" simulation developed using proportional-derivative feedback to control trunk attitude, swing leg angle, and leg retraction and extension. The optimized aperiodic sprint simulation solution yielded a substantial improvement in locomotion time over the initial guess (2.79 s versus 6.64 s). Following optimization, the model produced forward impulses at the start of the sprint that were four times greater than those of the initial guess simulation, producing more rapid acceleration. Several gait features demonstrated in the optimized sprint simulation correspond to behaviors of human sprinters: forward trunk lean at the start; straightening of the trunk during acceleration; and a dive at the finish. Optimization resulted in reduced foot contact times (0.065 s versus 0.210 s), but contact times early in the optimized simulation were longer to facilitate acceleration. The present study represents the first simulation of multistep aperiodic sprinting with optimal controls. Although the minimized objective function was simple, the model replicated several complex behaviors such as modulation of the foot contact and executing a forward dive at the finish line. None of these observed behaviors were imposed explicitly by constraints but rather were "discovered" by the optimizer. These methods will be extended by addition of musculotendon actuators and joints in order to gain understanding of the influence of musculoskeletal mechanics on gait speed.
Collapse
Affiliation(s)
- Huseyin Celik
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
12
|
Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589361. [PMID: 24073413 PMCID: PMC3773392 DOI: 10.1155/2013/589361] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/22/2013] [Indexed: 12/14/2022]
Abstract
The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.
Collapse
Affiliation(s)
- Tarak Driss
- CeRSM, E.A. 2931, Equipe de Physiologie et de Biomécanique du Mouvement, UFR STAPS, Université Paris Ouest Nanterre—La Défense, 200 avenue de la République, 92000 Nanterre, France
| | - Henry Vandewalle
- Laboratoire de Physiologie, UFR de Santé, Médecine et Biologie Humaine, Université Paris XIII, Rue Marcel Cachin, 93017 Bobigny Cedex, France
| |
Collapse
|
13
|
A theoretical analysis of the influence of wheelchair seat position on upper extremity demand. Clin Biomech (Bristol, Avon) 2013; 28:378-85. [PMID: 23608478 DOI: 10.1016/j.clinbiomech.2013.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/16/2013] [Accepted: 03/13/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high physical demands placed on the upper extremity during manual wheelchair propulsion can lead to pain and overuse injuries that further reduce user independence and quality of life. Seat position is an adjustable parameter that can influence the mechanical loads placed on the upper extremity. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to identify the optimal seat position that minimizes various measures of upper extremity demand including muscle stress, co-contraction and metabolic cost. METHODS Forward dynamics simulations of wheelchair propulsion were generated across a range of feasible seat positions by minimizing the change in handrim forces and muscle-produced joint moments. Resulting muscle stress, co-contraction and metabolic cost were examined to determine the optimal seat position that minimized these values. FINDINGS Muscle stress and metabolic cost were near minimal values at superior/inferior positions corresponding to top-dead-center elbow angles between 110 and 120° while at an anterior/posterior position with a hub-shoulder angle between -10 and -2.5°. This coincided with a reduction in the level of muscle co-contraction, primarily at the glenohumeral joint. INTERPRETATION Deviations from this position lead to increased co-contraction to maintain a stable, smooth propulsive stroke, which consequentially increases upper extremity demand. These results agree with previous clinical guidelines for positioning the seat to reduce upper extremity overuse injuries and pain for wheelchair users.
Collapse
|
14
|
Pei Y, Kim Y, Obinata G, Hase K, Stefanov D. Trajectory planning of a robot for lower limb rehabilitation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1259-63. [PMID: 22254545 DOI: 10.1109/iembs.2011.6090296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We introduce a method for lower-limb physical rehabilitation by means of a robot that applies preliminary defined forces to a patient's foot while moving it on a preliminary defined trajectory. We developed a special musculoskeletal model that takes into consideration the generated muscle forces of 27 musculotendon actuators and joint stiffness of the leg and allows the calculation of the motion trajectory of the robot and the forces that the robot needs to apply to the foot in each moment of the therapeutic exercise. Robotic treatment programs are customized for the individual patient by using a genetic algorithm (GA) that refers to the musculoskeletal model and calculates the parameters of the spline curves of the motion trajectory of the robot and forces acting on the foot.
Collapse
Affiliation(s)
- Y Pei
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603
| | | | | | | | | |
Collapse
|
15
|
The influence of seat configuration on maximal average crank power during pedaling: a simulation study. J Appl Biomech 2011; 26:493-500. [PMID: 21245509 DOI: 10.1123/jab.26.4.493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manipulating seat configuration (i.e., seat tube angle, seat height and pelvic orientation) alters the bicycle-rider geometry, which influences lower extremity muscle kinematics and ultimately muscle force and power generation during pedaling. Previous studies have sought to identify the optimal configuration, but isolating the effects of specific variables on rider performance from the confounding effect of rider adaptation makes such studies challenging. Of particular interest is the influence of seat tube angle on rider performance, as seat tube angle varies across riding disciplines (e.g., road racers vs. triathletes). The goals of the current study were to use muscle-actuated forward dynamics simulations of pedaling to 1) identify the overall optimal seat configuration that produces maximum crank power and 2) systematically vary seat tube angle to assess how it influences maximum crank power. The simulations showed that a seat height of 0.76 m (or 102% greater than trochanter height), seat tube angle of 85.1 deg, and pelvic orientation of 20.5 deg placed the major power-producing muscles on more favorable regions of the intrinsic force-length-velocity relationships to generate a maximum average crank power of 981 W. However, seat tube angle had little influence on crank power, with maximal values varying at most by 1% across a wide range of seat tube angles (65 to 110 deg). The similar power values across the wide range of seat tube angles were the result of nearly identical joint kinematics, which occurred using a similar optimal seat height and pelvic orientation while systematically shifting the pedal angle with increasing seat tube angles.
Collapse
|
16
|
The influence of elliptical chainrings on 10 km cycling time trial performance. Int J Sports Physiol Perform 2011; 5:459-68. [PMID: 21266731 DOI: 10.1123/ijspp.5.4.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of elliptical chainrings (also called chainwheels or sprockets) has gained considerable interest in the amateur and professional cycling community. Nevertheless, we are unaware of any scientific studies that have examined the performance benefits of using elliptical chainrings during an actual performance trial. Therefore, this study examined the influence of elliptical chainring use on physiological and performance parameters during a 10 km cycling time trial. Nine male cyclists completed, in a counterbalanced order, three 10 km cycling time trials using either a standard chainring or an elliptical chainring at two distinct settings. An attempt was made to blind the cyclists to the type of chainring used until the completion of the study. During the 10 km time trial, power output and heart rate were recorded at a frequency of 1 Hz and RPE was measured at 3, 6, and 8.5 km. Total power output was not different (P = .40) between the circular (340 ± 30 W) or either elliptical chainring condition (342 ± 29 W and 341 ± 31 W). Similarly, no differences (P = .73) in 2 km mean power output were observed between conditions. Further, no differences in RPE were observed between conditions measured at 3, 6, and 8.5 km. Heart rate was significantly greater (P = .02) using the less aggressive elliptical setting (174 ± 10 bpm) compared with the circular setting (171 ± 9 bpm). Elliptical chainrings do not appear to provide a performance benefit over traditional circular chainrings during a mid-distance time trial.
Collapse
|
17
|
Dagnese F, Carpes FP, Martins EDA, Stefanyshyn D, Mota CB. Effects of a noncircular chainring system on muscle activation during cycling. J Electromyogr Kinesiol 2010; 21:13-7. [PMID: 20223683 DOI: 10.1016/j.jelekin.2010.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022] Open
Abstract
Previous studies evaluated cycling with noncircular chainrings and suggested that changes in muscle activation would occur in response to altered pedaling mechanics throughout the crank arm revolution. However, no previous study addressed this question. The aim of this study was to compare the magnitude of muscular activity between a conventional and a noncircular crank system during an incremental maximal cycling test. Seven mountain-bike trained cyclists completed two incremental maximal tests, separated by 48 h, one for each crank system. Each test started with a workload of 100 W and was increased by 30 W every minute until exhaustion. Power output, pedaling cadence and heart rate were monitored and compared between the crank systems using paired t-tests. Surface EMG was recorded from the right rectus femoris, vastus medialis, biceps femoris and gastrocnemius medialis. EMG was compared using a general linear model considering as factors the crank system and workload with post hoc analysis at α=0.05. RMS presented effect of workload, but no effect of crank system was found for the muscles analyzed. The present results do not support effects of the noncircular crank system on variables of performance and muscle activation during incremental cycling in trained mountain bike cyclists.
Collapse
Affiliation(s)
- Frederico Dagnese
- Universidade Federal do Rio Grande do Sul, Exercise Research Laboratory, Porto Alere, RS, Brazil
| | | | | | | | | |
Collapse
|
18
|
Carpes FP, Dagnese F, Mota CB, Stefanyshyn DJ. Cycling with noncircular chainring system changes the three-dimensional kinematics of the lower limbs. Sports Biomech 2009; 8:275-83. [DOI: 10.1080/14763140903414409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
McGowan CP, Neptune RR, Herzog W. A phenomenological model and validation of shortening-induced force depression during muscle contractions. J Biomech 2009; 43:449-54. [PMID: 19879585 DOI: 10.1016/j.jbiomech.2009.09.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/14/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
History-dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening-induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error <1.5N) and force depression in the simulated leg extension exercise being similar in magnitude to experimental values (6.0% vs. 6.5%, respectively). To examine the influence of force depression on locomotor performance, simulations of maximum power pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20-40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies.
Collapse
Affiliation(s)
- Craig P McGowan
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
20
|
Neptune RR, McGowan CP, Fiandt JM. The Influence of Muscle Physiology and Advanced Technology on Sports Performance. Annu Rev Biomed Eng 2009; 11:81-107. [DOI: 10.1146/annurev-bioeng-061008-124941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| | - Craig P. McGowan
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| | - John M. Fiandt
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| |
Collapse
|