1
|
Lavalle S, Caranti A, Iannella G, Pace A, Lentini M, Maniaci A, Campisi R, Via LL, Giannitto C, Masiello E, Vicini C, Messineo D. The Impact of Diagnostic Imaging on Obstructive Sleep Apnea: Feedback from a Narrative Review. Diagnostics (Basel) 2025; 15:238. [PMID: 39941168 PMCID: PMC11816599 DOI: 10.3390/diagnostics15030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Obstructive Sleep Apnea is a prevalent sleep disorder characterized by repeated episodes of partial or complete upper airway obstruction during sleep, leading to disrupted sleep and associated comorbidities. Effective, traditional diagnostic methods, such as polysomnography, have limitations in providing comprehensive anatomical detail. Recent advancements in imaging technology have the potential to revolutionize the diagnosis and management of OSA, offering detailed insights into airway anatomy, function, and dynamics. This paper explores the latest innovations in imaging modalities, including high-resolution magnetic resonance imaging, functional MRI, three-dimensional airway reconstructions, and the integration of artificial intelligence algorithms for enhanced image analysis. We discuss the potential of these technologies to improve the precision of OSA diagnosis, tailor treatment strategies, and predict treatment outcomes. Moreover, we examine the challenges of implementing these advanced imaging techniques in clinical practice, such as cost, accessibility, and the need for validation in diverse patient populations. We also consider the ethical implications of widespread imaging, particularly regarding data security and patient privacy. The future of OSA management is poised for transformation as these imaging technologies promise to provide a more nuanced understanding of the disorder and facilitate personalized treatment approaches. This paper calls for continued research and collaboration across disciplines to ensure these innovations lead to improved patient care and outcomes in the field of sleep medicine.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
| | - Alberto Caranti
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Giannicola Iannella
- Otorhinolaryngology Department, Sapienza University of Rome, 00042 Rome, Italy; (G.I.); (A.P.)
| | - Annalisa Pace
- Otorhinolaryngology Department, Sapienza University of Rome, 00042 Rome, Italy; (G.I.); (A.P.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
- Surgical Department, Maggiore Hospital, ASP 7, 97100 Ragusa, Italy
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
- Surgical Department, Maggiore Hospital, ASP 7, 97100 Ragusa, Italy
| | - Ruggero Campisi
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Luigi La Via
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, 95123 Catania, Italy;
| | - Caterina Giannitto
- Department of Diagnostic Radiology, IRCCS Humanitas Research Hospital, 20019 Milan, Italy;
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, 20019 Milan, Italy;
| | - Claudio Vicini
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Daniela Messineo
- Department of Radiological Sciences, Oncology and Anatomo-Pathological Science, “Sapienza” University of Rome, 00184 Rome, Italy;
| |
Collapse
|
2
|
Tucker ML, Wilson DG, Bergstrom DJ, Carmalt JL. Comparison of treatments for equine laryngeal hemiplegia using computational fluid dynamic analysis in an equine head model. Front Vet Sci 2024; 11:1478511. [PMID: 39776599 PMCID: PMC11703841 DOI: 10.3389/fvets.2024.1478511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Computational fluid dynamics (CFD) is gaining momentum as a useful mechanism for analyzing obstructive disorders and surgeries in humans and warrants further development for application in equine surgery. While advancements in procedures continue, much remains unknown about the specific impact that different surgeries have on obstructive airway disorders. The objective of this study was to apply CFD analysis to an equine head inhalation model replicating recurrent laryngeal neuropathy (RLN) and four surgical procedures. CFD was hypothesized to corroborate the order of the different trials based on impedance and to provide an impedance value numerically similar to the experimental results. In addition, it was hypothesized that CFD would offer insights into the changes in airflow associated with each procedure on a finite scale. Methods An equine cadaver head underwent airflow testing and computed tomographic (CT) scans to replicate the disease state (RLN) and four surgical procedures: laryngoplasty, combined laryngoplasty and corniculectomy, corniculectomy, and partial arytenoidectomy. Pressure measurements at the pharynx and trachea were recorded, along with airflow data, for each trial. Results and discussion The CFD and experimental models showed that partial arytenoidectomy had the lowest impedance in this case. While this procedure did have the largest rima glottidis area, the remaining procedural order was not dictated by the rima glottidis area. Recurrent laryngeal neuropathy and combined laryngoplasty with corniculectomy models showed negative pressure concentration on the luminal surface of the left arytenoid cartilage, which indicated a greater collapsing force on the tissue in this region. Narrowing within the caudal larynx at the level of the saccule showed increased negative pressure and higher velocity in the procedures with greater impedance, while partial arytenoidectomy exhibited more uniform pressure and velocity. Although this specific experimental head model contradicted previous flow studies, the CFD model reflected the experimental findings for the procedure with the least impedance and provided some insights into why these discrepancies occurred in this particular case.
Collapse
Affiliation(s)
- Michelle L. Tucker
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David G. Wilson
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Donald J. Bergstrom
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L. Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Kreft L, Mohr N, Seele S, Grünberg D, Hagen C, Ibbeken AJ, Zell F, Steffen A, Papenfuß GS, Frydrychowicz A, Kirstein U, Hakim SG, Buzug TM. Pilot analysis of magnetic resonance imaging-based contributors to patient-centred optimization of mandibular advancement devices in obstructive sleep apnea. J Sleep Res 2024:e14382. [PMID: 39558822 DOI: 10.1111/jsr.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Mandibular advancement devices are an effective treatment option for obstructive sleep apnea. While their efficacy depends on the degree of mandibular protrusion, other contributing factors influencing the optimal outcome are not fully understood. This magnetic resonance imaging-based pilot study aimed at investigating whether there are promising planimetric parameters that may be related to the optimal therapeutic position. A second aim was to assess possible sex-specific differences. Planimetric data from magnetic resonance imaging taken in the habitual position and four protrusion grades were collected from 11 female and 14 male patients with obstructive sleep apnea (age 45 ± 13.3 years; body mass index 27.6 ± 4.5 kg m-2). Data were correlated with outcome as substantiated by polygraphic data obtained at the habitual position and at each of two protrusion positions considered to reveal the highest treatment effect. Protrusion degree and lateral widening of the retropalatal region correlated most strongly (R = 0.56, p < 0.001). Relationships between planimetric data and treatment success were most pronounced at the level of the smallest cross-section, expressed, for example, by a correlation between oxygen desaturation index and lateral diameter (R = -0.4, p = 0.012). Female participants appeared to show improved polygraphic values at a lower protrusion degree than males. Data from magnetic resonance imaging allow for a comprehensive analysis combining insights from planimetric velopharyngeal measurements at different individual protrusion grades and correlation with outcome. The results of this pilot work encourage further evaluation in large-scale studies. These should focus on the velopharyngeal region and investigate the influence of sex more closely.
Collapse
Affiliation(s)
| | | | | | | | - Christina Hagen
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
| | | | - Fenja Zell
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| | - Armin Steffen
- Department of Otolaryngology, Universität zu Lübeck, Lübeck, Germany
| | | | - Alex Frydrychowicz
- Institute of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | - Ulrike Kirstein
- Institute of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany
| | - Samer George Hakim
- Department of Oral and Maxillofacial Surgery, Helios Medical Centre, Schwerin, Germany
| | - Thorsten M Buzug
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Laudato M, Zea E, Sundström E, Boij S, Mihaescu M. Sound generation mechanisms in a collapsible tube. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3345-3356. [PMID: 38758053 DOI: 10.1121/10.0026093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Collapsible tubes can be employed to study the sound generation mechanism in the human respiratory system. The goals of this work are (a) to determine the airflow characteristics connected to three different collapse states of a physiological tube and (b) to find a relation between the sound power radiated by the tube and its collapse state. The methodology is based on the implementation of computational fluid dynamics simulation on experimentally validated geometries. The flow is characterized by a radical change of behavior before and after the contact of the lumen. The maximum of the sound power radiated corresponds to the post-buckling configuration. The idea of an acoustic tube law is proposed. The presented results are relevant to the study of self-excited oscillations and wheezing sounds in the lungs.
Collapse
Affiliation(s)
- Marco Laudato
- FLOW Research Center, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
- The Marcus Wallenberg Laboratory for Sound and Vibration Research, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Elias Zea
- The Marcus Wallenberg Laboratory for Sound and Vibration Research, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Elias Sundström
- FLOW Research Center, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Susann Boij
- The Marcus Wallenberg Laboratory for Sound and Vibration Research, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Mihai Mihaescu
- FLOW Research Center, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| |
Collapse
|
5
|
Johnsen SG. Computational Rhinology: Unraveling Discrepancies between In Silico and In Vivo Nasal Airflow Assessments for Enhanced Clinical Decision Support. Bioengineering (Basel) 2024; 11:239. [PMID: 38534513 PMCID: PMC10967811 DOI: 10.3390/bioengineering11030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Computational rhinology is a specialized branch of biomechanics leveraging engineering techniques for mathematical modelling and simulation to complement the medical field of rhinology. Computational rhinology has already contributed significantly to advancing our understanding of the nasal function, including airflow patterns, mucosal cooling, particle deposition, and drug delivery, and is foreseen as a crucial element in, e.g., the development of virtual surgery as a clinical, patient-specific decision support tool. The current paper delves into the field of computational rhinology from a nasal airflow perspective, highlighting the use of computational fluid dynamics to enhance diagnostics and treatment of breathing disorders. This paper consists of three distinct parts-an introduction to and review of the field of computational rhinology, a review of the published literature on in vitro and in silico studies of nasal airflow, and the presentation and analysis of previously unpublished high-fidelity CFD simulation data of in silico rhinomanometry. While the two first parts of this paper summarize the current status and challenges in the application of computational tools in rhinology, the last part addresses the gross disagreement commonly observed when comparing in silico and in vivo rhinomanometry results. It is concluded that this discrepancy cannot readily be explained by CFD model deficiencies caused by poor choice of turbulence model, insufficient spatial or temporal resolution, or neglecting transient effects. Hence, alternative explanations such as nasal cavity compliance or drag effects due to nasal hair should be investigated.
Collapse
|
6
|
Michaud-Dorko J, Sundström E, de Luzan CF, Gutmark E, Oren L. The Effect of an Increasing Subglottal Stenosis Constriction That Extends From the Vocal Folds to the Inferior Border of the Cricoid Cartilage. J Biomech Eng 2024; 146:021002. [PMID: 37943109 PMCID: PMC11003117 DOI: 10.1115/1.4064029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Acquired subglottal stenosis is an unpredicted complication that can occur in some patients who have undergone prolonged endotracheal intubation. It is a narrowing of the airway at the level of the cricoid cartilage that can restrict airflow and cause breathing difficulty. Stenosis is typically treated with endoscopic airway dilation, with some patients experiencing multiple recurrences. The study highlights the potential of computational fluid dynamics as a noninvasive method for monitoring subglottic stenosis, which can aid in early diagnosis and surgical planning. An anatomically accurate human laryngeal airway model was constructed from computerized tomography (CT) scans. The subglottis cross-sectional area was narrowed systematically using ≈10% decrements. A quadratic profile was used to interpolate the transformation of the airway geometry from its modified shape to the baseline geometry. The numerical results were validated by static pressure measurements conducted in a physical model. The results show that airway resistance follows a squared ratio that is inversely proportional to the size of the subglottal opening (R∝A-2). The study found that critical constriction occurs in the subglottal region at 70% stenosis (upper end of grade 2). Moreover, removing airway tissue below 40% stenosis during surgical intervention does not significantly decrease airway resistance.
Collapse
Affiliation(s)
- Jacob Michaud-Dorko
- Department of Biomedical Engineering, University of Cincinnati, 665 Baldwin Hall, Cincinnati, OH 45221-0070
| | - Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| | - Charles Farbos de Luzan
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| | - Ephraim Gutmark
- Department of Aerospace Engineering, University of Cincinnati, 799 Rhodes Hall, Cincinnati, OH 45221-0070
| | - Liran Oren
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| |
Collapse
|
7
|
Ding M, Ning J, Liu X, Mi R, Cai Y. Stenotic geometry effects on airflow dynamics and respiration for central airway obstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107760. [PMID: 37573642 DOI: 10.1016/j.cmpb.2023.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The quantitative relationship between tracheal anatomy and ventilation function can be analyzed by using engineering-derived methods, including mathematical modeling and numerical simulations. In order to provide quantitative functional evaluation for patients with tracheobronchial stenosis, we here propose an aerodynamics-based assessment method by applying computational fluid dynamics analysis on synthetic and patient-specific airway models. METHODS By using 3D reconstruction of tracheobronchial tree and computational fluid dynamics simulations, the aerodynamic environment from the stenotic central airway down to the 4th-6th bifurcation of the tracheobronchial tree is examined in both synthetic and patient-derived models. The effects of stenotic anatomy (the degree of stenosis, stenotic length and location) on the aerodynamic parameters, including pressure drop, area-average velocity, volume flow rate, wall shear stress and airflow resistance, are investigated on three-dimensional models of tracheobronchial tree. RESULTS The results from 36 synthetic models demonstrate that 70% constriction marks the onset of a precipitous decrease in airflow relative to a normal airway. The analyses of simulation results of 8 patient-specific models indicate that the Myer-Cotton stenosis grading system can be interpreted in terms of aerodynamics-derived description, such as flow resistance. The tracheal stenosis significantly influences the resistance of peripheral bronchi, especially for patients with severe stenosis. CONCLUSIONS The present study forms a systematic framework for future development of more robust, bioengineering-informed evaluation methods for quantitative assessment of respiratory function of patients with central airway obstruction.
Collapse
Affiliation(s)
- Ming Ding
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Jing Ning
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Xiuyan Liu
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Runze Mi
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Döllinger M, Jakubaß B, Cheng H, Carter SJ, Kniesburges S, Aidoo B, Lee CH, Milstein C, Patel RR. Computational fluid dynamics of upper airway aerodynamics for exercise-induced laryngeal obstruction: A feasibility study. Laryngoscope Investig Otolaryngol 2023; 8:1294-1303. [PMID: 37899858 PMCID: PMC10601582 DOI: 10.1002/lio2.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Use of computational fluid dynamic (CFD) simulations to measure the changes in upper airway geometry and aerodynamics during (a) an episode of Exercise-Induced Laryngeal Obstruction (EILO) and (b) speech therapy exercises commonly employed for patients with EILO. Methods Magnetic resonance imaging stills of the upper airway including the nasal and oral cavities from an adult female were used to re-construct three-dimensional geometries of the upper airway. The CFD simulations were used to compute the maximum volume flow rate (l/s), pressure (Pa), airflow velocity (m/s) and area of cross-section opening in eight planes along the vocal tract, separately for inhalation and exhalation. Results Numerical predictions from three-dimensional geometrical modeling of the upper airway suggest that the technique of nose breathing for inhalation and pursed lip breathing for exhalation show most promising pressure conditions and cross-sectional diameters for rescue breathing exercises. Also, if EILO is due to the constriction at the vocal fold level, then a quick sniff may also be a proper rescue inhalation exercise. EILO affects both the inspiratory and the expiratory phases of breathing. Conclusions A prior knowledge of the supraglottal aerodynamics and the corresponding upper airway geometry from CFD analysis has the potential to assist the clinician in choosing the most effective rescue breathing technique for optimal functional outcome of speech therapy intervention in patients with EILO and in understanding the pathophysiology of EILO on a case-by-case basis with future studies. Level of Evidence 4.
Collapse
Affiliation(s)
- Michael Döllinger
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Bernhard Jakubaß
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Program of NeuroscienceIndiana UniversityBloomingtonIndianaUSA
| | - Stephen J. Carter
- Department of KinesiologySchool of Public Health, Indiana UniversityBloomingtonIndianaUSA
| | - Stefan Kniesburges
- Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology Head & Neck SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Bea Aidoo
- Department of MedicineIndiana University School of MedicineBloomingtonIndianaUSA
| | - Chi Hwan Lee
- Department of Biomedical Engineering & Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Claudio Milstein
- Department of Otolaryngology‐Head & Neck Surgery, Cleveland Clinic Lerner and Case Western Reserve University Schools of MedicineHead and Neck Institute, Cleveland ClinicClevelandOhioUSA
| | - Rita R. Patel
- Department of Speech, Language, and Hearing Sciences and Department of Otolaryngology Head and Neck SurgeryIndiana UniversityBloomington/IndianapolisIndianaUSA
| |
Collapse
|
9
|
Hudson TJ, Oubahou RA, Mongeau L, Kost K. Airway Resistance and Respiratory Distress in Laryngeal Cancer: A Computational Fluid Dynamics Study. Laryngoscope 2023; 133:2734-2741. [PMID: 36951521 PMCID: PMC10517074 DOI: 10.1002/lary.30649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Obstructive upper airway pathologies are a great clinical challenge for the airway surgeon. Protection against acute obstruction is critical, but avoidance of unnecessary tracheostomy must also be considered. Decision-making regarding airway, although supported by some objective findings, is largely guided by subjective experience and training. This investigation aims to study the relationship between clinical respiratory distress and objective measures of airway resistance in laryngeal cancer as determined by computational fluid dynamic (CFD) and morphometric analysis. METHODS Retrospective CT and clinical data were obtained for series of 20 cases, defined as newly diagnosed laryngeal cancer patients who required admission or urgent airway surgery, and 20 controls. Cases and controls were matched based on T-staging. Image segmentation and morphometric analysis were first performed. Computational models based on the lattice Boltzmann method were then created and used to quantify the continuous mass flow, rigid wall, and constant static pressure inlet boundary conditions. RESULTS The analysis demonstrated a significant relationship between airway resistance and acute obstruction (OR 1.018, 95% CI 1.001-1.045). Morphometric analysis similarly demonstrated a significant relationship when relating measurements based on the minimum cross-section, but not on length of stenosis. Morphometric measurements also showed significance in predicting CFD results, and their relationship demonstrated that airway pressures increase exponentially below 2.5 mm. Tumor subsite did not show a significant difference, although the glottic subgroup tended to have higher resistances. CONCLUSION Airway resistance analysis from CFD computation correlated with presence of acute distress requiring emergent management. Morphometric analysis showed a similar correlation, demonstrating a radiologic airway assessment technique on which future risk estimation could be performed. LEVEL OF EVIDENCE 4 (case-control study) Laryngoscope, 133:2734-2741, 2023.
Collapse
Affiliation(s)
- Thomas J. Hudson
- Department of Otolaryngology – Head and Neck Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Rayane Ait Oubahou
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Karen Kost
- Department of Otolaryngology – Head and Neck Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
10
|
Liu J, Shao Y, Li J, Zhu L, Gong X, Xue L, Shen J, Li Y. New approach to establish a surgical planning in infantile vallecular cyst synchronous with laryngomalacia based on aerodynamic analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107335. [PMID: 36638553 DOI: 10.1016/j.cmpb.2023.107335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVES A large proportion of infants with vallecular cyst (VC) have coexisting laryngomalacia (LM). Feeding difficulties, regurgitation, occasional cough, and sleep-disordered breathing are the common symptoms in moderate to severe cases. The surgical management of these cases is more challenging and remains controversial. The purpose of this study is to help surgeons select the effective surgical strategies by computer-aided design (CAD) and computational fluid dynamics (CFD) simulations of the upper airway flow characteristics. METHODS The three dimensional (3D) geometric model of the upper airway was reconstructed based on two dimensional (2D) medical images of the patient with VC accompanied with LM. Virtual surgeries were carried out preoperatively to simulate three possible post-operative states in silico. The different outcomes of virtual surgical strategies were predicted based on computational evaluations of airway fluid dynamics including pressure, resistance, velocity, and wall shear stress (WSS). RESULTS The CFD results of this study suggested the importance of the angle between the rim of epiglottis and arytenoid epiglottic (AE) fold. There was a small impact on the upper airway flow field while the VC was removed and the angle of epiglottis was unchanged. The partial lifting of epiglottis can further improve the flow field. With performing supraglottoplasty (SGP) and the marsupialization of VC, epiglottis was completely recovered, and the flow field was significantly improved. The clinical symptoms of this patient improved greatly after surgeries and no recurrence or growth retardation were noted during 1-year follow-up. The clinical prognosis was consistent with the prediction of the CFD results. CONCLUSIONS The state of epiglottis needs to be carefully checked to evaluate the necessity of performing further SGP in the patients with VC accompanied with LM. CFD and CAD could be developed as a new approach to help surgeons predict the post-operative outcomes through quantification of the airflow dynamics, and make the optimal and individualized surgical approaches for patients with airway obstruction.
Collapse
Affiliation(s)
- Jinlong Liu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuancheng Shao
- Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Junyang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Limin Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Gong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lianyan Xue
- Diagnostic Imaging Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanya Shen
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory for Power Machinery and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Youjin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Analysis of Upper Airway Flow Dynamics in Robin Sequence Infants Using 4-D Computed Tomography and Computational Fluid Dynamics. Ann Biomed Eng 2023; 51:363-376. [PMID: 35951208 DOI: 10.1007/s10439-022-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023]
Abstract
Robin Sequence (RS) is a potentially fatal craniofacial condition characterized by undersized jaw, posteriorly displaced tongue, and resultant upper airway obstruction (UAO). Accurate assessment of UAO severity is crucial for management and diagnosis of RS, yet current evaluation modalities have significant limitations and no quantitative measures of airway resistance exist. In this study, we combine 4-dimensional computed tomography and computational fluid dynamics (CFD) to assess, for the first time, UAO severity using fluid dynamic metrics in RS patients. Dramatic intrapopulation differences are found, with the ratio between most and least severe patients in breathing resistance, energy loss, and peak velocity equal to 40:1, 20:1, and 6:1, respectively. Analysis of local airflow dynamics characterized patients as presenting with primary obstructions either at the location of the tongue base, or at the larynx, with tongue base obstructions resulting in a more energetic stenotic jet and greater breathing resistance. Finally, CFD-derived flow metrics are found to correlate with the level of clinical respiratory support. Our results highlight the large intrapopulation variability, both in quantitative metrics of UAO severity (resistance, energy loss, velocity) and in the location and intensity of stenotic jets for RS patients. These results suggest that computed airflow metrics may significantly improve our understanding of UAO and its management in RS.
Collapse
|
12
|
Hu B, Yin G, Fu S, Zhang B, Shang Y, Zhang Y, Ye J. The influence of mouth opening on pharyngeal pressure loss and its underlying mechanism: A computational fluid dynamic analysis. Front Bioeng Biotechnol 2023; 10:1081465. [PMID: 36698641 PMCID: PMC9868155 DOI: 10.3389/fbioe.2022.1081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Objective: During inspiration, mechanical energy generated from respiratory muscle produces a negative pressure gradient to fulfill enough pulmonary ventilation. The pressure loss, a surrogate for energy loss, is considered as the portion of negative pressure without converting into the kinetic energy of airflow. Mouth opening (MO) during sleep is a common symptom in patients with obstructive sleep apnoea-hypopnea syndrome (OSAHS). This study aimed to evaluate the effects of mouth opening on pharyngeal pressure loss using computational fluid dynamics (CFD) simulation. Methods: A total of four subjects who were morphologically distinct in the pharyngeal characteristics based on Friedman tongue position (FTP) grades were selected. Upper airway computed tomography (CT) scan was performed under two conditions: Mouth closing (MC) and mouth opening, in order to reconstruct the upper airway models. computational fluid dynamics was used to simulate the flow on the two different occasions: Mouth closing and mouth opening. Results: The pharyngeal jet was the typical aerodynamic feature and its formation and development were different from mouth closing to mouth opening in subjects with different Friedman tongue position grades. For FTP I with mouth closing, a pharyngeal jet gradually formed with proximity to the velopharyngeal minimum area plane (planeAmin). Downstream the planeAmin, the jet impingement on the pharyngeal wall resulted in the frictional loss associated with wall shear stress (WSS). A rapid luminal expansion led to flow separation and large recirculation region, corresponding to the interior flow loss. They all contributed to the pharyngeal total pressure loss. While for FTP I with mouth opening, the improved velopharyngeal constriction led to smoother flow and a lower total pressure loss. For FTP IV, the narrower the planeAmin after mouth opening, the stronger the jet formation and its impingement on the pharyngeal wall, predicting a higher frictional loss resulted from higher WSS. Besides, a longer length of the mouth opening-associated constant constrictive segment was another important morphological factor promoting frictional loss. Conclusion: For certain OSAHS patients with higher Friedman tongue position grade, mouth opening-related stronger jet formation, more jet breakdown and stronger jet flow separation might contribute to the increased pharyngeal pressure loss. It might require compensation from more inspiratory negative static pressure that would potentially increase the severity of OSAHS.
Collapse
Affiliation(s)
- Bin Hu
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoping Yin
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Song Fu
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Baoshou Zhang
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Yan Shang
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Yuhuan Zhang
- Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingying Ye
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,*Correspondence: Jingying Ye,
| |
Collapse
|
13
|
Chen Y, Feng X, Shi X, Cai W, Li B, Zhao Y. Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics. Med Biol Eng Comput 2023; 61:259-270. [PMID: 36369608 DOI: 10.1007/s11517-022-02715-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Computational fluid dynamics (CFD) has the potential for use as a clinical tool to predict the aerodynamics and respiratory function in the upper airway (UA) of children; however, careful selection of validated computational models is necessary. This study constructed a 3D model of the pediatric UA based on cone beam computed tomography (CBCT) imaging. The pediatric UA was 3D printed for pressure and velocity experiments, which were used as reference standards to validate the CFD simulation models. Static wall pressure and velocity distribution inside of the UA under inhale airflow rates from 0 to 266.67 mL/s were studied by CFD simulations based on the large eddy simulation (LES) model and four Reynolds-averaged Navier-Stokes (RANS) models. Our results showed that the LES performed best for pressure prediction; however, it was much more time-consuming than the four RANS models. Among the RANS models, the Low Reynolds number (LRN) SST k-ω model had the best overall performance at a series of airflow rates. Central flow velocity determined by particle image velocimetry was 3.617 m/s, while velocities predicted by the LES, LRN SST k-ω, and k-ω models were 3.681, 3.532, and 3.439 m/s, respectively. All models predicted jet flow in the oropharynx. These results suggest that the above CFD models have acceptable accuracy for predicting pediatric UA aerodynamics and that the LRN SST k-ω model has the most potential for clinical application in pediatric respiratory studies.
Collapse
Affiliation(s)
- Yicheng Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xin Feng
- Department of Clinical Dentistry, Section for Oral and Maxillofacial Radiology, University of Bergen, Bergen, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xieqi Shi
- Department of Clinical Dentistry, Section for Oral and Maxillofacial Radiology, University of Bergen, Bergen, Norway.,Department of Oral Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Weihua Cai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China. .,School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, China.
| | - Biao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yijun Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
14
|
Miar S, Walters B, Gonzales G, Malka R, Baker A, Guda T, Dion GR. Augmentation and vocal fold biomechanics in a recurrent laryngeal nerve injury model. Laryngoscope Investig Otolaryngol 2022; 7:1057-1064. [PMID: 36000036 PMCID: PMC9392410 DOI: 10.1002/lio2.853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives/hypothesis Composite vocal fold (VF) biomechanical data are lacking for augmentation after recurrent laryngeal nerve (RLN) injury. We hypothesize resulting atrophy decreases VF stiffness and augmentation restores native VF biomechanics. Methods Sixteen Yorkshire Crossbreed swine underwent left RLN transection and were observed or underwent carboxymethylcellulose (CMC) or calcium hydroxyapatite (CaHa) augmentation at 2 weeks. Biomechanical measurements (structural stiffness, displacement, and maximum load) were measured at 4 or 12 weeks. Thyroarytenoid (TA) muscle cross-sectional area was quantified and compared with two-way ANOVA with Tukey's post hoc test. Results After 4 weeks, right greater than left structural stiffness (mean ± SE) was observed (49.6 ± 0.003 vs. 28.4 ± 0.002 mN/mm), left greater than right displacement at 6.3 mN (0.54 ± 0.01 vs. 0.46 ± 0.01 mm, p < .01) was identified, and right greater than left maximum load (72.3 ± 0.005 vs. 40.8 ± 0.003 mN) was recorded. TA muscle atrophy in the injured group without augmentations was significant compared to the noninjured side, and muscle atrophy was seen at overall muscle area and individual muscle bundles. CMC augmentation appears to maintain TA muscle structure in the first 4 weeks with atrophy present at 12 weeks. Conclusions VF biomechanical properties match TA muscle atrophy in this model, and both CMC and CaHa injection demonstrated improved biomechanical properties and slower TA atrophy compared to the uninjured side. Taken together, these data provide a quantifiable biomechanical basis for early injection laryngoplasty to improve dysphonia and potentially improve healing in reversible unilateral vocal fold atrophy. Level of evidence N/A.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical EngineeringThe University of TexasSan AntonioTexasUSA
- USAF 59MDW/STOak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Benjamin Walters
- Department of Otolaryngology‐Head and Neck SurgeryBrooke Army Medical CenterJBSA Fort Sam HoustonTexasUSA
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical EngineeringThe University of TexasSan AntonioTexasUSA
- USAF 59MDW/STOak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Ronit Malka
- Department of Otolaryngology‐Head and Neck SurgeryBrooke Army Medical CenterJBSA Fort Sam HoustonTexasUSA
| | - Amelia Baker
- Department of AnesthesiologyBrooke Army Medical CenterJBSA Fort Sam HoustonTexasUSA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical EngineeringThe University of TexasSan AntonioTexasUSA
| | - Gregory R. Dion
- Department of Biomedical Engineering and Chemical EngineeringThe University of TexasSan AntonioTexasUSA
- Department of Otolaryngology‐Head and Neck SurgeryBrooke Army Medical CenterJBSA Fort Sam HoustonTexasUSA
- Dental and Craniofacial Trauma Research DepartmentU.S. Army Institute of Surgical ResearchHoustonTexasUSA
| |
Collapse
|
15
|
Wang L, Ge H, Chen L, Hajipour A, Feng Y, Cui X. LES study on the impact of airway deformation on the airflow structures in the idealized mouth–throat model. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2022; 44:23. [PMCID: PMC8696248 DOI: 10.1007/s40430-021-03324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To investigate the impacts of upper airway deformation on the airflow structures, the airflow fields in the trachea are simulated using three geometrical models considering three different levels of airway deformations. Structured grids are used to create the high-quality grids. Large eddy simulation with the Smagorinsky sub-grid model is adopted to solve the three-dimensional in-compressible Navier–Stokes equations using the solver pisoFoam in the open-source CFD software OpenFOAM. The numerical results demonstrate that the airway deformation influences the main airflow structures depending on the deformation level. Particularly, it slightly impacts on the laryngeal jet such as the profile and the strength of laryngeal jet. The strength of the laryngeal jet increases slightly for the heavy deformation. In contrast, it impacts on the recirculation zone, secondary vortices, and turbulent kinetic energy more obviously. The increasing airway deformation will produce stronger secondary flow, smaller recirculation zone, and weaker turbulent kinetic energy. The turbulence intensity distribution varies as well. The obviously impacted flow region is mainly within the region of one to six tracheal diameters downstream the glottis.
Collapse
Affiliation(s)
- Li Wang
- HangZhou Long Beach Technology Ltd. Co, Hangzhou, China
| | - Haiwen Ge
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX USA
| | - Liang Chen
- First Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Alireza Hajipour
- Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yaning Feng
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Mylavarapu G, Gutmark E, Shott S, Fleck R, Mahmoud M, McConnell K, Szczesniak R, Hossain MM, Huang G, Tadesse DG, Schuler CL, Khosla S, Amin R. Predicting critical closing pressure in children with obstructive sleep apnea using fluid-structure interaction. J Appl Physiol (1985) 2021; 131:1629-1639. [PMID: 34528458 PMCID: PMC8616603 DOI: 10.1152/japplphysiol.00694.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Surgical treatment of obstructive sleep apnea (OSA) in children requires knowledge of upper airway dynamics, including the closing pressure (Pcrit), a measure of airway collapsibility. We applied a flow-structure interaction (FSI) computational model to estimate Pcrit in patient-specific upper airway models obtained from magnetic resonance imaging (MRI) scans. We sought to examine the agreement between measured and estimated Pcrit from FSI models in children with Down syndrome. We hypothesized that the estimated Pcrit would accurately reflect measured Pcrit during sleep and therefore reflect the severity of OSA as measured by the obstructive apnea-hypopnea index (AHI). All participants (n = 41) underwent polysomnography and sedated sleep MRI scans. We used Bland-Altman plots to examine the agreement between measured and estimated Pcrit. We determined associations between estimated Pcrit and OSA severity, as measured by AHI, using regression models. The agreement between passive and estimated Pcrit showed a fixed bias of -1.31 [confidence interval (CI) = -2.78, 0.15] and a nonsignificant proportional bias. A weaker agreement with active Pcrit was observed. A model including AHI, gender, an interaction term for AHI, and gender and neck circumference explained the largest variation (R2 = 0.61) in the relationship between AHI and estimated Pcrit (P < 0.0001). Overlap between the areas of the airway with the lowest stiffness, and areas of collapse on dynamic MRI, was 77.4 ± 30% for the nasopharyngeal region and 78.6 ± 33% for the retroglossal region. The agreement between measured and estimated Pcrit and the significant association with AHI supports the validity of Pcrit estimates from the FSI model.NEW & NOTEWORTHY We present a noninvasive method for estimating critical closing pressure (Pcrit) using fluid-structure interaction (FSI) simulations and magnetic resonance imaging (MRI) scans in patients with obstructive sleep apnea (OSA). We used patient-specific stiffness measures in our FSI model to account for any individual variability in the elasticity of soft tissues surrounding the upper airway. We validated this model by measuring the degree of agreement between measured and estimated Pcrit.
Collapse
Affiliation(s)
- Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio
- Department of Otolaryngology, University of Cincinnati, Cincinnati, Ohio
| | - Sally Shott
- Division of Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mohamed Mahmoud
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Keith McConnell
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rhonda Szczesniak
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Md Monir Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Guixia Huang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dawit G Tadesse
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christine L Schuler
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sid Khosla
- Department of Otolaryngology, University of Cincinnati, Cincinnati, Ohio
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
17
|
Chen W, Wang L, Chen L, Ge H, Cui X. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES. Respir Physiol Neurobiol 2021; 295:103784. [PMID: 34517114 DOI: 10.1016/j.resp.2021.103784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023]
Abstract
The influences of the profiles and cross-sectional areas of glottal aperture on the upper respiratory airway are investigated using an idealized cast-based mouth-throat model and three dimensional computational fluid dynamics (CFD). The open source CFD code OpenFOAM is employed. The transient flows are modeled using the very-large eddy simulation with the Smagorinsky sub-grid scale (SGS) model. Five different shapes of glottis are considered, including circular glottis with 100 %, 75 % and 50 % cross-sectional area and elliptic glottis with 75 % and 50 % cross-sectional area. Both instantaneous and averaged flow fields are analyzed. It is found that the variations of glottis have great impacts on the properties of downstream flow fields such as the secondary flow, laryngeal jet, recirculation zone, turbulent kinetic energy, and vortex. Evident impacts are observed in the region within 6 tracheal diameters downstream of the glottis. The profile of the glottis has more impacts on the laryngeal shape, while the cross-sectional area has more impacts on velocity of the laryngeal jet and turbulent intensity. It is concluded that both the glottal areas and profiles are critical for an idealized geometrical mouth-throat model.
Collapse
Affiliation(s)
- Wenjuan Chen
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- First Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Haiwen Ge
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Arnold M, Burgmann S, Bonitz L, Pugachev A, Janoske U. Experimental study on the influence of model variations on the airway occlusion of an obstructive sleep apnea patient. J Biomech 2021; 123:110529. [PMID: 34062349 DOI: 10.1016/j.jbiomech.2021.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
This study deals with the analysis of model parameters to mimic the airway collapse of an obstructive sleep apnea patient during nasal breathing. Different material properties and geometry variations of a patient-specific airway model are analyzed in detail. The patient-specific airway geometry is obtained from MRI data. A completely rigid model is compared to two partly elastic variations with different elasticities. Furthermore, the influence of the nasal cavities and the treatment effect of a mandibular protrusion are studied. Rigid model parts are 3D-printed and elastic parts cast from silicone. The models are analyzed under the impact of a transient airflow which is realized through a computer controlled piston pump. The results suggest, that, for moderate deformations, the elasticity of the soft tissue replicate influences rather the level of the pressure drop inside the airway than the shape of the pressure curve. The same suggestion can be made for the influence of the nasal cavities. Often, the spatial location of the minimum pressure is taken as the collapse site of the airway geometry. This study demonstrates, that the spatial locations of the minimum pressure and the maximum deformation do not match. This reveals the importance of a coupled approach of soft tissue and airflow analysis in the search of the collapse site and therefore the best treatment option. A treatment effect of the mandibular protrusion can be anticipated with an accurate patient-specific airway model.
Collapse
Affiliation(s)
- M Arnold
- University of Wuppertal, School of Mechanical Engineering and Safety Engineering, Germany.
| | - S Burgmann
- University of Wuppertal, School of Mechanical Engineering and Safety Engineering, Germany
| | - L Bonitz
- Dortmund General Hospital, Germany
| | | | - U Janoske
- University of Wuppertal, School of Mechanical Engineering and Safety Engineering, Germany
| |
Collapse
|
19
|
Liu ZJ, Do T, Fong H. Airflow dynamics in obese minipigs with obstructive sleep apnea. Heliyon 2021; 7:e05700. [PMID: 33521340 PMCID: PMC7820480 DOI: 10.1016/j.heliyon.2020.e05700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 10/29/2022] Open
Abstract
Objectives Obstructive sleep apnea (OSA) is associated with anatomical restrictions of pharyngeal airway, but the mechanism of airflow dynamics in OSA is largely unknown. This study utilized computational flow dynamics (CFD) to build a 3D model of the pharynx and to test the hypothesis that an increased restriction in the pharynx in OSA/obese minipigs leads to higher resistance, which in turn creates turbulence to induce temporary blockage of pharyngeal airway patency. Design Of five 9-11-months-old Yucatan minipigs, 3 were non-obese (BMI<35) and two obese (BMI>51). After natural sleep monitoring using BioRadio system, pigs were sedated to collect MRI images and airflow parameters. The MRI images were processed to create 3D configurations of pharynx. These 3D configurations were meshed to create finite element models (FEM) of CFD. The obtained airflow parameters were input into the configurations to identify turbulent airflow and its location. Results Heavy snoring and multiple >5s hypopnea/apnea episodes (AHI = 32-35) were identified in both obese minipigs during sleep. Compared to the non-obese/non-OSA controls, obese/OSA minipigs showed much lower respiratory tidal volumes and inspiratory airflow speed. FEM simulation found that turbulence was not present in the pharynx in either model. However, a 25% increase of airflow velocity was observed at the narrowest part of the nasal pharynx in the obese/OSA minipig model. Conclusions Despite the narrower pharyngeal airway and the higher velocity of airflow, FEM simulation indicated that turbulence was not produced in the obese/OSA minipigs.
Collapse
Affiliation(s)
- Zi-Jun Liu
- Depts. Orthodontics & Oral Health Sciences, School of Dentistry
| | - Tiffany Do
- Depts. Orthodontics & Oral Health Sciences, School of Dentistry
| | - Hanson Fong
- Dept. Material Sciences and Engineering, College of Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
20
|
Reid L. An Introduction to Biomedical Computational Fluid Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1334:205-222. [PMID: 34476751 DOI: 10.1007/978-3-030-76951-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Computational fluid dynamics (CFD) is a tool that has been used by engineers for over 50 years to analyse heat transfer and fluid flow phenomena. In recent years, there have been rapid developments in biomedical and health research applications of CFD. It has been used to evaluate drug delivery systems, analyse physiological flows (e.g. laryngeal jet flow), facilitate surgical planning (e.g. management of intracranial aneurysms), and develop medical devices (e.g. vascular stents and valve prostheses). Due to the complexity of these fluid flows, it demands an interdisciplinary approach consisting of engineers, computer scientists, and mathematicians to develop the computer programs and software used to solve the mathematical equations. Advances in technology and decreases in computational cost are allowing CFD to be more widely accessible and therefore used in more varied contexts. Cardiovascular medicine is the most common area of biomedical research in which CFD is currently being used, followed closely by upper and lower respiratory tract medicine. CFD is also being used in research investigating cerebrospinal fluid, synovial joints, and intracellular fluid. Although CFD can provide meaningful and aesthetically pleasing outputs, interpretation of the data can be challenging for those without a strong understanding of mathematical and engineering principles. Future development and evolution of computational medicine will therefore require close collaboration between experts in engineering, computer science, and biomedical research. This chapter aims to introduce computational fluid dynamics and present the reader with the basics of biological fluid properties, the CFD method, and its applications within biomedical research through published examples, in hope of bridging knowledge gaps in this rapidly emerging method of biomedical analysis.
Collapse
Affiliation(s)
- Luke Reid
- Centre for Anatomy and Human Identification, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
21
|
Faizal WM, Ghazali NNN, Khor CY, Badruddin IA, Zainon MZ, Yazid AA, Ibrahim NB, Razi RM. Computational fluid dynamics modelling of human upper airway: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105627. [PMID: 32629222 PMCID: PMC7318976 DOI: 10.1016/j.cmpb.2020.105627] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/21/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Human upper airway (HUA) has been widely investigated by many researchers covering various aspects, such as the effects of geometrical parameters on the pressure, velocity and airflow characteristics. Clinically significant obstruction can develop anywhere throughout the upper airway, leading to asphyxia and death; this is where recognition and treatment are essential and lifesaving. The availability of advanced computer, either hardware or software, and rapid development in numerical method have encouraged researchers to simulate the airflow characteristics and properties of HUA by using various patient conditions at different ranges of geometry and operating conditions. Computational fluid dynamics (CFD) has emerged as an efficient alternative tool to understand the airflow of HUA and in preparing patients to undergo surgery. The main objective of this article is to review the literature that deals with the CFD approach and modeling in analyzing HUA. METHODS This review article discusses the experimental and computational methods in the study of HUA. The discussion includes computational fluid dynamics approach and steps involved in the modeling used to investigate the flow characteristics of HUA. From inception to May 2020, databases of PubMed, Embase, Scopus, the Cochrane Library, BioMed Central, and Web of Science have been utilized to conduct a thorough investigation of the literature. There had been no language restrictions in publication and study design of the database searches. A total of 117 articles relevant to the topic under investigation were thoroughly and critically reviewed to give a clear information about the subject. The article summarizes the review in the form of method of studying the HUA, CFD approach in HUA, and the application of CFD for predicting HUA obstacle, including the type of CFD commercial software are used in this research area. RESULTS This review found that the human upper airway was well studied through the application of computational fluid dynamics, which had considerably enhanced the understanding of flow in HUA. In addition, it assisted in making strategic and reasonable decision regarding the adoption of treatment methods in clinical settings. The literature suggests that most studies were related to HUA simulation that considerably focused on the aspects of fluid dynamics. However, there is a literature gap in obtaining information on the effects of fluid-structure interaction (FSI). The application of FSI in HUA is still limited in the literature; as such, this could be a potential area for future researchers. Furthermore, majority of researchers present the findings of their work through the mechanism of airflow, such as that of velocity, pressure, and shear stress. This includes the use of Navier-Stokes equation via CFD to help visualize the actual mechanism of the airflow. The above-mentioned technique expresses the turbulent kinetic energy (TKE) in its result to demonstrate the real mechanism of the airflow. Apart from that, key result such as wall shear stress (WSS) can be revealed via turbulent kinetic energy (TKE) and turbulent energy dissipation (TED), where it can be suggestive of wall injury and collapsibility tissue to the HUA.
Collapse
Affiliation(s)
- W M Faizal
- Department of Mechanical Engineering Technology, Faculty of Engineering Technology, University Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N N N Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - C Y Khor
- Department of Mechanical Engineering Technology, Faculty of Engineering Technology, University Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia
| | - Irfan Anjum Badruddin
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Asir, Kingdom Saudi Arabia; Mechanical Engineering Department, College of Engineering, King Khalid University, PO Box 394, Abha, 61421, Kingdom of Saudi Arabia.
| | - M Z Zainon
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aznijar Ahmad Yazid
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norliza Binti Ibrahim
- Department of Oral and Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Roziana Mohd Razi
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Cui X, Wu W, Ge H. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method. Respir Physiol Neurobiol 2020; 279:103468. [DOI: 10.1016/j.resp.2020.103468] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
|
23
|
Poynot WJ, Gonthier KA, Dunham ME, Crosby TW. Classification of tracheal stenosis in children based on computational aerodynamics. J Biomech 2020; 104:109752. [PMID: 32224051 DOI: 10.1016/j.jbiomech.2020.109752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
Tracheal stenosis is a health condition in which local narrowing of the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation of infants, tracheal stenosis often requires corrective surgery. It is challenging to determine the most effective surgical strategy for a given patient as current clinical methods used to assess tracheal stenosis are simplistic and subjective, and are not rigorously based on aerodynamic considerations. This paper summarizes a non-invasive approach based on computational fluid dynamics (CFD) and medical imaging to establish relationships between trachea anatomy and inspiration performance. Though patient-specific CFD analysis has gained recent popularity, an objective of this study is to computationally formulate dimensionless analytical correlations between anatomy and performance that are applicable to any member of a class of patients and that can be interpreted within the context of the Myer-Cotton stenotic airway classification system. These correlations can provide aerodynamics-based insight for the development of more robust stenosis evaluation methods and may allow for time-efficient assessment of corrective surgical strategies.
Collapse
Affiliation(s)
- William J Poynot
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Keith A Gonthier
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michael E Dunham
- Department of Otolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tyler W Crosby
- Department of Otolaryngology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Xiao Q, Cetto R, Doorly DJ, Bates AJ, Rose JN, McIntyre C, Comerford A, Madani G, Tolley NS, Schroter R. Assessing Changes in Airflow and Energy Loss in a Progressive Tracheal Compression Before and After Surgical Correction. Ann Biomed Eng 2019; 48:822-833. [PMID: 31792705 PMCID: PMC6949211 DOI: 10.1007/s10439-019-02410-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
The energy needed to drive airflow through the trachea normally constitutes a minor component of the work of breathing. However, with progressive tracheal compression, patient subjective symptoms can include severe breathing difficulties. Many patients suffer multiple respiratory co-morbidities and so it is important to assess compression effects when evaluating the need for surgery. This work describes the use of computational prediction to determine airflow resistance in compressed tracheal geometries reconstructed from a series of CT scans. Using energy flux analysis, the regions that contribute the most to airway resistance during inhalation are identified. The principal such region is where flow emerging from the zone of maximum constriction undergoes breakup and turbulent mixing. Secondary regions are also found below the tongue base and around the glottis, with overall airway resistance scaling nearly quadratically with flow rate. Since the anatomical extent of the imaged airway varied between scans-as commonly occurs with clinical data and when assessing reported differences between research studies-the effect of sub-glottic inflow truncation is considered. Analysis shows truncation alters the location of jet breakup and weakly influences the pattern of pressure recovery. Tests also show that placing a simple artificial glottis in the inflow to a truncated model can replicate patterns of energy loss in more extensive models, suggesting a means to assess sensitivity to domain truncation in tracheal airflow simulations.
Collapse
Affiliation(s)
- Qiwei Xiao
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Raul Cetto
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Otolaryngology and Head and Neck Surgery, Imperial College Healthcare, St. Mary's Hospital, Praed St, London, W2 1NY, UK
| | - Denis J Doorly
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Alister J Bates
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, USA
| | - Jan N Rose
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Charlotte McIntyre
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Otolaryngology and Head and Neck Surgery, Imperial College Healthcare, St. Mary's Hospital, Praed St, London, W2 1NY, UK
| | - Andrew Comerford
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Gitta Madani
- Department of Clinical Radiology, Imperial College Healthcare, St. Mary's Hospital, Praed St, London, W2 1NY, UK
| | - Neil S Tolley
- Department of Otolaryngology and Head and Neck Surgery, Imperial College Healthcare, St. Mary's Hospital, Praed St, London, W2 1NY, UK
| | - Robert Schroter
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
25
|
Taherian S, Rahai H, Lopez S, Shin J, Jafari B. Evaluation of human obstructive sleep apnea using computational fluid dynamics. Commun Biol 2019; 2:423. [PMID: 31799426 PMCID: PMC6872714 DOI: 10.1038/s42003-019-0668-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
Obstructive sleep apnea (OSA) severity might be correlated to the flow characteristics of the upper airways. We aimed to investigate the severity of OSA based on 3D models constructed from CT scans coupled with computational fluid dynamics (CFD) simulations. The CT scans of seven adult patients diagnosed with OSA were used to reconstruct the 3D models of the upper airways and CFD modeling and analyses were performed. Results from the fluid simulations were compared with the apnea-hypopnea index. Here we show a correlation between a CFD-based parameter, the adjusted pressure coefficient (Cp*), and the respective apnea-hypopnea index (Pearson's r = 0.91, p = 0.004), which suggests that the anatomical-based model coupled with CFD could provide functional and localized information for different regions of the upper airways.
Collapse
Affiliation(s)
- Shahab Taherian
- Center for Energy and Environmental Research and Services, California State University Long Beach, Long Beach, CA USA
- Department of Internal Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| | - Hamid Rahai
- Center for Energy and Environmental Research and Services, California State University Long Beach, Long Beach, CA USA
| | - Samuel Lopez
- Center for Energy and Environmental Research and Services, California State University Long Beach, Long Beach, CA USA
| | - Jamie Shin
- Center for Energy and Environmental Research and Services, California State University Long Beach, Long Beach, CA USA
| | - Behrouz Jafari
- Department of Internal Medicine, University of California Irvine School of Medicine, Irvine, CA USA
- Section of Pulmonary, Critical Care, and Sleep Medicine, Veterans Affairs Long Beach Healthcare System, Long Beach, CA USA
| |
Collapse
|
26
|
Yeom SH, Na JS, Jung HD, Cho HJ, Choi YJ, Lee JS. Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: machine learning approach. J Appl Physiol (1985) 2019; 127:959-973. [PMID: 31318618 DOI: 10.1152/japplphysiol.01033.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep breathing disorder. With the use of computational fluid dynamics (CFD), this study provides a quantitative standard for accurate diagnosis and effective surgery based on the investigation of the relationship between airway geometry and aerodynamic characteristics. Based on computed tomography data from patients having normal geometry, 4 major geometric parameters were selected and a total of 160 idealized cases were modeled and simulated. We created a predictive model using Gaussian process regression (GPR) through a data set obtained through numerical method. The results demonstrated that the mean accuracy of the overall GPR model was ~72% with respect to the CFD results for the realistic upper airway model. A support vector machine model was also used to identify the degree of OSA symptoms in patients as normal-mild and moderate and severe. We achieved an accuracy of 82.5% with the training data set and an accuracy of 80% with the test data set.NEW & NOTEWORTHY There have been many studies on the analysis of obstructive sleep apnea (OSA) through computational fluid dynamics and finite element analysis. However, these methods are not useful for practical medical applications because they have limited information for OSA symptom. This study employs the machine learning algorithm to predict flow characteristics quickly and to determine the symptoms of the patient's OSA. The overall Gaussian process regression model's mean accuracy was ~72%, and the accuracy for the classification of OSA was >80%.
Collapse
Affiliation(s)
- Seung Ho Yeom
- Department of Mechanical Engineering, College of Engineering, Yonsei University, Seoul, Korea
| | - Ji Sung Na
- Unit of Ice Sheet and Sea Level Changes, Korea Polar Research Institute, Incheon, Korea
| | - Hwi-Dong Jung
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jeong Choi
- Department of Mechanical Engineering, College of Engineering, Yonsei University, Seoul, Korea.,Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Joon Sang Lee
- Department of Mechanical Engineering, College of Engineering, Yonsei University, Seoul, Korea.,Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
27
|
Bates AJ, Schuh A, Amine-Eddine G, McConnell K, Loew W, Fleck RJ, Woods JC, Dumoulin CL, Amin RS. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin Biomech (Bristol, Avon) 2019; 66:88-96. [PMID: 29079097 DOI: 10.1016/j.clinbiomech.2017.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational fluid dynamics simulations of respiratory airflow in the upper airway reveal clinically relevant information, including sites of local resistance, inhaled particle deposition, and the effect of pathological constrictions. Unlike previous simulations, which have been performed on rigid anatomical models from static medical imaging, this work utilises ciné imaging during respiration to create dynamic models and more closely represent airway physiology. METHODS Airway movement maps were obtained from non-rigid image registration of fast-cine MRI and applied to high-spatial-resolution airway surface models. Breathing flowrates were recorded simultaneously with imaging. These data formed the boundary conditions for large eddy simulation computations of the airflow from exterior mask to bronchi. Simulations with rigid geometries were performed to demonstrate the resulting airflow differences between airflow simulations in rigid and dynamic airways. FINDINGS In the analysed rapid breathing manoeuvre, incorporating airway movement significantly changed the findings of the CFD simulations. Peak resistance increased by 19.8% and occurred earlier in the breath. Overall pressure loss decreased by 19.2%, and the proportion of flow in the mouth increased by 13.0%. Airway wall motion was out-of-phase with the air pressure force, demonstrating the presence of neuromuscular motion. In total, the anatomy did 25.2% more work on the air than vice versa. INTERPRETATIONS Realistic movement of the airway is incorporated into CFD simulations of airflow in the upper airway for the first time. This motion is vital to producing clinically relevant computational models of respiratory airflow and will allow novel analysis of dynamic conditions, such as sleep apnoea.
Collapse
Affiliation(s)
- Alister J Bates
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Bioengineering, Imperial College London, UK.
| | - Andreas Schuh
- Department of Computing, Imperial College London, UK
| | | | - Keith McConnell
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wolfgang Loew
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert J Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C Woods
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Charles L Dumoulin
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf S Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
28
|
Choi S, Yoon S, Jeon J, Zou C, Choi J, Tawhai MH, Hoffman EA, Delvadia R, Babiskin A, Walenga R, Lin CL. 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs. J Appl Physiol (1985) 2019; 127:122-133. [PMID: 31095459 DOI: 10.1152/japplphysiol.00016.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to introduce a one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance to examine the relationship between airway resistance, pressure, and regional flow distribution. We employed five healthy and five asthmatic subjects who had dynamic computed tomography (CT) scans (4D CT) along with two static scans at total lung capacity and functional residual capacity. Fractional air-volume change ( ΔVairf ) from 4D CT was used for a validation of the 1D CFD model. We extracted the diameter ratio from existing data sets of 61 healthy subjects for computing mean and standard deviation (SD) of airway constriction/dilation in CT-resolved airways. The lobar mean (SD) of airway constriction/dilation was used to determine diameters of CT-unresolved airways. A 1D isothermal energy balance equation was solved, and pressure boundary conditions were imposed at the acinar region (model A) or at the pleural region (model B). A static compliance model was only applied for model B to link acinar and pleural regions. The values of 1D CFD-derived ΔVairf for model B demonstrated better correlation with 4D CT-derived ΔVairf than model A. In both inspiration and expiration, asthmatic subjects with airway constriction show much greater pressure drop than healthy subjects without airway constriction. This increased transpulmonary pressures in the asthmatic subjects, leading to an increased workload (hysteresis). The 1D CFD model was found to be useful in investigating flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of 3D CFD. NEW & NOTEWORTHY A one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance was introduced to examine the relationship between airway resistance, pressure, and regional flow distribution. The 1D CFD model investigated differences of flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of three-dimensional CFD.
Collapse
Affiliation(s)
- Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Sujin Yoon
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Jichan Jeon
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Chunrui Zou
- Department of Mechanical Engineering, University of Iowa , Iowa City, Iowa.,IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| | - Jiwoong Choi
- IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa.,Department of Radiology, University of Iowa , Iowa City, Iowa.,Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - Renishkumar Delvadia
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Andrew Babiskin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Ross Walenga
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Ching-Long Lin
- Department of Mechanical Engineering, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa.,Department of Radiology, University of Iowa , Iowa City, Iowa.,IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| |
Collapse
|
29
|
Schickhofer L, Malinen J, Mihaescu M. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2049. [PMID: 31046346 DOI: 10.1121/1.5095250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/07/2019] [Indexed: 05/27/2023]
Abstract
Voiced speech consists mainly of the source signal that is frequency weighted by the acoustic filtering of the upper airways and vortex-induced sound through perturbation in the flow field. This study investigates the flow instabilities leading to vortex shedding and the importance of coherent structures in the supraglottal region downstream of the vocal folds for the far-field sound signal. Large eddy simulations of the compressible airflow through the glottal constriction are performed in realistic geometries obtained from three-dimensional magnetic resonance imaging data. Intermittent flow separation through the glottis is shown to introduce unsteady surface pressure through impingement of vortices. Additionally, dominant flow instabilities develop in the shear layer associated with the glottal jet. The aerodynamic perturbations in the near field and the acoustic signal in the far field are examined by means of spatial and temporal Fourier analysis. Furthermore, the acoustic sources due to the unsteady supraglottal flow are identified with the aid of surface spectra, and critical regions of amplification of the dominant frequencies of the investigated vowel geometries are identified.
Collapse
Affiliation(s)
- Lukas Schickhofer
- Department of Mechanics, Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Jarmo Malinen
- Department of Mathematics and Systems Analysis, Aalto University, Aalto, FI-00076, Finland
| | - Mihai Mihaescu
- Department of Mechanics, Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| |
Collapse
|
30
|
Rios G, Morrison RJ, Song Y, Fernando SJ, Wootten C, Gelbard A, Luo H. Computational Fluid Dynamics Analysis of Surgical Approaches to Bilateral Vocal Fold Immobility. Laryngoscope 2019; 130:E57-E64. [PMID: 30883777 DOI: 10.1002/lary.27925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Bilateral vocal fold immobility (BVFI) is a rare and life-threatening condition in which both vocal folds are fixed, resulting in airway obstruction associated with life-threatening respiratory compromise. Treatment of BVFI is largely surgical and remains an unsatisfactory compromise between voice, breathing, and swallowing. No comparisons between currently employed techniques currently exist. We sought to employ computational fluid dynamics (CFD) modeling to delineate the optimal surgical approach for BVFI. METHODS Utilizing clinical computed tomography of BVFI subjects, coupled with image analytics employing CFD models and subject pulmonary function data, we compared the airflow features in the baseline pathologic states and changes seen between endoscopic cordotomy, endoscopic suture lateralization, and posterior cricoid expansion. RESULTS CFD modeling demonstrated that the greatest airflow velocity occurs through the posterior glottis on inspiration and anterior glottis on expiration in both the normal condition and in BVFI. Glottic airflow velocity and resistance were significantly higher in the BVFI condition compared to normal. Geometric indices (cross-sectional area of airway) were lower in posterior cricoid expansion surgery when compared to alternate surgical approaches. CFD measures (airflow velocity and resistance) improved with all surgical approaches but were superior with posterior cricoid expansion. CONCLUSION CFD modeling can provide discrete, quantitative assessment of the airflow through the laryngeal inlet, and offers insights into the pathophysiology and changes that occur after surgery for BVFI. LEVEL OF EVIDENCE NA. Laryngoscope, 130:E57-E64, 2020.
Collapse
Affiliation(s)
- Gabriel Rios
- Department of Mechanical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee
| | - Robert J Morrison
- Department of Otolaryngology, School of Medicine, Vanderbilt University, Nashville, Tennessee.,Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Yi Song
- Department of Mechanical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee
| | - Shanik J Fernando
- Department of Otolaryngology, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Christopher Wootten
- Department of Otolaryngology, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Alexander Gelbard
- Department of Otolaryngology, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Haoxiang Luo
- Department of Mechanical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
31
|
Cui X, Gutheil E. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions. Respir Physiol Neurobiol 2018. [DOI: 10.1016/j.resp.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Subramaniam DR, Arens R, Wagshul ME, Sin S, Wootton DM, Gutmark EJ. Biomechanics of the soft-palate in sleep apnea patients with polycystic ovarian syndrome. J Biomech 2018; 76:8-15. [PMID: 29793766 DOI: 10.1016/j.jbiomech.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/28/2022]
Abstract
Highly compliant tissue supporting the pharynx and low muscle tone enhance the possibility of upper airway occlusion in children with obstructive sleep apnea (OSA). The present study describes subject-specific computational modeling of flow-induced velopharyngeal narrowing in a female child with polycystic ovarian syndrome (PCOS) with OSA and a non-OSA control. Anatomically accurate three-dimensional geometries of the upper airway and soft-palate were reconstructed for both subjects using magnetic resonance (MR) images. A fluid-structure interaction (FSI) shape registration analysis was performed using subject-specific values of flow rate to iteratively compute the biomechanical properties of the soft-palate. The optimized shear modulus for the control was 38 percent higher than the corresponding value for the OSA patient. The proposed computational FSI model was then employed for planning surgical treatment for the apneic subject. A virtual surgery comprising of a combined adenoidectomy, palatoplasty and genioglossus advancement was performed to estimate the resulting post-operative patterns of airflow and tissue displacement. Maximum flow velocity and velopharyngeal resistance decreased by 80 percent and 66 percent respectively following surgery. Post-operative flow-induced forces on the anterior and posterior faces of the soft-palate were equilibrated and the resulting magnitude of tissue displacement was 63 percent lower compared to the pre-operative case. Results from this pilot study indicate that FSI computational modeling can be employed to characterize the mechanical properties of pharyngeal tissue and evaluate the effectiveness of various upper airway surgeries prior to their application.
Collapse
Affiliation(s)
| | - Raanan Arens
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark E Wagshul
- Gruss Magnetic Resonance Research Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanghun Sin
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Wootton
- Department of Mechanical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Ephraim J Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH, USA; UC Department of Otolaryngology - Head and Neck Surgery, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Slaats MALJ, Loterman D, van Holsbeke C, Vos W, Van Hoorenbeeck K, de Backer J, de Backer W, Wojciechowski M, Boudewyns A, Verhulst S. The Role of Functional Respiratory Imaging in Treatment Selection of Children With Obstructive Sleep Apnea and Down Syndrome. J Clin Sleep Med 2018; 14:651-659. [PMID: 29609707 DOI: 10.5664/jcsm.7064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
STUDY OBJECTIVES The complexity of the pathogenesis of obstructive sleep apnea (OSA) in children with Down syndrome (DS) is illustrated by a prevalence of residual OSA after adenotonsillectomy. The aim of this study was to investigate whether upper airway imaging combined with computation fluid dynamics could characterize treatment outcome after adenotonsillectomy in these children. METHODS Children with DS and OSA were prospectively included. All children underwent an evaluation of the upper airway and an ultra-low dose computed tomography scan of the upper airway before adenotonsillectomy. The upper airway tract was extracted from the scan and combined with computational fluid dynamics. Results were evaluated using control polysomnography after adenotonsillectomy. RESULTS Thirty-three children were included: 18 boys, age 4.3 ± 2.3 years, median body mass index z-score 0.6 (-2.9 to 3.0), and median obstructive apnea-hypopnea index was 15.7 (3-70) events/h. The minimal upper airway cross-sectional area was significantly smaller in children with more severe OSA (P = .03). Nineteen children underwent a second polysomnography after adenotonsillectomy. Seventy-nine percent had persistent OSA (obstructive apneahypopnea index > 2 events/h). A greater than 50% decrease in obstructive apnea-hypopnea index was observed in 79% and these children had a significantly higher volume of the regions below the tonsils. CONCLUSIONS This is the first study to characterize treatment outcome in children with DS and OSA using computed tomography upper airway imaging. At baseline, children with more severe OSA had a smaller upper airway. Children with a less favorable response to adenotonsillectomy had a smaller volume of regions below the tonsils, which could be due to enlargement of the lingual tonsils, glossoptosis, or macroglossia. COMMENTARY A commentary on this article appears in this issue on page 501.
Collapse
Affiliation(s)
| | | | | | - Wim Vos
- Technology, Biomedical Physics, FluidDA, Kontich, Belgium
| | | | - Jan de Backer
- Technology, Biomedical Physics, FluidDA, Kontich, Belgium
| | - Wilfried de Backer
- Department of Pulmonology, University Hospital Antwerp, Antwerp, Belgium
| | | | - An Boudewyns
- Department of Pediatrics, University Hospital Antwerp, Antwerp, Belgium
| | - Stijn Verhulst
- Department of Pediatrics, Pediatric Sleep Lab at Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
34
|
Liu Y, Mitchell J, Chen Y, Yim W, Chu W, Wang RC. Study of the upper airway of obstructive sleep apnea patient using fluid structure interaction. Respir Physiol Neurobiol 2018; 249:54-61. [DOI: 10.1016/j.resp.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022]
|
35
|
Cui X, Wu W, Gutheil E. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation. Respir Physiol Neurobiol 2018; 248:1-9. [DOI: 10.1016/j.resp.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
|
36
|
Taherian S, Rahai H, Gomez B, Waddington T, Mazdisnian F. Computational fluid dynamics evaluation of excessive dynamic airway collapse. Clin Biomech (Bristol, Avon) 2017; 50:145-153. [PMID: 29101894 DOI: 10.1016/j.clinbiomech.2017.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/21/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive dynamic airway collapse, which is often caused by the collapse of the posterior membrane wall during exhalation, is often misdiagnosed with other diseases; stents can provide support for the collapsing airways. The standard pulmonary function tests do not necessarily show change in functional breathing condition for evaluation of these type of diseases. METHODS Flow characteristics through a patient's airways with excessive dynamic airway collapse have been numerically investigated. A stent was placed to support the collapsing airway and to improve breathing conditions. Computed tomography images of the patient's pre- and post-stenting were used for generating 3-Dimensional models of the airways, and were imported into a computational fluid dynamics software for simulation of realistic air flow behavior. Unsteady simulations of the inspiratory phase and expiratory phase were performed with patient-specific boundary conditions for pre- and post-intervention cases to investigate the effect of stent placement on flow characteristic and possible improvements. FINDINGS Results of post-stent condition show reduced pressure, velocity magnitude and wall shear stress during expiration. The variation in wall shear stress, velocity magnitude and pressure drop is negligible during inspiration. INTERPRETATION Although Spirometry tests do not show significant improvements, computational fluid dynamics results show significant improvements in pre- and post-treatment results, suggesting improvement in breathing condition.
Collapse
Affiliation(s)
- Shahab Taherian
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard Long Beach, California 90840, USA.
| | - Hamid Rahai
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard Long Beach, California 90840, USA.
| | - Bernardo Gomez
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard Long Beach, California 90840, USA.
| | - Thomas Waddington
- Mount Nittany Medical Center, Pulmonary Division, 3901 South Atherton St. Suite 2, State College, PA 16801, USA.
| | - Farhad Mazdisnian
- Pulmonary Division, Long Beach Veterans Administration (LBVA) Hospital, 5901 E 7th St, Long Beach, CA 90822, USA.
| |
Collapse
|
37
|
Lin EL, Bock JM, Zdanski CJ, Kimbell JS, Garcia GJM. Relationship between degree of obstruction and airflow limitation in subglottic stenosis. Laryngoscope 2017; 128:1551-1557. [PMID: 29171660 DOI: 10.1002/lary.27006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Subglottic stenosis (SGS) is one of the most common airway disorders in pediatric patients. Currently, treatment decisions rely primarily on the Cotton-Myer scale, which classifies SGS severity based on percentage reduction in airspace cross-sectional area (CSA). However, the precise relationship between upper airway resistance and subglottic CSA is unknown. We hypothesize that airway resistance can be described by the Bernoulli Obstruction Theory, which predicts that airway resistance is inversely proportional to airspace CSA ( R∝A-1) in cases of severe constriction. METHODS Computed tomography (CT) scans of six healthy subjects and five SGS patients were used to create three-dimensional models of the respiratory tract from nostrils to carina. Cylindrical segments of varying lengths and varying diameters were digitally inserted in the subglottis of the healthy subjects to create simulated SGS models. Computational fluid dynamics simulations were run, and airway resistance was computed in the simulated SGS models and actual SGS models. RESULTS Constriction diameter had a greater impact in airway resistance than constriction length. In agreement with the Bernoulli Obstruction Theory, airway resistance in the simulated SGS models was well represented by the power law R=aAb, where a is a constant and the exponent b ranged from -0.85 to -1.07. The percentage reduction in airflow (QOBSTRUCTIONQHEALTHY) at a constant pressure drop was found to be directly proportional to the percentage reduction in CSA (AOBSTRUCTIONAHEALTHY) in the limit of severe constrictions, namely QOBSTRUCTIONQHEALTHY=kAOBSTRUCTIONAHEALTHY, where k=2.25 ± 0.15. Airway resistances in the simulated SGS models were similar to resistances in models based on CT scans of actual SGS patients, suggesting that our simulated SGS models were representative of airway resistance in actual SGS patients. CONCLUSION Our computer simulations suggest that the degree of airflow limitation in SGS patients may be estimated based on anatomic measurements alone. Future studies are recommended to test these predictions in larger cohorts. LEVEL OF EVIDENCE 4. Laryngoscope, 128:1551-1557, 2018.
Collapse
Affiliation(s)
- Emily L Lin
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Jonathan M Bock
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Carlton J Zdanski
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, U.S.A
| | - Julia S Kimbell
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, U.S.A
| | - Guilherme J M Garcia
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
38
|
Taherian S, Rahai HR, Bonifacio J, Gomez BZ, Waddington T. Particulate Deposition in a Patient With Tracheal Stenosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1115/1.4038260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of obstructions such as tracheal stenosis has important effects on respiratory functions. Tracheal stenosis impacts the therapeutic efficacy of inhaled medications as a result of alterations in particle transport and deposition pattern. This study explores the effects of the presence and absence of stenosis/obstruction in the trachea on air flow characteristics and particle depositions. Computational fluid dynamics (CFD) simulations were performed on three-dimensional (3D) patient-specific models created from computed tomography (CT) images. The analyzed model was generated from a subject with tracheal stenosis and includes the airway tree up to eight generations. CT scans of expiratory and inspiratory phases were used for patient-specific boundary conditions. Pre- and post-intervention CFD simulations' comparison reveals the effect of the stenosis on the characteristics of air flow, transport, and depositions of particles with diameters of 1, 2.5, 4, 6, 8, and 10 μm. Results indicate that the existence of the stenosis inflicts a major pressure force on the flow of inhaled air, leading to an increased deposition of particles both above and below the stenosis. Comparisons of the decrease in pressure in each generation between pre- and post-tracheal stenosis intervention demonstrated a significant reduction in pressure following the stenosis, which was maintained in all downstream generations. Good agreements were found using experimental validation of CFD findings with a model of the control subject up to the third generation, constructed via additive layer manufacturing from CT images.
Collapse
Affiliation(s)
- S. Taherian
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840 e-mail:
| | - H. R. Rahai
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840
| | - J. Bonifacio
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840
| | - B. Z. Gomez
- Center for Energy and Environmental Research and Services, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840
| | - Thomas Waddington
- Pulmonary Division Long Beach Veterans Administration (LBVA) Hospital, 5901 East 7th Street, Long Beach, CA 90822
| |
Collapse
|
39
|
Hur JS, Kim HH, Choi JY, Suh SH, Baek SH. Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis. Korean J Orthod 2017; 47:353-364. [PMID: 29090123 PMCID: PMC5653684 DOI: 10.4041/kjod.2017.47.6.353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. METHODS Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. RESULTS The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. CONCLUSIONS MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS.
Collapse
Affiliation(s)
- Jae-Sik Hur
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyoung-Ho Kim
- Department of Mechanical Engineering, Soongsil University, Seoul, Korea
| | - Jin-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sang-Ho Suh
- Department of Mechanical Engineering, Soongsil University, Seoul, Korea
| | - Seung-Hak Baek
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
40
|
Chousangsuntorn K, Bhongmakapat T, Apirakkittikul N, Sungkarat W, Supakul N, Laothamatas J. Computed Tomography Characterization and Comparison With Polysomnography for Obstructive Sleep Apnea Evaluation. J Oral Maxillofac Surg 2017; 76:854-872. [PMID: 28988101 DOI: 10.1016/j.joms.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE We hypothesized that computed tomography (CT) combined with portable polysomnography (PSG) might better visualize anatomic data related to obstructive sleep apnea (OSA). The present study evaluated the CT findings during OSA and assessed their associations with the PSG data and patient characteristics. PATIENTS AND METHODS We designed a prospective cross-sectional study of patients with OSA. The patients underwent scanning during the awake state and apneic episodes. Associations of the predictor variables (ie, PSG data, respiratory disturbance index [RDI]), patient characteristics (body mass index [BMI], neck circumference [NC], and waist circumference [WC]), and outcome variables (ie, CT findings during apneic episodes) were assessed using logistic regression analysis. The CT findings during apneic episodes were categorized regarding the level of obstruction, single level (retropalatal [RP] or retroglossal [RG]) or multilevel (mixed RP and RG), degree of obstruction (partial or complete), and pattern of collapse (complete concentric collapse [CCC] or other patterns). RESULTS A total of 58 adult patients with OSA were scanned. The mean ± standard deviation for the RDI, BMI, NC, and WC were 41.6 ± 28.55, 27.80 ± 5.43 kg/m2, 38.3 ± 4.3 cm, and 93.8 ± 13.6 cm, respectively. No variables distinguished between the presence of single- and multilevel airway obstruction in the present study. A high RDI (≥30) was associated with the presence of complete obstruction and CCC (odds ratio 6.33, 95% confidence interval 1.55 to 25.90; and odds ratio 3.77, 95% confidence interval 1.02 to 13.91, respectively) compared with those with a lesser RDI. CONCLUSIONS An increased RDI appears to be an important variable for predicting the presence of complete obstruction and CCC during OSA. Scanning during apneic episodes, using low-dose volumetric CT combined with portable PSG provided better anatomic and pathologic findings of OSA than did scans performed during the awake state.
Collapse
Affiliation(s)
- Khaisang Chousangsuntorn
- Biomedical Engineer, Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom, Thailand
| | - Thongchai Bhongmakapat
- Assistant Professor, Department of Otolaryngology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Navarat Apirakkittikul
- Otolaryngologist, Department of Otolaryngology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Witaya Sungkarat
- Biomedical Engineer, Department of Radiology, Faculty of Medicine Ramathibodi Hospital, and Advanced Diagnostic Imaging Center (AIMC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nucharin Supakul
- Assistant Professor, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN
| | - Jiraporn Laothamatas
- Professor, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, and Advanced Diagnostic Imaging Center (AIMC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
41
|
Subramaniam DR, Mylavarapu G, Fleck RJ, Amin RS, Shott SR, Gutmark EJ. Effect of airflow and material models on tissue displacement for surgical planning of pharyngeal airways in pediatric down syndrome patients. J Mech Behav Biomed Mater 2017; 71:122-135. [DOI: 10.1016/j.jmbbm.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/01/2022]
|
42
|
The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir Physiol Neurobiol 2016; 234:69-78. [PMID: 27619197 DOI: 10.1016/j.resp.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
This paper considers factors that play a significant role in determining inspiratory pressure and energy losses in the human trachea. Previous characterisations of pathological geometry changes have focussed on relating airway constriction and subsequent pressure loss, however many pathologies that affect the trachea cause deviation, increased curvature, constriction or a combination of these. This study investigates the effects of these measures on tracheal flow mechanics, using the compressive goitre (a thyroid gland enlargement) as an example. Computational fluid dynamics simulations were performed in airways affected by goitres (with differing geometric consequences) and a normal geometry for comparison. Realistic airways, derived from medical images, were used because idealised geometries often oversimplify the complex anatomy of the larynx and its effects on the flow. Two mechanisms, distinct from stenosis, were found to strongly affect airflow energy dissipation in the pathological tracheas. The jet emanating from the glottis displayed different impingement and breakdown patterns in pathological geometries and increased loss was associated with curvature.
Collapse
|
43
|
Mylavarapu G, Subramaniam D, Jonnagiri R, Gutmark EJ, Fleck RJ, Amin RS, Mahmoud M, Ishman SL, Shott SR. Computational Modeling of Airway Obstruction in Sleep Apnea in Down Syndrome: A Feasibility Study. Otolaryngol Head Neck Surg 2016; 155:184-7. [PMID: 27048669 DOI: 10.1177/0194599816639544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/26/2016] [Indexed: 11/15/2022]
Abstract
Current treatment options are successful in 40% to 60% of children with persistent obstructive sleep apnea after adenotonsillectomy. Residual obstruction assessments are largely subjective and do not clearly define multilevel obstruction. We endeavor to use computational fluid dynamics to perform virtual surgery and assess airflow changes in patients with Down syndrome and persistent obstructive sleep apnea. Three-dimensional airway models were reconstructed from respiratory-gated computed tomography and magnetic resonance imaging. Virtual surgeries were performed on 10 patients, mirroring actual surgeries. They demonstrated how surgical changes affect airflow resistance. Airflow and upper airway resistance was calculated from computational fluid dynamics. Virtual and actual surgery outcomes were compared with obstructive apnea-hypopnea index values. Actual surgery successfully treated 6 of 10 patients (postoperative obstructive apnea-hypopnea index <5). In 8 of 10 subjects, both apnea-hypopnea index and the calculated upper airway resistance after virtual surgery decreased as compared with baseline values. This is a feasibility and proof-of-concept study. Further studies are needed before using these techniques in surgical planning.
Collapse
Affiliation(s)
- Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dhananjay Subramaniam
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ephraim J Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Robert J Fleck
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raouf S Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Mohamed Mahmoud
- Department of Pediatric Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stacey L Ishman
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio, USA Department of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sally R Shott
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio, USA Department of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Cisonni J, Lucey AD, King AJC, Islam SMS, Lewis R, Goonewardene MS. Numerical simulation of pharyngeal airflow applied to obstructive sleep apnea: effect of the nasal cavity in anatomically accurate airway models. Med Biol Eng Comput 2015; 53:1129-39. [PMID: 26429351 DOI: 10.1007/s11517-015-1399-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 09/19/2015] [Indexed: 11/26/2022]
Abstract
Repetitive brief episodes of soft-tissue collapse within the upper airway during sleep characterize obstructive sleep apnea (OSA), an extremely common and disabling disorder. Failure to maintain the patency of the upper airway is caused by the combination of sleep-related loss of compensatory dilator muscle activity and aerodynamic forces promoting closure. The prediction of soft-tissue movement in patient-specific airway 3D mechanical models is emerging as a useful contribution to clinical understanding and decision making. Such modeling requires reliable estimations of the pharyngeal wall pressure forces. While nasal obstruction has been recognized as a risk factor for OSA, the need to include the nasal cavity in upper-airway models for OSA studies requires consideration, as it is most often omitted because of its complex shape. A quantitative analysis of the flow conditions generated by the nasal cavity and the sinuses during inspiration upstream of the pharynx is presented. Results show that adequate velocity boundary conditions and simple artificial extensions of the flow domain can reproduce the essential effects of the nasal cavity on the pharyngeal flow field. Therefore, the overall complexity and computational cost of accurate flow predictions can be reduced.
Collapse
Affiliation(s)
- Julien Cisonni
- Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, WA, Australia.
| | - Anthony D Lucey
- Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
| | - Andrew J C King
- Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
| | - Syed Mohammed Shamsul Islam
- Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
- School of Dentistry/Oral Health Centre of Western Australia, University of Western Australia, Crawley, WA, Australia
| | - Richard Lewis
- Perth Head and Neck Surgery, Nedlands, WA, Australia
| | - Mithran S Goonewardene
- School of Dentistry/Oral Health Centre of Western Australia, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
45
|
Subramaniam DR, Mylavarapu G, McConnell K, Fleck RJ, Shott SR, Amin RS, Gutmark EJ. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory. Ann Biomed Eng 2015; 44:1538-52. [PMID: 26314989 DOI: 10.1007/s10439-015-1430-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023]
Abstract
Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.
Collapse
Affiliation(s)
| | - Goutham Mylavarapu
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH, 45221-0070, USA
| | - Keith McConnell
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert J Fleck
- Division of Pediatric Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sally R Shott
- Department of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf S Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ephraim J Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH, 45221-0070, USA. .,UC Department of Otolaryngology-Head and Neck Surgery, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Abstract
Compliance of soft tissue and muscle supporting the upper airway are two of several factors contributing to pharyngeal airway collapse. We present a novel, minimally invasive method of estimating regional variations in pharyngeal elasticity. Magnetic resonance images for pediatric sleep apnea patients with Down syndrome [9.5 ± 4.3 years (mean age ± standard deviation)] were analyzed to segment airways corresponding to baseline (no mask pressure) and two positive pressures. A three dimensional map was created to evaluate axial and circumferential variation in radial displacements of the airway, dilated by the positive pressures. The displacements were then normalized with respect to the appropriate transmural pressure and radius of an equivalent circle to obtain a measure of airway compliance. The resulting elasticity maps indicated the least and most compliant regions of the pharynx. Airway stiffness of the most compliant region [403 ± 204 (mean ± standard deviation) Pa] decreased with severity of obstructive sleep apnea. The non-linear response of the airway wall to continuous positive airway pressure was patient specific and varied between anatomical locations. We identified two distinct elasticity phenotypes. Patient phenotyping based on airway elasticity can potentially assist clinical practitioners in decision making on the treatments needed to improve airway patency.
Collapse
|
47
|
Nayak KS, Fleck RJ. Seeing sleep: dynamic imaging of upper airway collapse and collapsibility in children. IEEE Pulse 2015; 5:40-4. [PMID: 25264692 DOI: 10.1109/mpul.2014.2339398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sleep disordered breathing in children ranges from snoring, which has a prevalence of 12%, to obstructive sleep apnea (OSA) syndrome, which has a prevalence of 2?3% in the general population [1]. The underlying causes of pediatric OSA are extremely complex. There are bony structural influences, as seen in craniofacial abnormalities, and soft tissue abnormalities, such as a large tongue, redundant soft tissue, or compliance/collapsibility issues. In some groups, such as those with Down syndrome, a combination of these factors comes into play.
Collapse
|
48
|
Xiong H, Huang X, Li Y, Li J, Xian J, Huang Y. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images. PLoS One 2015; 10:e0130186. [PMID: 26066461 PMCID: PMC4465749 DOI: 10.1371/journal.pone.0130186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/16/2015] [Indexed: 11/20/2022] Open
Abstract
Objective The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications. Methods MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes. Results A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA. Conclusions A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately.
Collapse
Affiliation(s)
- Huahui Xiong
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiaoqing Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yong Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianhong Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (YH); (JX)
| | - Yaqi Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- * E-mail: (YH); (JX)
| |
Collapse
|
49
|
van der Velden W, van Zuijlen A, de Jong A, Lynch C, Hoeve L, Bijl H. Acoustic simulation of a patient's obstructed airway. Comput Methods Biomech Biomed Engin 2015; 19:144-58. [DOI: 10.1080/10255842.2014.996877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Tawfik KO, Houlton JJ, Compton W, Ying J, Khosla SM. Laryngotracheal reconstruction: a ten-year review of risk factors for decannulation failure. Laryngoscope 2014; 125:674-9. [PMID: 25491233 DOI: 10.1002/lary.24963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2014] [Accepted: 09/16/2014] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS To determine risk factors for decannulation failure after laryngotracheal reconstruction performed at a single institution over a 10-year period. STUDY DESIGN This is a retrospective cohort study. METHODS The study population included 95 adult patients who underwent laryngotracheal reconstruction at a single tertiary care medical center between 2003 and 2012. Data were retrospectively reviewed. RESULTS Our cohort consisted of 95 subjects (60% female) with a median (range) age of 48 (21-82) years. Fourteen patients failed to decannulate by one postoperative year and were more likely to have diabetes, gastroesophageal reflux disease, grade 4 stenosis, T-tube requirement, secondary tracheotomy, double-stage reconstruction, and more endoscopic dilations within the first postoperative year. T-tube requirement was highly predictive of decannulation failure, with an odds ratio of 50.6 in univariate analysis and 93.7 in multivariate analysis. Grade 4 stenosis and a requirement of at least one postoperative endoscopic dilation were also found significant under both univariate and multivariate models. Gastroesophageal reflux disease was marginally significant under the univariate and multivariate models (P = .059 and .088, respectively). CONCLUSIONS The presence of preoperative and postoperative factors may indicate a higher risk of decannulation failure after laryngotracheal reconstruction. Patients with diabetes, gastroesophageal reflux disease, and grade 4 stenosis are at higher risk for decannulation failure. Requirement of T-tube placement and requirement of endoscopic dilation are predictive of decannulation failure.
Collapse
Affiliation(s)
- Kareem O Tawfik
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio
| | | | | | | | | |
Collapse
|