1
|
Takahashi K, Teramoto A, Murahashi Y, Shiwaku K, Kamiya T, Emori M, Watanabe K, Fujie H. The In Situ Force and Contribution of Each Ligamentous Band of the Deltoid Ligament in Ankle Joint Stability: A Cadaveric Biomechanical Study. Orthop J Sports Med 2025; 13:23259671251327406. [PMID: 40182569 PMCID: PMC11963784 DOI: 10.1177/23259671251327406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 04/05/2025] Open
Abstract
Background Each band of the deltoid ligament cooperatively contributes to stability of the medial side of the ankle joint. Investigating the function of each band of the deltoid ligament is essential to assess abnormalities and develop treatment options. Purpose To evaluate the changes in ankle kinematics when each band of the deltoid ligament is injured and to measure the in situ force of each ligamentous band in intact ankle kinematics. Study Design Descriptive laboratory study. Methods A total of 8 healthy fresh-frozen cadaveric legs were examined by applying forces through eversion and external rotation of the ankle joint using a 6 degrees of freedom robotic system. The deltoid ligament was separated into 6 discrete bands: tibionavicular ligament, tibiospring ligament, tibiocalcaneal ligament (TCL), anterior tibiotalar ligament, superficial posterior tibiotalar ligament (sPTTL), and deep posterior tibiotalar ligament; the bands were then sequentially transected. A loading test was performed in each model, and the changes in ankle motion and in situ force of each ligamentous band were measured using the robotic system. Results When an eversion force was applied to the intact ankle, the in situ force of the sPTTL was 21.6 N in dorsiflexion and that of the TCL was 19.4 N in plantarflexion, both of which were significantly greater than those of the other ligamentous bands. Additionally, the amount of eversion under eversion loading increased significantly by 3.3° with sPTTL resection in dorsiflexion and by 4.2° with TCL resection in plantarflexion. Conclusion The TCL and sPTTL play important roles among the ligamentous bands of the deltoid ligament. The sPTTL played a more significant role in ankle dorsiflexion, whereas the TCL played a more significant role in ankle plantarflexion. Clinical Relevance The TCL and sPTTL should receive attention in the treatment of deltoid ligamentous injuries.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasutaka Murahashi
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kousuke Shiwaku
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomoaki Kamiya
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopaedic Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kota Watanabe
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
2
|
Zhu X, Wei F, Li S, Zhang T, Shen P, Fong DT, Song Q. Toe-out landing reduces anterior talofibular ligament strain while maintains calcaneofibular ligament strain in people with chronic ankle instability. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101035. [PMID: 40021056 DOI: 10.1016/j.jshs.2025.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND The anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL) are vulnerable to be torn or ruptured during lateral ankle sprain (LAS), especially in people with chronic ankle instability (CAI). This study aims to determine whether landing with a larger toe-out angle would influence ATFL and CFL strains in people with CAI, aiming to contribute to the development of effective landing strategies to reduce LAS risk. METHODS Thirty participants with CAI (22 males and 8 females, age: 21.6 ± 1.5 years, height: 175.3 ± 7.1 cm, body mass: 70.8 ± 7.1 kg, mean ± SD) were recruited. Each participant landed on a specialized trap-door device with their unaffected limbs on a support platform and their affected limbs on a movable platform, which could be flipped 24° inward and 15° forward to mimic LAS conditions. Two landing conditions were tested-i.e., natural landing (NL, with natural toe-out angle at landing) and toe-out landing (TL, with toe-out angle increased to over 150% of that under the NL conditions). Kinematic data were captured using a 12-camera motion analysis system, and ATFL and CFL strains were calculated using a 3D rigid-body foot model. Paired sample t tests and Pearson's correlations were used to analyze data. RESULTS Compared to NL conditions, ATFL strain decreased (p < 0.001, d = 2.42) while CFL strain remained unchanged (p = 0.229, d = 0.09) under TL conditions. The toe-out angle was negatively and strongly correlated with ATFL strain (r = -0.743, p < 0.001) but not with CFL strain (r = 0.153, p = 0.251). Compared to NL conditions, participants exhibit a lower ankle inversion angle (p < 0.001, d = 0.494), a higher plantarflexion angle (p < 0.001, d = 1.101), and no significant difference in external rotation angle (p = 0.571, d = 0.133) under TL conditions. CONCLUSION Toe-out landing may reduce ATFL strain while maintaining CFL strain in people with CAI, thereby reducing the risk of LAS.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Feng Wei
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, MI 48824, USA
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough Leicestershire LE113TU, UK
| | - Teng Zhang
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Peixin Shen
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Daniel Tp Fong
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough Leicestershire LE113TU, UK
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan 250102, China.
| |
Collapse
|
3
|
Li Y, Tong J, Wang H, Ji X, Hua Y, Cheng CK. Investigation into the effect of deltoid ligament injury on rotational ankle instability using a three-dimensional ankle finite element model. Front Bioeng Biotechnol 2024; 12:1386401. [PMID: 38751867 PMCID: PMC11094218 DOI: 10.3389/fbioe.2024.1386401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Injury to the lateral collateral ligament of the ankle may cause ankle instability and, when combined with deltoid ligament (DL) injury, may lead to a more complex situation known as rotational ankle instability (RAI). It is unclear how DL rupture interferes with the mechanical function of an ankle joint with RAI. Purpose To study the influence of DL injury on the biomechanical function of the ankle joint. Methods A comprehensive finite element model of an ankle joint, incorporating detailed ligaments, was developed from MRI scans of an adult female. A range of ligament injury scenarios were simulated in the ankle joint model, which was then subjected to a static standing load of 300 N and a 1.5 Nm internal and external rotation torque. The analysis focused on comparing the distribution and peak values of von Mises stress in the articular cartilages of both the tibia and talus and measuring the talus rotation angle and contact area of the talocrural joint. Results The dimensions and location of insertion points of ligaments in the finite element ankle model were adopted from previous anatomical research and dissection studies. The anterior drawer distance in the finite element model was within 6.5% of the anatomical range, and the talus tilt angle was within 3% of anatomical results. During static standing, a combined rupture of the anterior talofibular ligament (ATFL) and anterior tibiotalar ligament (ATTL) generates new stress concentrations on the talus cartilage, which markedly increases the joint contact area and stress on the cartilage. During static standing with external rotation, the anterior talofibular ligament and anterior tibiotalar ligament ruptured the ankle's rotational angle by 21.8% compared to an intact joint. In contrast, static standing with internal rotation led to a similar increase in stress and a nearly 2.5 times increase in the talus rotational angle. Conclusion Injury to the DL altered the stress distribution in the tibiotalar joint and increased the talus rotation angle when subjected to a rotational torque, which may increase the risk of RAI. When treating RAI, it is essential to address not only multi-band DL injuries but also single-band deep DL injuries, especially those affecting the ATTL.
Collapse
Affiliation(s)
- Yuandong Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China
| | - Jiahui Tong
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Huizhi Wang
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Xiaoxi Ji
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Shanghai, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Nichols JA, Baratta C, Reb CW. Biomechanical Sequelae of Syndesmosis Injury and Repair. Foot Ankle Clin 2023; 28:77-98. [PMID: 36822690 DOI: 10.1016/j.fcl.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review characterizes fibula mechanics in the context of syndesmosis injury and repair. Through detailed understanding of fibula kinematics (the study of motion) and kinetics (the study of forces that cause motion), the full complexity of fibula motion can be appreciated. Although the magnitudes of fibula rotation and translation are inherently small, even slight alterations of fibula position or movement can substantially impact force propagation through the ankle and hindfoot joints. Accordingly, implications for clinical care are discussed.
Collapse
Affiliation(s)
- Jennifer A Nichols
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA; Department of Orthopaedic Surgery & Sports Medicine, University of Florida, 3450 Hull Road, Gainesville, FL, 32607, USA.
| | - Chloe Baratta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - Christopher W Reb
- Orthopaedics, Veterans Health Administration North Florida / South Georgia Health System, Malcolm Randall VA Medical Center, 1601 SW Archer Road, Gainesville, FL, 32608, USA
| |
Collapse
|
5
|
Cao S, Wang C, Zhang C, Huang J, Wang X, Ma X. Length change pattern of the ankle deltoid ligament during physiological ankle motion. Foot Ankle Surg 2022; 28:950-955. [PMID: 35074287 DOI: 10.1016/j.fas.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Length change pattern of the ankle deltoid ligament during physiological ankle motion is still confused currently and had not been studied in vivo. METHODS The deltoid ligaments from 7 cadaveric specimens were dissected. Lengths of each band during 30° plantarflexion to 20° dorsiflexion were measured. A dual fluoroscopy imaging system was utilized to capture the images of hindfoot joint of 7 healthy subjects during the stance phase of walking. 3D bone models were reconstructed from CT images. Lengths of each band were calculated after model-image registration utilizing a solid modeling software. Percentage of length variation and poses when the bands were in maximum extension were documented among each band. RESULTS The anterior border of tibiocalcaneal ligament (TCL) had only 1.7% length variation in vitro and 5.7% length variation in vivo. The tibionavicular ligament, tibiospring ligament, and deep anterior tibiotalar ligament were in maximum extension at 30° plantarflexion, however, superficial posterior tibiotalar ligament, deep posterior tibiotalar ligament, and the posterior border of TCL were in maximum extension at 20° dorsiflexion. The tibionavicular ligament, tibiospring ligament, and deep anterior tibiotalar ligament were in maximum extension during foot flat. The TCL was in maximum extension during midstance. The superficial posterior tibiotalar ligament and deep posterior tibiotalar ligament were in maximum extension during heel off and toe off. CONCLUSION The length of TCL did not change during ankle dorsiflexion and plantarflexion. The bands anterior to and posterior to the TCL showed different length change pattern during physiological ankle dorsiflexion and plantarflexion.
Collapse
Affiliation(s)
- Shengxuan Cao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chao Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhang Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Arbitrary Prestrain Values for Ligaments Cause Numerical Issues in a Multibody Model of an Ankle Joint. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Experimental studies report that ligaments of the ankle joint are prestrained. The prestrain is an important aspect of modern biomechanical analysis, which can be included in the models by: applying symmetrical, arbitrary prestrains to the ligaments, assuming a strain-free location for the joint or by using experimental prestrain data. The aim of the study was to comparatively analyze these approaches. In total, 4 prestraining methods were considered. In order to do so, a symmetrical model of the ankle with six nonlinear cables and two sphere–sphere contact pairs was assumed. The model was solved in statics under moment loads up to 5 Nm. The obtained results showed that the arbitrary prestrains caused an unbalanced load for the model at rest, and in turn modified its rest location in an unpredictable way. Due to the imbalance, it was impossible to enforce the assumed prestrains and thus cartilage prestrain was required to stabilize the model. The prestraining had a significant effect on the angular displacements and the load state of the model. The findings suggest that the prestrain values are patient specific and arbitrary prestrains will not be valid for most models.
Collapse
|
7
|
Zhu J, Forman J. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application. J Biomech Eng 2022; 144:1133332. [PMID: 35079785 DOI: 10.1115/1.4053401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE Finite element (FE) modeling has been used as a research tool for investigating underlying ligaments biomechanics and orthopedic applications. However, FE models of the ligament in the foot have been developed with various configurations, mainly due to their complex 3D geometry, material properties, and boundary conditions. Therefore, the purpose of this review was to summarize the current state of finite element modeling approaches that have been used in the ?eld of ligament biomechanics, to discuss their applicability to foot ligament modeling in a practical setting, and also to acknowledge current limitations and challenges. METHODS A comprehensive literature search was performed. Each article was analyzed in terms of the methods used for: (a) ligament geometry, (b) material property, (c) boundary and loading condition related to its application, and (d) model verification and validation. RESULTS Of the reviewed studies, 80% of the studies used simplified representations of ligament geometry, the non-linear mechanical behavior of ligaments was taken into account in only 19.2% of the studies, 33% of included studies did not include any kind of validation of the FE model. CONCLUSION Further refinement in the functional modeling of ligaments, the micro-structure level characteristics, nonlinearity, and time-dependent response, may be warranted to ensure the predictive ability of the models.
Collapse
Affiliation(s)
- Junjun Zhu
- School of Mechatronic Engineering and Automation, Shanghai University, 333 Nanchen Rd., Shanghai, China, 200444
| | - Jason Forman
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22911, USA
| |
Collapse
|
8
|
Abstract
The deltoid and spring ligaments are the primary restraints against pronation and valgus deformity of the foot, and in preserving the medial arch. The posterior tibial tendon has a secondary role in plantar arch maintenance, and its biomechanical stress increases considerably when other tissues fail. A thorough understanding of the anatomy and biomechanics of the deltoid-spring ligament is crucial for successful reconstruction of the tibiocalcanealnavicular ligament, hence, to restore ankle and medial peritalar stability. Although effective in correcting the deformity, tibionavicular tenodesis might be critical, as it blocks physiologic pronation of the hindfoot, which may result in dysfunction and pain.
Collapse
Affiliation(s)
- Beat Hintermann
- Center of Excellence for Foot and Ankle Surgery, Kantonsspital Baselland, Rheinstrasse 26, CH-4410 Liestal, Switzerland.
| | - Roxa Ruiz
- Center of Excellence for Foot and Ankle Surgery, Kantonsspital Baselland, Rheinstrasse 26, CH-4410 Liestal, Switzerland
| |
Collapse
|
9
|
Takao M, Ozeki S, Oliva XM, Inokuchi R, Yamazaki T, Takeuchi Y, Kubo M, Lowe D, Matsui K, Katakura M, Glazebrook M. Strain pattern of each ligamentous band of the superficial deltoid ligament: a cadaver study. BMC Musculoskelet Disord 2020; 21:289. [PMID: 32386522 PMCID: PMC7211342 DOI: 10.1186/s12891-020-03296-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are few reports on the detailed biomechanics of the deltoid ligament, and no studies have measured the biomechanics of each ligamentous band because of the difficulty in inserting sensors into the narrow ligaments. This study aimed to measure the strain pattern of the deltoid ligament bands directly using a Miniaturization Ligament Performance Probe (MLPP) system. METHODS The MLPP was sutured into the ligamentous bands of the deltoid ligament in 6 fresh-frozen lower extremity cadaveric specimens. The strain was measured using a round metal disk (clock) fixed on the plantar aspect of the foot. The ankle was manually moved from 15° dorsiflexion to 30° plantar flexion, and a 1.2-N-m force was applied to the ankle and subtalar joint complex. Then the clock was rotated every 30° to measure the strain of each ligamentous band at each endpoint. RESULTS The tibionavicular ligament (TNL) began to tense at 10° plantar flexion, and the tension becomes stronger as the angle increased; the TNL worked most effectively in plantar flex-abduction. The tibiospring ligament (TSL) began to tense gradually at 15° plantar flexion, and the tension became stronger as the angle increased. The TSL worked most effectively in abduction. The tibiocalcaneal ligament (TCL) began to tense gradually at 0° dorsiflexion, and the tension became stronger as the angle increased. The TCL worked most effectively in pronation (dorsiflexion-abduction). The superficial posterior tibiotalar ligament (SPTTL) began to tense gradually at 0° dorsiflexion, and the tension became stronger as the angle increased, with the SPTTL working most effectively in dorsiflexion. CONCLUSION Our results show the biomechanical function of the superficial deltoid ligament and may contribute to determining which ligament is damaged during assessment in the clinical setting.
Collapse
Affiliation(s)
- Masato Takao
- Clinical and research institute for foot and ankle surgery, 341-1, Mangoku, Kisarazu, Chiba, 292-0003 Japan
| | - Satoru Ozeki
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Xavier M. Oliva
- Department of Human Anatomy, University of Barcelona, Calle Casanova, 143, 08038 Barcelona, Spain
| | - Ryota Inokuchi
- Clinical and research institute for foot and ankle surgery, 341-1, Mangoku, Kisarazu, Chiba, 292-0003 Japan
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki, Japan
| | - Takayuki Yamazaki
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Yoshitaka Takeuchi
- Tokyo National College of Technology, 1220-2, Kunugida-machi, Hachioji, Tokyo, Japan
| | - Maya Kubo
- Department of Orthopaedic Surgery, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, Japan
| | - Danielle Lowe
- Department of Orthopaedic Surgery, Lions Gate Hospital, North Vancouver, BC Canada
| | - Kentaro Matsui
- Department of Orthopaedic Surgery, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo, Japan
| | - Mai Katakura
- Clinical and research institute for foot and ankle surgery, 341-1, Mangoku, Kisarazu, Chiba, 292-0003 Japan
| | - Mark Glazebrook
- Division of Orthopaedic Surgery, Dalhousie University, Queen Elizabeth II Health Sciences Center Halifax Infirmary (Suite 4867), 1796 Summer Street Halifax, Halifax, Nova Scotia B3H3A7 Canada
| |
Collapse
|
10
|
Analyzing Uncertainty of an Ankle Joint Model with Genetic Algorithm. MATERIALS 2020; 13:ma13051175. [PMID: 32155712 PMCID: PMC7085034 DOI: 10.3390/ma13051175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
Recent studies in biomechanical modeling suggest a paradigm shift, in which the parameters of biomechanical models would no longer treated as fixed values but as random variables with, often unknown, distributions. In turn, novel and efficient numerical methods will be required to handle such complicated modeling problems. The main aim of this study was to introduce and verify genetic algorithm for analyzing uncertainty in biomechanical modeling. The idea of the method was to encode two adversarial models within one decision variable vector. These structures would then be concurrently optimized with the objective being the maximization of the difference between their outputs. The approach, albeit expensive numerically, offered a general formulation of the uncertainty analysis, which did not constrain the search space. The second aim of the study was to apply the proposed procedure to analyze the uncertainty of an ankle joint model with 43 parameters and flexible links. The bounds on geometrical and material parameters of the model were set to 0.50 mm and 5.00% respectively. The results obtained from the analysis were unexpected. The two obtained adversarial structures were almost visually indistinguishable and differed up to 38.52% in their angular displacements.
Collapse
|
11
|
Palazzi E, Siegler S, Balakrishnan V, Leardini A, Caravaggi P, Belvedere C. Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model. J Biomech 2020; 98:109421. [PMID: 31653506 DOI: 10.1016/j.jbiomech.2019.109421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Knowledge of the stabilizing role of the ankle and subtalar ligaments is important for improving clinical techniques such as ligament repair and reconstruction. However, this knowledge is incomplete. The goal of this study was to expand this knowledge by investigating the stabilizing function of the ligaments using multiple morphologically subject-specific computational models. Nine models were created from the lower extremities of nine donors. Each model consisted of the articulating bones, articular cartilage, and ligaments. Simulations were conducted in ADAMS™ - a dynamic simulation program. During simulation, tibia and fibula were fixed while cyclic moments in all three anatomical planes were applied to the calcaneus one-at-a-time. The resulting displacements between the bones and the forces in each ligament were computed. Simulations were conducted with all ligaments intact and after simulated ligament serial sectioning. Each model was validated by comparing the simulation results to experimental data obtained from the specimen used to construct the model. From the results the stabilizing role of each ligament was established and the effect of ligament sectioning on Range of Motion and Overall Laxity was identified. On the lateral side, ATFL provided stabilization in supination, CFL restrained inversion, external rotation and dorsiflexion and PTFL limited dorsiflexion and external rotation. On the medial side, PTTL restrained dorsiflexion and internal rotation, ATTL limited plantarflexion and external rotation, and TCL limited dorsiflexion, eversion and external rotation. At the subtalar joint, ITCL limited plantarflexion and its posterior-lateral bundle restrained subtalar inversion. CL restrained plantarflexion/dorsiflexion, and internal and external rotation. The large inter-model variability observed in the results indicate the importance of using multiple subject-specific models rather than relying on one "representative" model.
Collapse
Affiliation(s)
- Emanuele Palazzi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Industrial Engineering, University of Bologna, Italy; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| | - Sorin Siegler
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA.
| | | | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Purevsuren T, Batbaatar M, Khuyagbaatar B, Kim K, Kim YH. Comparative Evaluation Between Anatomic and Nonanatomic Lateral Ligament Reconstruction Techniques in the Ankle Joint: A Computational Study. J Biomech Eng 2018; 140:2675124. [DOI: 10.1115/1.4039576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Indexed: 12/31/2022]
Abstract
Biomechanical studies have indicated that the conventional nonanatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis (OA). Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments (CaFL) have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular nonanatomic reconstruction techniques. An LAS injury, three popular nonanatomic reconstruction models (Watson-Jones, Evans, and Chrisman–Snook) and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 N·m inversion moment), internal rotational test (3 N·m internal rotation moment), and the combined loading test (9 N·m inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the nonanatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which is mainly observed in Watson-Jones and Chrisman–Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.
Collapse
Affiliation(s)
- Tserenchimed Purevsuren
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Myagmarbayar Batbaatar
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Batbayar Khuyagbaatar
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| |
Collapse
|
13
|
Active Ankle Circumduction to Identify Mobility Deficits in Subacute Ankle Sprain Patients. J Appl Biomech 2018; 34:1-6. [PMID: 28771113 DOI: 10.1123/jab.2016-0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Assessment of ankle mobility is complex and of clinical relevance after an ankle sprain. This study develops and tests a biomechanical model to assess active ankle circumduction and its reliability. The model was then applied to compare individuals' ankle mobility between injured and noninjured ankles after a sprain episode. Twenty patients with subacute unilateral ankle sprain were assessed at 4 weeks and 10 weeks after the injury. They underwent a clinical exam and an ankle circumduction test during which the kinematics were recorded with an optoelectronic device. A biomechanical model was applied to explore ankle kinematics. Reliability of the ankle circumduction tests were good to excellent (ICC of 0.55-0.89). Comparison between noninjured and injured ankles showed a mobility deficit of the injured ankle (dorsiflexion = -27.4%, plantar flexion = -25.9%, eversion = -27.2%, and inversion = -11.6%). The model allows a graphical representation of these deficits in 4 quadrants. Active ankle circumduction movement can be reliably assessed with this model. In addition, the graphical representation allows an easy understanding of the mobility deficits which were present in all 4 quadrants in our cohort of patients with subacute ankle sprain.
Collapse
|
14
|
Martinelli N, Baretta S, Pagano J, Bianchi A, Villa T, Casaroli G, Galbusera F. Contact stresses, pressure and area in a fixed-bearing total ankle replacement: a finite element analysis. BMC Musculoskelet Disord 2017; 18:493. [PMID: 29178861 PMCID: PMC5702209 DOI: 10.1186/s12891-017-1848-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/14/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. METHODS A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. RESULTS The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. DISCUSSION The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. CONCLUSION To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.
Collapse
Affiliation(s)
| | - Silvia Baretta
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Nattaˮ, Politecnico di Milano, 20133, Milan, Italy
| | - Jenny Pagano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Nattaˮ, Politecnico di Milano, 20133, Milan, Italy
| | | | - Tomaso Villa
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Nattaˮ, Politecnico di Milano, 20133, Milan, Italy
| | | | | |
Collapse
|
15
|
Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure. J Biomech 2017; 61:102-110. [DOI: 10.1016/j.jbiomech.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/13/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
16
|
Weaver BT, Fitzsimons K, Braman J, Haut R. The role of shoe design on the prediction of free torque at the shoe-surface interface using pressure insole technology. Sports Biomech 2016; 15:370-84. [PMID: 27240101 DOI: 10.1080/14763141.2016.1174287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.
Collapse
Affiliation(s)
- Brian Thomas Weaver
- a Explico Engineering Co. , Novi , MI , USA.,b Orthopaedic Bioemchanics Laboratories , Michigan State University , East Lansing , MI , USA
| | - Kathleen Fitzsimons
- b Orthopaedic Bioemchanics Laboratories , Michigan State University , East Lansing , MI , USA
| | - Jerrod Braman
- b Orthopaedic Bioemchanics Laboratories , Michigan State University , East Lansing , MI , USA
| | - Roger Haut
- b Orthopaedic Bioemchanics Laboratories , Michigan State University , East Lansing , MI , USA
| |
Collapse
|
17
|
Button KD, Wei F, Haut RC. Unlocking the talus by eversion limits medial ankle injury risk during external rotation. J Biomech 2015; 48:3724-7. [DOI: 10.1016/j.jbiomech.2015.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/29/2015] [Accepted: 08/06/2015] [Indexed: 11/17/2022]
|
18
|
Zhang M, Meng W, Davies TC, Zhang Y, Xie SQ. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation. IEEE Trans Biomed Eng 2015; 63:814-21. [PMID: 26340767 DOI: 10.1109/tbme.2015.2475161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. METHODS This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. RESULTS This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. CONCLUSION This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.
Collapse
|
19
|
Zhang M, Davies TC, Zhang Y, Xie SQ. A real-time computational model for estimating kinematics of ankle ligaments. Comput Methods Biomech Biomed Engin 2015; 19:835-44. [PMID: 26252861 DOI: 10.1080/10255842.2015.1064113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. METHOD An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. RESULTS The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. CONCLUSIONS This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.
Collapse
Affiliation(s)
- Mingming Zhang
- a Department of Mechanical Engineering , The University of Auckland , Auckland , New Zealand
| | - T Claire Davies
- a Department of Mechanical Engineering , The University of Auckland , Auckland , New Zealand.,c Department of Mechanical and Department of Surgery , The University of Auckland , Auckland , New Zealand
| | - Yanxin Zhang
- b Department of Sport and Exercise Science , The University of Auckland , Auckland , New Zealand
| | - Sheng Quan Xie
- a Department of Mechanical Engineering , The University of Auckland , Auckland , New Zealand
| |
Collapse
|
20
|
Button KD, Braman JE, Davison MA, Wei F, Schaeffer MC, Haut RC. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity. J Biomech Eng 2015; 137:061004. [PMID: 25751589 DOI: 10.1115/1.4029979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 12/26/2022]
Abstract
While previous studies have investigated the effect of shoe-surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia. One ankle in each pair was constrained by an American football shoe with a stiff upper, while the other was constrained by an American football shoe with a flexible upper. Experimental bone motions were input into specimen-specific computational models to examine levels of ligament elongation to help understand mechanisms of ankle joint failure. Ankles in flexible shoes allowed 6.7±2.4 deg of talus eversion during rotation, significantly greater than the 1.7±1.0 deg for ankles in stiff shoes (p = 0.01). The significantly greater eversion in flexible shoes was potentially due to a more natural response of the ankle during rotation, possibly affecting the injuries that were produced. All ankles failed by either medial ankle injury or syndesmotic injury, or a combination of both. Complex (more than one ligament or bone) injuries were noted in 4 of 6 ankles in stiff shoes and 1 of 6 ankles in flexible shoes. Ligament elongations from the computational model validated the experimental injury data. The current study suggested flexibility (or rotational stiffness) of the shoe may play an important role in both the severity of ankle injuries for athletes.
Collapse
|
21
|
Zhang M, Zhang Y, Davies TC, Xie S. An in-vivo lateral ankle ligament strain behavior assessment technique for potential use in robot-assisted therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4022-5. [PMID: 25570874 DOI: 10.1109/embc.2014.6944506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ankle sprains are very common, especially in sports activities. Accurate assessment of ankle ligament strain behavior is crucial in understanding ankle function and optimizing ankle rehabilitation programs. This study proposed an in-vivo lateral ankle ligament strain assessment technique for potential use in robot-assisted therapy. It consists of two phases: real-time identification of ankle joint and subtalar joint orientations and simulation of lateral ankle ligament strain behavior. A healthy participant conducted robot-assisted rehabilitation exercises and the results compared to a kinematic model. The model was found to be realistic, leading to the conclusion that this method may be appropriate for determining lateral ankle ligament strain in robot-assisted therapy.
Collapse
|
22
|
Spratley EM, Matheis EA, Hayes CW, Adelaar RS, Wayne JS. Validation of a population of patient-specific adult acquired flatfoot deformity models. J Orthop Res 2013; 31:1861-8. [PMID: 24038128 DOI: 10.1002/jor.22471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/30/2013] [Indexed: 02/04/2023]
Abstract
Adult acquired flatfoot deformity (AAFD) is a degenerative disease resulting in malalignment of the mid- and hindfoot secondary to posterior tibial tendon dysfunction and increasing implication of ligament pathologies. Despite the complex 3D nature of AAFD, 2D radiographs are still employed to diagnose and stage the disease. Computer modeling techniques allow for accurate 3D recreations of musculoskeletal systems for the investigation of biomechanical factors contributing to disease. Following Institutional Review Board approval, the lower limbs of six diagnosed AAFD sufferers were imaged with MRI, photographs, and X-ray. Next, a radiologist graded the MRI attenuation of eight soft-tissues implicated in AAFD. Six patient-specific rigid-body models were then created and loaded according to patient weight, graded soft-tissues, and extrinsic muscles. Model function was validated using clinically relevant kinematic measures in three planes. Agreement varied depending on the measure, with average absolute deviations of < 7° for angles and <4 mm for distances. Additionally, the clinically favored AP talonavicular coverage angle, ML talo-1st metatarsal angle, and ML 1st cuneiform height showed strong correlations of R(2) = 0.63, 0.75, and 0.85, respectively. Thus, computer modeling offers a promising methodology for the non-invasive investigation of in vivo kinematic behavior in pathologic feet and, once validated, may further be used to investigate biomechanical parameters that are difficult to measure clinically.
Collapse
Affiliation(s)
- E Meade Spratley
- Orthopaedic Research Laboratory, Departments of Biomedical Engineering and Orthopaedic Surgery, Virginia Commonwealth University, P.O. Box 843067, Richmond, Virginia, 23284-3067
| | | | | | | | | |
Collapse
|
23
|
Wei F, Fong DTP, Chan KM, Haut RC. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury. Comput Methods Biomech Biomed Engin 2013; 18:243-8. [DOI: 10.1080/10255842.2013.792809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Fong DTP, Wei F. The Use of Model Matching Video Analysis and Computational Simulation to Study the Ankle Sprain Injury Mechanism. INT J ADV ROBOT SYST 2012. [DOI: 10.5772/51037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures – such as ligament strains – are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury-producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.
Collapse
Affiliation(s)
- Daniel Tik-Pui Fong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wei
- Human Performance and Engineering Laboratory, Kessler Foundation Research Centre, West Orange, United States
- Department of Physical Medicine and Rehabilitation, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, United States
| |
Collapse
|
25
|
Wei F, Post JM, Braman JE, Meyer EG, Powell JW, Haut RC. Eversion during external rotation of the human cadaver foot produces high ankle sprains. J Orthop Res 2012; 30:1423-9. [PMID: 22328337 DOI: 10.1002/jor.22085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/19/2012] [Indexed: 02/04/2023]
Abstract
While high ankle sprains are often clinically ascribed to excessive external foot rotation, no experimental study documents isolated anterior tibiofibular ligament (ATiFL) injury under this loading. We hypothesized that external rotation of a highly everted foot would generate ATiFL injury, in contrast to deltoid ligament injury from external rotation of a neutral foot. Twelve (six pairs) male cadaveric lower extremity limbs underwent external foot rotation until gross failure. All limbs were positioned in 20° of dorsiflexion and restrained with elastic athletic tape. Right limbs were in neutral while left limbs were everted 20°. Talus motion relative to the tibia was measured using motion capture. Rotation at failure for everted limbs (46.8 ± 6.1°) was significantly greater than for neutral limbs (37.7 ± 5.4°). Everted limbs showed ATiFL injury only, while neutral limbs mostly demonstrated deltoid ligament failure. This is the first biomechanical study to produce isolated ATiFL injury under external foot rotation. Eversion of the axially loaded foot predisposes the ATiFL to injury, forming a basis for high ankle sprain. The study helps clarify a mechanism of high ankle sprain and may heighten clinical awareness of isolated ATiFL injury in cases of foot eversion prior to external rotation. It may also provide guidance to investigate the effect of prophylactic measures for this injury.
Collapse
Affiliation(s)
- Feng Wei
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wei F, Meyer EG, Braman JE, Powell JW, Haut RC. Rotational Stiffness of Football Shoes Influences Talus Motion during External Rotation of the Foot. J Biomech Eng 2012; 134:041002. [DOI: 10.1115/1.4005695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2 ± 9.3 Nm than the flexible shoe at 35.4 ± 5.7 Nm. While talus rotation was greater in the rigid shoe (15.9 ± 1.6 deg versus 12.1 ± 1.0 deg), the flexible shoe generated more talus eversion (5.6 ± 1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3 ± 0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot/shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe design and ankle ligament strain patterns. In future studies, these data may be useful in characterizing shoe design parameters and balancing potential ankle injury risks with player performance.
Collapse
Affiliation(s)
- Feng Wei
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, MI, 48824
| | - Eric G. Meyer
- Experimental Biomechanics Laboratory, Lawrence Technological University, Southfield, MI, 48076
| | - Jerrod E. Braman
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, MI, 48824
| | - John W. Powell
- Department of Kinesiology, Michigan State University, East Lansing, MI, 48824
| | - Roger C. Haut
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, M, 48824
| |
Collapse
|