1
|
Liu Y, Yan L, Zhu Y, Xie X, Luo C. Preservation of the posterolateral cortex may not affect the biomechanical stability of lateral intra-articular varus osteotomy of the proximal tibia. Clin Biomech (Bristol, Avon) 2023; 110:106128. [PMID: 39491405 DOI: 10.1016/j.clinbiomech.2023.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Lateral intra-articular varus osteotomy is an L-shaped osteotomy of the lateral tibial condyle to correct mild knee valgus and lateral plateau malunion of the proximal tibia. In order to minimize injury, it was modified to preserve the posterolateral cortex and the upper tibiofibular joint. The aim of this study was to evaluate the stability of modified lateral intra-articular varus osteotomy by comparing the biomechanical strength with lateral intra-articular varus osteotomy. METHODS Twenty-four synthetic tibia models were divided into 2 groups based on osteotomy type. Each model was then fixed with 2 commonly used plate systems. Biomechanical tests were conducted to measure parameters including construct stiffness, wedge displacement, and the number of failed specimens, and the results were compared among different groups. FINDINGS No significant difference was found in construct stiffness among all groups (P > 0.05). There was also no significant difference in wedge displacement among all groups (P > 0.05). When an axial load of 1500 N was applied, the number of failed specimens showed no significant difference among all groups (P > 0.05). The main failure pattern was additional fracture lines on the lateral tibial plateau. INTERPRETATION The findings indicate that there was no significant difference in stability between the 2 groups under the tested loading conditions. Furthermore, it appears that preserving the posterolateral cortex may have no impact on biomechanical stability.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of Orthopaedic Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, 1 Lijiang Road, Suzhou, Jiangsu Province 215000, China
| | - Lifeng Yan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China; Department of Orthopaedic Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan'an West Road, Shanghai 200040, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xuetao Xie
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China.
| | - Congfeng Luo
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
2
|
Arias-Blanco A, Marco M, Giner E, Larraínzar-Garijo R, Miguélez MH. Experimental and numerical analysis of the influence of intramedullary nail position on the cut-out phenomenon. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107734. [PMID: 37517184 DOI: 10.1016/j.cmpb.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Proximal femur fractures, colloquially known as hip fractures, are a common pathology with increasing incidence in the last years due to the enhanced ageing population. Regarding the extracapsular fracture, the treatment for this pathology consists of a fixation of the fragments using an osteosynthesis device, mainly the intramedullary nail. This repairing method implies several complications, which may include the failure of the fixation device, frequently occurring due to the "cut-out" mechanism. The present work focuses on the study of how the position of the cephalic screw, which should be fixed during surgery, affects the cut-out risk. Through experimental tests and numerical models some variables that can be critical for the cut-out phenomenon are analysed. METHODS This study has been carried out through a numerical model based on the finite element method and experimental tests. The digital image correlation technique has been used in experimental tests to measure displacements on the femoral surface with the objective of numerical model validation. Some basic daily activities with different intramedullary nail positions have been analysed through the numerical model, considering variables that can induce the cut-out complication. RESULTS The results show how the intramedullary nail position clearly influences the cut-out risk, showing that displacements in the upper, anterior and posterior direction increase the cut-out risk, while displacement in the lower direction endangers the intramedullary nail itself. Thus, the centred position is the one which reduces the cut-out risk. CONCLUSIONS This work supposes an improvement in the knowledge of the cut-out phenomenon thanks to the combination of experimental testing and validated numerical models. The effects of different intramedullary nail positions in the femoral head are studied, including a novelty variable as torque, which is critical for the structural integrity of the fixation. The main conclusion of the work is the determination of the central intramedullary nail position as the most favourable one for decreasing the cut-out risk.
Collapse
Affiliation(s)
- A Arias-Blanco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Spain
| | - M Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Spain.
| | - E Giner
- Institute of Mechanical and Biomechanical Engineering (I2MB), Department of Mechanical and Materials Engineering, Universitat Politècnica de València, Spain
| | - R Larraínzar-Garijo
- Service of Orthopaedic Surgery and Traumatology, University Hospital Infanta Leonor, Universidad Complutense de Madrid, Spain
| | - M H Miguélez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Spain
| |
Collapse
|
3
|
Delmon R, Vendeuvre T, Pries P, Aubert K, Germaneau A, Severyns M. Percutaneous balloon calcaneoplasty versus open reduction and internal fixation (ORIF) for intraarticular SANDERS 2B calcaneal fracture: Comparison of primary stability using a finite element method. Injury 2023:S0020-1383(23)00272-3. [PMID: 36997362 DOI: 10.1016/j.injury.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Fractures of the calcaneus are common, with 65% being intra-articular, which can lead to a major impairment of the patient's quality of life. Open reduction and internal fixation with locking plates can be considered as gold-standard technique but has a high rate of post-operative complications. Minimally invasive calcaneoplasty combined with minimally invasive screw osteosynthesis is largely drawn from the management of depressed lumbar or tibial plateau fractures. The hypothesis of this study is that calcaneoplasty associated with minimally invasive percutaneous screw osteosynthesis presents biomechanical characteristics comparable with conventional osteosynthesis. MATERIALS AND METHODS Eight hind feet were collected. A SANDERS 2B fracture was reproduced on each specimen, while four calcanei were reduced by a balloon calcaneoplasty method and fixed with a lateral screw, four others were manually reduced and fixed with conventional osteosynthesis. Each calcaneus was then segmented for 3D finite element modeling. A vertical load was applied to the joint surface in order to measure the displacement fields and the stress distribution according to the type of osteosynthesis. RESULTS Analyses of the intra-articular displacement fields showed lower overall displacements in calcaneal joints treated with calcaneoplasty and lateral screw fixation. Better stress distribution was found in the calcaneoplasty group with lower equivalent joint stresses. These results could be explained by the role of the PMMA cement as a strut, enabling better load transfer. CONCLUSION Balloon Calcaneoplasty combined with lateral screw osteosynthesis has biomechanical characteristics at least comparable to locking plate fixation in the treatment of SANDERS 2B calcaneal joint fractures in terms of displacement fields and stress distribution under the premise of anatomical reduction.
Collapse
Affiliation(s)
- Romain Delmon
- Orthopedic and Traumatology department, University Hospital of Poitiers, Poitiers, France
| | - Tanguy Vendeuvre
- Orthopedic and Traumatology department, University Hospital of Poitiers, Poitiers, France; Pprime Institut UPR 3346, CNRS - University of Poitiers - ENSMA, Poitiers, France
| | - Pierre Pries
- Orthopedic and Traumatology department, University Hospital of Poitiers, Poitiers, France
| | - Kevin Aubert
- Pprime Institut UPR 3346, CNRS - University of Poitiers - ENSMA, Poitiers, France
| | - Arnaud Germaneau
- Pprime Institut UPR 3346, CNRS - University of Poitiers - ENSMA, Poitiers, France
| | - Mathieu Severyns
- Orthopedic and traumatology department, Clinique Porte Océane, Les Sables d'Olonne, France.
| |
Collapse
|
4
|
Carlsson J, Braesch-Andersen A, Ferguson SJ, Isaksson P. Fracture in porous bone analysed with a numerical phase-field dynamical model. J Mech Behav Biomed Mater 2023; 139:105659. [PMID: 36638634 DOI: 10.1016/j.jmbbm.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
A dynamic phase-field fracture finite element model is applied to discretized high-resolution three-dimensional computed tomography images of human trabecular bone to analyse rapid bone fracture. The model is contrasted to quasi-static experimental results and a quasi-static phase-field finite element model. The experiment revealed complex stepwise crack evolution with multiple crack fronts, and crack arrests, as the global tensile displacement load was incrementally increased. The quasi-static phase-field fracture model captures the fractures in the experiment reasonably well, and the dynamic model converges towards the quasi-static model when mechanically loaded at low rates. At higher load rates, i.e., at larger impulses, inertia effects significantly contribute to an increased initial global stiffness, higher peak forces and a larger number of cracks spread over a larger volume. Since the fracture process clearly is different at large impulses compared to small impulses, it is concluded that dynamic fracture models are necessary when simulating rapid bone fracture.
Collapse
Affiliation(s)
- Jenny Carlsson
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden; Now at Cambridge University Engineering Department, Trumpington St., Cambridge, UK
| | - Anna Braesch-Andersen
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden
| | | | - Per Isaksson
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
5
|
The Influence of Static Load and Sideways Impact Fall on Extramedullary Bone Plates Used to Treat Intertrochanteric Femoral Fracture: A Preclinical Strength Assessment. Ann Biomed Eng 2022; 50:1923-1940. [PMID: 35821164 DOI: 10.1007/s10439-022-03013-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
Hip fracture accounts for a large number of hospitalizations, thereby causing substantial economic burden. Majority (> 90%) of all hip fractures are associated to sideways fall. Studies on sideways fall usually involve loading at quasi-static or at constant displacement rate, which neglects the physics of actual fall. Understanding femur resonance frequency and associated mode shapes excited by dynamic loads is also critical. Two commercial extramedullary implants, proximal femoral locking plate (PFLP) and variable angle dynamic hip screw (VA-DHS), were chosen to carry out the preclinical assessments on a simulated Evans-I type intertrochanteric fracture. In this study, we hypothesized that the behavior of the implant depends on the loading types-axial static and transverse impact-and a rigid implanted construct will absorb less impact energy for sideways fall. The in silico models were validated using experimental measurements of full-field strain data obtained from a 2D digital image correlation (DIC) study. Under peak axial load of 3 kN, PFLP construct predicted greater axial stiffness (1.07 kN/mm) as opposed to VA-DHS (0.85 kN/mm), although the former predicted slightly higher proximal stress shielding. Further, with greater mode 2 frequency, PFLP predicted improved performance in resisting bending due to sideways fall as compared to the other implant. Overall, the PFLP implanted femur predicted the least propensity to adverse stress intensities, suggesting better structural rigidity and higher capacity in protecting the fractured femur against fall.
Collapse
|
6
|
Fan ZY, Shu LY, Jin YZ, Sherrier MC, Yin BH, Liu CJ, Zhan S, Sun H, Zhang W. Biomechanical evaluation of compression buttress screw and medial plate fixation for the treatment of vertical femoral neck fractures. Injury 2022; 53:3887-3893. [PMID: 36195517 DOI: 10.1016/j.injury.2022.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the biomechanical properties of compression buttress screw (CBS) fixation with three plate fixation methods for the treatment of vertical femoral neck fractures (FNFs). METHODS A total of forty synthetic femoral models with simulated Pauwels type III fractures (angle of 70°) were equally assigned to one of four fixation groups: CBS fixation, anteromedial plate fixation (AMP), medial buttress plate fixation (MBP) and medial buttress plate fixation without proximal screw (MBPw). Within each group, half of the specimens were randomly assigned to two loading settings, an axial compression loading test and a hip-flexion torsion test. RESULTS There were no significant differences in axial load to failure, axial stiffness, torsional strength, or torsional stiffness when comparing CBS with MBP (p>0.05). In the axial compression loading test, both CBS and MBP showed higher load to failure and axial stiffness than MBPw (p<0.05). In torsional testing, AMP exhibited superior torsional strength and torsional stiffness than both MBPw and MBP (all p<0.05) and a higher torsional strength than CBS fixation (p<0.05). There were no significant differences in torsional stiffness between the CBS and AMP fixation groups (p>0.05). CONCLUSION The biomechanical parameters of CBS fixation are comparable to that of AMP and MBP, and demonstrate superior axial stiffness than MBPw fixation. Although the CBS method for surgical fixation of vertical FNF holds promise as a less invasive surgical technique than plate fixation with similar biomechanical assessments, further clinical evaluation is warranted.
Collapse
Affiliation(s)
- Zhi-Yuan Fan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Lin-Yuan Shu
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Ying-Zhe Jin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Matthew C Sherrier
- Department of Orthopaedic and Physical Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Bo-Hao Yin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Chen-Jun Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Shi Zhan
- Orthopaedic Biomechanical Laboratory, Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China.
| | - Wei Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 YiShan Road, Shanghai 200233, China.
| |
Collapse
|
7
|
Belaïd D, Germaneau A, Vendeuvre T, Ben Brahim E, Aubert K, Severyns M. Varus malalignment of the lower limb increases the risk of femoral neck fracture: A biomechanical study using a finite element method. Injury 2022; 53:1805-1814. [PMID: 35489822 DOI: 10.1016/j.injury.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The understanding of the stresses and strains and their dependence on loading direction caused by an axial deformity is very important for understanding the mechanism of femural neck fractures. The hypothesis of this study is that lower limb malalignment is correlated with a substantial stress variation on the upper end of the femur. The purpose of this biomechanical trial using the finite element method is to determine the effect of the loading direction on the proximal femur regarding the malalignment of the lower limb, and also enlighten the relation between the lower limb alignment and the risk of a femoral neck fracture. METHODS Ten segmentations of CT scans were considered. An axial compression load was applied to the femoral head to digitally simulate the physiological configuration in neutral position as well as in different axial positions in varus/valgus alignment. RESULTS The stress at the proximal femur changes as the varus _valgus angle does. It can be observed the smaller absolute stress at angle 10° (valgus) and the higher absolute stress at angle -10° (varus). The mean maximum von Mises stress value was 14.1 (SD=±3.48) MPa for 0°, while the mean maximum von Mises stress value was 17.96 MPa (SD=4.87) for -10° in varus. The fracture risk indicator of the proximal femoral epiphyses changes inversely with angle direction. The FRI was the highest at -10° and the lowest at 10°. CONCLUSION Based on the biomechanical findings and the fracture risk indicator determined in this preliminary study, varus malalignment increases the risk of femoral neck fracture. Consideration of other parameters such as bone mineral density and morphological parameters should also help to plan preventive medical strategy in the elderly.
Collapse
Affiliation(s)
- D Belaïd
- Department of Mechanical Engineering, Faculty of Technology Sciences, University of Mentouri Brothers Constantine P.O Box 325 Ain-El-Bey Way, Constantine 25017, Algeria
| | - A Germaneau
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - T Vendeuvre
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Orthopaedic Surgery and Traumatology, University Hospital, Poitiers France
| | - E Ben Brahim
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Orthopaedic Surgery and Traumatology, University Hospital, Poitiers France
| | - K Aubert
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - M Severyns
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Orthopaedic surgery and Traumatology, University Hospital, Martinique, France.
| |
Collapse
|
8
|
Soni A, Kumar S, Kumar N. Stochastic failure analysis of proximal femur using an isogeometric analysis based nonlocal gradient-enhanced damage model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106820. [PMID: 35523024 DOI: 10.1016/j.cmpb.2022.106820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Medical imaging-based finite element methods are more accurate tools for fracture risk prediction than the traditional aBMD based methods. However, these methods have drawbacks like geometric errors, high computational cost, mesh-dependent results, etc. In this article, the authors have proposed an isogeometric analysis-based nonlocal gradient-enhanced damage model to overcome some of these issues. Moreover, there are uncertainties in the values of input parameters for such analysis due to various measurement errors. Hence, stochastic analysis is performed to quantify the effect of these parametric uncertainties on the fracture behavior of the proximal femur. METHODS Computed Tomography images of a patient are used to create a 2D proximal femur model with a heterogeneous description of material properties. A numerical model based on gradient-enhanced nonlocal continuum damage mechanics is used for fracture analysis of proximal femur to overcome the issues related to mesh dependency in traditional continuum damage mechanics models. Further, a multipatch isogeometric solver is developed to solve the governing equations. Monte Carlo simulations are used to understand the effect of parametric uncertainties on the fracture behavior of the proximal femur. RESULTS The developed numerical framework is used to solve the fracture problem of proximal femur under single leg stance loading conditions. The obtained results are validated by comparing the load-displacement response and the crack path with that given in the literature. Stochastic analysis is performed by considering a ±5% variation in the elastic modulus, damage initiation strain, and the neck-shaft angle values. CONCLUSION The proposed numerical framework can correctly predict the damage initiation and propagation in a proximal femur. The results reveal that the heterogeneous nature of material properties of bone plays a significant role in determining the fracture characteristics of the proximal femur. Further, the results of the stochastic analysis reveal that the parametric uncertainties in the neck-shaft angle have a much more significant influence on the results of the analysis than the parametric uncertainties in the elastic modulus and damage initiation strain.
Collapse
Affiliation(s)
- Aakash Soni
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, India, 140001
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, India, 140001.
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, India, 140001.
| |
Collapse
|
9
|
Sas A, Sermon A, van Lenthe GH. Experimental validation of a voxel-based finite element model simulating femoroplasty of lytic lesions in the proximal femur. Sci Rep 2022; 12:7602. [PMID: 35534595 PMCID: PMC9085891 DOI: 10.1038/s41598-022-11667-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Femoroplasty is a procedure where bone cement is injected percutaneously into a weakened proximal femur. Uncertainty exists whether femoroplasty provides sufficient mechanical strengthening to prevent fractures in patients with femoral bone metastases. Finite element models are promising tools to evaluate the mechanical effectiveness of femoroplasty, but a thorough validation is required. This study validated a voxel-based finite element model against experimental data from eight pairs of human cadaver femurs with artificial metastatic lesions. One femur from each pair was left untreated, while the contralateral femur was augmented with bone cement. Finite element models accurately predicted the femoral strength in the defect (R2 = 0.96) and augmented (R2 = 0.93) femurs. The modelled surface strain distributions showed a good qualitative match with results from digital image correlation; yet, quantitatively, only moderate correlation coefficients were found for the defect (mean R2 = 0.78) and augmented (mean R2 = 0.76) femurs. This was attributed to the presence of vessel holes in the femurs and the jagged surface representation of our voxel-based models. Despite some inaccuracies in the surface measurements, the FE models accurately predicted the global bone strength and qualitative deformation behavior, both before and after femoroplasty. Hence, they can offer a useful biomechanical tool to assist clinicians in assessing the need for prophylactic augmentation in patients with metastatic bone disease, as well as in identifying suitable patients for femoroplasty.
Collapse
Affiliation(s)
- Amelie Sas
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium
| | - An Sermon
- Department of Traumatology, University Hospitals Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium.
| |
Collapse
|
10
|
Dahan G, Safran O, Yosibash Z. Can neck fractures in proximal humeri be predicted by CT-based FEA? J Biomech 2022; 136:111039. [PMID: 35381504 DOI: 10.1016/j.jbiomech.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Proximal humeri fractures at anatomical and surgical neck (∼5% and ∼50% incidence respectively) are frequent in elderly population. Yet, neither in-vitro experiments nor CT-based finite element analyses (CTFEA) have investigated these in depth. Herein we enhance (Dahan et al., 2019) (addressing anatomical neck fractures) by more experiments and specimens, accounting for surgical neck fractures and explore CTFEA's prediction of humeri mechanical response and yield force. METHODS Four fresh frozen human humeri were tested in a new experimental configuration inducing surgical neck fractures. Digital image correlation (DIC) provided strains and displacements on humeri surfaces and used to validate CTFEA predictions. CTFEA were enhanced herein to improve the accuracy at the proximal neck: A cortical bone mapping (CBM) algorithm was implemented to overcome insufficient scanning resolution, and a new trabecular material mapping was investigated. RESULTS The new experimental setting induced impacted surgical neck fractures in all humeri. Excellent DIC to CTFEA correlation in strains was obtained at the shaft (slope 0.984, R2=0.99) and a fair agreement (slope 0.807, R2=0.73) at the neck. CBM algorithm had worsened the correlation, whereas the new material mapping had a negligible influence. Yield loads predictions improved considerably when trabecular yielding (maximum principal strain criterion) was considered instead of surface cortical yielding. DISCUSSION CTFEA well predicts strains on the shaft and reasonably well on the neck. This enhances former conclusions by past studies conducted using SGs, now also evident by DIC. Yield load prediction for surgical neck fractures (involving crushing of trabecular bone) is predicted better by trabecular failure laws rather than cortex ones. Further FEA studies using trabecular orthotropic constitutive models and failure laws are warrant.
Collapse
|
11
|
Zhan S, Jiang D, Ling M, Ding J, Yang K, Duan L, Tsai TY, Feng Y, van Trigt B, Jia W, Zhang C, Hu H. Fixation effects of different types of cannulated screws on vertical femoral neck fracture: A finite element analysis and experimental study. Med Eng Phys 2021; 97:32-39. [PMID: 34756336 DOI: 10.1016/j.medengphy.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Femoral neck fractures (FNFs) in young patients usually result from high-energy violence, and the vertical transcervical type is typically challenging for its instability. FNFs are commonly treated with three cannulated screws (CS), but the role of screws type on fixation effects (FE) is unclear. The purpose of this study was to evaluate the FE of ten types of CS with different diameters, lengths, depths, and pitches of thread via finite element analysis which was validated by a biomechanical test. Ten vertical FNF models were grouped, fixed by ten types of CS, respectively, all in a parallel, inverted triangular configuration. Their FE were scored comprehensively from six aspects via an entropy evaluation method, as higher scores showed better results. For partial-thread screws, thread length and thread shape factor (TSF) are determinative factors on stability of FNF only if thread depth is not too thick, and they have less cut-out risk, better compression effects and better detached resistance of fracture than full-thread screws, whereas full-thread screws appear to have better shear and shortening resistance. A combination of two superior partial-thread screws and one inferior full-thread screw for vertical FNF may get optimal biomechanical outcomes. The type of cannulated screw is important to consider when treating vertical FNF.
Collapse
Affiliation(s)
- Shi Zhan
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Dajun Jiang
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Ming Ling
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Jian Ding
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Kai Yang
- Radiology Department, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Lei Duan
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Tsung-Yuan Tsai
- Engineering Research Center of Clinical Translational Digital Medicine, Ministry of Education of P.R. China, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Yong Feng
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bart van Trigt
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 4, 2628 CD Delft, the Netherlands
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Changqing Zhang
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Hai Hu
- Biomechanical Laboratory of Orthopedic Surgery Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
12
|
Babazadeh Naseri A, Dunbar NJ, Baines AJ, Akin JE, Higgs Iii CF, Fregly BJ. Heterogeneous material mapping methods for patient-specific finite element models of pelvic trabecular bone: A convergence study. Med Eng Phys 2021; 96:1-12. [PMID: 34565547 DOI: 10.1016/j.medengphy.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Patient-specific finite element (FE) models of bone require the assignment of heterogeneous material properties extracted from the subject's computed tomography (CT) images. Though node-based (NB) and element-based (EB) material mapping methods (MMMs) have been proposed, the sensitivity and convergence of FE models to MMM for varying mesh sizes are not well understood. In this work, CT-derived and synthetic bone material data were used to evaluate the effect of MMM on results from FE analyses. Pelvic trabecular bone data was extracted from CT images of six subjects, while synthetic data were created to resemble trabecular bone properties. The numerical convergence of FE bone models using different MMMs were evaluated for strain energy, von-Mises stress, and strain. NB and EB MMMs both demonstrated good convergence regarding total strain energy, with the EB method having a slight edge over the NB. However, at the local level (e.g., maximum stress and strain), FE results were sensitive to the field type, MMM, and the FE mesh size. The EB method exhibited superior performance in finer meshes relative to the voxel size. The NB method converged better than did the EB method for coarser meshes. These findings may lead to higher-fidelity patient-specific FE bone models.
Collapse
Affiliation(s)
| | - Nicholas J Dunbar
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Andrew J Baines
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - John E Akin
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - C Fred Higgs Iii
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
13
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
14
|
Azari F, Sas A, Kutzner KP, Klockow A, Scheerlinck T, van Lenthe GH. Cemented short-stem total hip arthroplasty: Characteristics of line-to-line versus undersized cementing techniques using a validated CT-based finite element analysis. J Orthop Res 2021; 39:1681-1690. [PMID: 33095461 DOI: 10.1002/jor.24887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Short stems are becoming increasingly popular in total hip arthroplasty as they preserve the bone stock and simplify the implantation process. Short stems are advised mainly for patients with good bone stock. The clinical use of short stems could be enlarged to patients with poor bone stock if a cemented alternative would be available. Therefore, this study aimed to quantify the mechanical performance of a cemented short stem and to compare the "undersized" cementing strategy (stem one size smaller than the rasp) with the "line-to-line" technique (stem and rasp with identical size). A prototype cemented short stem was implanted in eight pairs of human cadaveric femora using the two cementing strategies. Four pairs were experimentally tested in a single-legged stance condition; stiffness, strength, and bone surface displacements were measured. Subject-specific nonlinear finite element models of all the implanted femora were developed, validated against the experimental data, and used to evaluate the behavior of cemented short stems under physiological loading conditions resembling level walking. The two cementing techniques resulted in nonsignificant differences in stiffness and strength. Strength and stiffness as calculated from finite element were 8.7 ± 16% and 9.9 ± 15.0% higher than experimentally measured. Displacements as calculated from finite element analyses corresponded strongly (R 2 ≥ .97) with those measured by digital image correlation. Stresses during level walking were far below the fatigue limit for bone and bone cement. The present study suggests that cemented short stems are a promising solution in osteoporotic bone, and that the line-to-line and undersized cementing techniques provide similar outcomes.
Collapse
Affiliation(s)
| | - Amelie Sas
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Karl P Kutzner
- Department of Orthopaedic Surgery and Traumatology, St. Josefs Hospital Wiesbaden, Wiesbaden, Germany
| | | | | | | |
Collapse
|
15
|
Kok J, Grassi L, Gustafsson A, Isaksson H. Femoral strength and strains in sideways fall: Validation of finite element models against bilateral strain measurements. J Biomech 2021; 122:110445. [PMID: 33933857 DOI: 10.1016/j.jbiomech.2021.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Low impact falls to the side are the main cause of hip fractures in elderly. Finite element (FE) models of the proximal femur may help in the assessment of patients at high risk for a hip fracture. However, extensive validation is essential before these models can be used in a clinical setting. This study aims to use strain measurements from bilateral digital image correlation to validate an FE model against ex vivo experimental data of proximal femora under a sideways fall loading condition. For twelve subjects, full-field strain measurements were available on the medial and lateral side of the femoral neck. In this study, subject-specific FE models were generated based on a consolidated procedure previously validated for stance loading. The material description included strain rate dependency and separate yield and fracture strain limits in tension and compression. FE predicted fracture force and experimentally measured peak forces showed a strong correlation (R2 = 0.92). The FE simulations predicted the fracture initiation within 3 mm distance of the experimental fracture line for 8/12 subjects. The predicted and measured strains correlated well on both the medial side (R2 = 0.87) and the lateral side (R2 = 0.74). The lower correlation on the lateral side is attributed to the irregularity of the cortex and presence of vessel holes in this region. The combined validation against bilateral full-field strain measurements and peak forces has opened the door for a more elaborate qualitative and quantitative validation of FE models of femora under sideways fall loading.
Collapse
Affiliation(s)
- Joeri Kok
- Department of Biomedical Engineering, Lund University, Sweden.
| | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Sweden
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Sweden
| |
Collapse
|
16
|
Chen P, Zhan Y, Zhan S, Li R, Luo C, Xie X. Biomechanical evaluation of different types of lateral hinge fractures in medial opening wedge high tibial osteotomy. Clin Biomech (Bristol, Avon) 2021; 83:105295. [PMID: 33662653 DOI: 10.1016/j.clinbiomech.2021.105295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lateral hinge fractures are common complications in the medial opening wedge high tibial osteotomy for treatment of knee osteoarthritis. The rehabilitation protocols are decided depending on the remaining stability following these fractures. This study aimed to evaluate the biomechanical properties of different types of lateral hinge fractures in medial opening wedge high tibial osteotomy. METHODS Twenty synthetic tibia models were used as test samples. A 10-mm bone wedge was removed from the medial side of the proximal tibias to create the bone defect. The samples were then divided into 4 groups: (1) intact lateral hinge; (2) Takeuchi type I fractures; (3) type II fractures; and (4) type III fractures. After fixation with a locking plate, the stability parameters including construct stiffness, wedge displacement, and construct strength were tested under compressive forces and compared among the 4 groups. FINDINGS No statistical difference was found in the construct stiffness among the 4 groups (P = 0.78). The type III fractures had the largest wedge displacement compared with the other 3 groups. The failure loads on average were significantly reduced in the type III fractures compared with those with intact hinge (P < 0.01) and in type I fractures (P = 0.04). No statistical difference was observed between the type I fractures and the intact hinge in terms of wedge displacement or failure loads. INTERPRETATION The type III fractures were the most unstable and patients with these fractures should be managed cautiously. Delayed weightbearing and/or additional fixation should be considered.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopaedic Surgery, Zhejiang Sian International Hospital, 2369 Hongxing Road, Jiaxing, Zhejiang Province, 314000, China
| | - Yu Zhan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Shi Zhan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ruiyang Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Congfeng Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Xuetao Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
17
|
The relationship between orthopedic clinical imaging and bone strength prediction. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Eidel B, Gote A, Fritzen CP, Ohrndorf A, Christ HJ. Tibial implant fixation in TKA worth a revision?-how to avoid stress-shielding even for stiff metallic implants. Comput Methods Biomech Biomed Engin 2020; 24:320-332. [PMID: 33063557 DOI: 10.1080/10255842.2020.1830274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In total knee arthroplasty (TKA), force is transmitted into the tibia by a combined plate-stem device along with cemented or cementless stem fixation. The present work analyzes this force transmission in finite element simulations with the main aim to avoid reported postsurgical bone density reduction as a consequence of a reduced tibial bone loading. In the numerical analysis different implant materials, stem/extension lengths and implant-to-stem interface conditions are considered, from a stiff fully cemented fixation to sliding contact conditions with a low friction coefficient. The impact of these variations on bone loading changes are measured by (i) decomposing the total force into parts mediated by the plate and by the stem and by (ii) post-surgery strain energy density (SED) deviations. Based on a bionics-inspired perspective on how nature in pre-operative conditions carries out force transfer from the knee joint into the tibia, a modified implant-bone interface is suggested that alters force transmission towards physiological conditions while preserving the geometries of the standard plate-stem endoprosthesis design. The key aspect is that the axial force is predominantly transmitted through the plate into proximal bone which requires a compliant bone-stem interface as realized by sliding friction conditions at a low friction coefficient. These interface conditions avoid stress shielding almost completely, preserve pre-surgery bone loading such that bone resorption is not likely to occur.
Collapse
Affiliation(s)
- B Eidel
- DFG-Heisenberg-Group, Institut für Mechanik, University Siegen, Siegen, Germany
| | - A Gote
- DFG-Heisenberg-Group, Institut für Mechanik, University Siegen, Siegen, Germany
| | - C-P Fritzen
- Institut für Mechanik, Universität Siegen, Siegen, Germany
| | - A Ohrndorf
- Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
| | - H-J Christ
- Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
| |
Collapse
|
19
|
Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater 2020; 113:104118. [PMID: 33125949 DOI: 10.1016/j.jmbbm.2020.104118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Hip fractures are a major health problem with high socio-economic costs. Subject-specific finite element (FE) models have been suggested to improve the fracture risk assessment, as compared to clinical tools based on areal bone mineral density, by adding an estimate of bone strength. Typically, such FE models are limited to estimate bone strength and possibly the fracture onset, but do not model the fracture process itself. The aim of this study was to use a discrete damage approach to simulate the full fracture process in subject-specific femur models under stance loading conditions. A framework based on the partition of unity finite element method (PUFEM), also known as XFEM, was used. An existing PUFEM framework previously used on a homogeneous generic femur model was extended to include a heterogeneous material description together with a strain-based criterion for crack initiation. The model was tested on two femurs, previously mechanically tested in vitro. Our results illustrate the importance of implementing a subject-specific material distribution to capture the experimental fracture pattern under stance loading. Our models accurately predicted the fracture pattern and bone strength (1% and 5% error) in both investigated femurs. This is the first study to simulate complete fracture paths in subject-specific FE femur models and it demonstrated how discrete damage models can provide a more complete picture of fracture risk by considering both bone strength and fracture toughness in a subject-specific fashion.
Collapse
|
20
|
Tatani I, Megas P, Panagopoulos A, Diamantakos I, Nanopoulos P, Pantelakis S. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation. Biomed Eng Online 2020; 19:65. [PMID: 32814586 PMCID: PMC7437017 DOI: 10.1186/s12938-020-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The progressive evolution in hip replacement research is directed to follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, a renewed interest has been raised towards short uncemented femoral implants. A heterogeneous group of short stems have been designed with the aim to approximate initial, post-implantation bone strain to the preoperative levels in order to minimize the effects of stress shielding. This study aims to investigate the biomechanical properties of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a shortened conventional stem and the Minima S Femoral Stem, an even shorter and anatomically shaped stem, based on experiments and numerical simulations. Furthermore, finite element models of implant-bone constructs should be evaluated for their validity against mechanical tests wherever it is possible. In this work, the validation was performed via a direct comparison of the FE calculated strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS Design differences between Trilock BPS and Minima S femoral stems conditioned different strain pattern distributions. A distally shifting load distribution pattern as a result of implant insertion and also an obvious decrease of strain in the medial proximal aspect of the femur was noted for both stems. Strain changes induced after the implantation of the Trilock BPS stem at the lateral surface were greater compared to the non-implanted femur response, as opposed to those exhibited by the Minima S stem. Linear correlation analyses revealed a reasonable agreement between the numerical and experimental data in the majority of cases. CONCLUSION The study findings support the use of DIC technique as a preclinical evaluation tool of the biomechanical behavior induced by different implants and also identify its potential for experimental FE model validation. Furthermore, a proximal stress-shielding effect was noted after the implantation of both short-stem designs. Design-specific variations in short stems were sufficient to produce dissimilar biomechanical behaviors, although their clinical implication must be investigated through comparative clinical studies.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece.
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Ph Nanopoulos
- Department of Computer Engineering & Informatics, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| |
Collapse
|
21
|
Some Practical Considerations for Compression Failure Characterization of Open-Cell Polyurethane Foams Using Digital Image Correlation. SENSORS 2020; 20:s20154141. [PMID: 32722419 PMCID: PMC7435737 DOI: 10.3390/s20154141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Open-cell polyurethane foam mechanical behavior is highly influenced by microstructure. The determination of the failure mechanisms and the characterization of the deformation modes involved at the micro scale is relevant for accurate failure modeling. (2) Methods: We use digital image correlation (DIC) to investigate strain fields of open-cell polyurethane foams of three different densities submitted to compression testing. We analyze the effect of some DIC parameters on the failure pattern definition and the equivalent strain magnification at the apparent ultimate point. Moreover, we explore speckle versus non-speckle approaches and discuss the importance of determining the pattern quality to perform the displacement correlation. (3) Results: DIC accurately characterizes the failure patterns. A variation in the subset size has a relevant effect on the strain magnification values. Step size effect magnitude depends on the subset size. The pattern matching criterion presented little influence (3.5%) on the strain magnification. (4) Conclusion: The current work provides a comprehensive analysis of the influence of some DIC parameters on compression failure characterization of foamed structures. It highlights that changes of subset and step sizes have a significant effect on the failure pattern definition and the strain magnification values, while the pattern matching criterion and the use of speckle have a minor influence on the results. Moreover, this work stands out that the determination of the pattern quality has a major importance for texture analysis. The in-depth, detailed study carried out with samples of three different apparent densities is a useful guide for DIC users as regards texture correlation and foamed structures.
Collapse
|
22
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
23
|
Grassi L, Kok J, Gustafsson A, Zheng Y, Väänänen SP, Jurvelin JS, Isaksson H. Elucidating failure mechanisms in human femurs during a fall to the side using bilateral digital image correlation. J Biomech 2020; 106:109826. [DOI: 10.1016/j.jbiomech.2020.109826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
|
24
|
Sas A, Van Camp D, Lauwers B, Sermon A, van Lenthe GH. Cement augmentation of metastatic lesions in the proximal femur can improve bone strength. J Mech Behav Biomed Mater 2020; 104:103648. [DOI: 10.1016/j.jmbbm.2020.103648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
|
25
|
Katz Y, Yosibash Z. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech 2020; 101:109599. [DOI: 10.1016/j.jbiomech.2020.109599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
26
|
Ristow J, Mead M, Cordeiro M, Ostrander J, Atkinson T, Atkinson P. Pre-bending a dynamic compression plate significantly alters strain distribution near the fracture plane in the mid-shaft femur. Proc Inst Mech Eng H 2020; 234:478-485. [PMID: 32022642 DOI: 10.1177/0954411920903875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effect of pre-bending dynamic compression plates on fracture site compression. Recommendations of 1 to 2 mm of pre-bend have been proposed, but there does not appear to be experimental data to confirm the optimal pre-bend magnitude. Dynamic compression plating was performed on the lateral convex surface of 18 femoral analogs to fixate a simulated mid-shaft fracture. Plates with 0 mm (flat plate), 1 mm, and 2 mm of pre-bend were evaluated for their production of compression by determining the strain magnitudes for 10 equal-sized zones across the anterior cortex at the osteotomy site using digital imaging correlation. The 0 and 1 mm plates produced significantly more compression at the near cortex (p = 0.001 and p = 0.003, respectively) than the 2 mm plate. However, the 0 and 1 mm plates also created visible diastasis at the far cortex, while the 2 mm plate exhibited compression across all zones. The strain magnitudes for the 0 mm (R2 = 0.62) and 1 mm (R2 = 0.86) plates linearly and significantly decreased from the region adjacent to the plate until a region 50%-60% across the analog diameter. In contrast, the 2 mm plate exhibited uniform strains across the osteotomy site. This study demonstrates that pre-bending a dynamic compression plate 2 mm prior to fixation on a convex lateral femur provides the most compression at the far cortex. It also produces more uniform compression across the fracture when compared to 0 and 1 mm of pre-bend.
Collapse
Affiliation(s)
- Jacob Ristow
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA
| | - Matthew Mead
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA
| | - Minal Cordeiro
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA
| | - James Ostrander
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA
| | - Theresa Atkinson
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA.,Mechanical Engineering Department, Kettering University, Flint, MI, USA
| | - Patrick Atkinson
- Department of Orthopaedic Surgery, McLaren Regional Medical Center, Flint, MI, USA.,Mechanical Engineering Department, Kettering University, Flint, MI, USA
| |
Collapse
|
27
|
Abel A, Kahmann SL, Mellon S, Staat M, Jung A. An open-source tool for the validation of finite element models using three-dimensional full-field measurements. Med Eng Phys 2020; 77:125-129. [PMID: 31952915 DOI: 10.1016/j.medengphy.2019.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.
Collapse
Affiliation(s)
- Alexander Abel
- Institute of Bioengineering, FH Aachen University of Applied Sciences, Heinrich-Mußmann Straße 1, 52428 Jülich, Germany
| | - Stephanie L Kahmann
- Institute of Bioengineering, FH Aachen University of Applied Sciences, Heinrich-Mußmann Straße 1, 52428 Jülich, Germany; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, United Kingdom
| | - Stephen Mellon
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, United Kingdom
| | - Manfred Staat
- Institute of Bioengineering, FH Aachen University of Applied Sciences, Heinrich-Mußmann Straße 1, 52428 Jülich, Germany
| | - Alexander Jung
- Institute of Bioengineering, FH Aachen University of Applied Sciences, Heinrich-Mußmann Straße 1, 52428 Jülich, Germany; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, United Kingdom.
| |
Collapse
|
28
|
QU AILI, WANG DONGMEI, WANG FANG, WANG QIU. EFFECT OF MATERIAL MODEL SELECTION ON LATERAL IMPACT SIMULATIONS OF PELVIC COMPLEX. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Material mechanical behavior plays an important role in pelvic complex simulation under lateral impact. Aiming to investigate effects of material model selection on the responses of lateral impact simulations, a seating pelvic complex model was constructed. The model was subjected to a series of impacts at velocity of 3–10[Formula: see text]m/s, and two material models were, respectively, assigned to the pelvic bone to evaluate the accuracy of the simulation. The results showed that the pelvic response and fracture pattern with plastic–elastic material model agreed well with the literature, while linear elastic material model was dissatisfied factory, especially the pelvic response at low velocity deviated from most cadaveric test data. In addition, drastic change of arterial pressure was responsible for hemorrhages associated with pelvic fracture. Ligament loading sequence verified that the posterior pelvic ring bore the greatest amount of load during the impact. Based on the above findings, we concluded that a plastic–elastic with strain rate effect material model can improve the simulation accuracy of pelvic complex under lateral impact, and pelvic fracture pattern may help to estimate the parameters’ selection in impact simulation.
Collapse
Affiliation(s)
- AILI QU
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxi 750021, P. R. China
| | - DONGMEI WANG
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - FANG WANG
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| | - QIU’GEN WANG
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Ghouchani A, Rouhi G, Ebrahimzadeh MH. Investigation on distal femoral strength and reconstruction failure following curettage and cementation: In-vitro tests with finite element analyses. Comput Biol Med 2019; 112:103360. [PMID: 31330318 DOI: 10.1016/j.compbiomed.2019.103360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/28/2022]
Abstract
Cement augmentation following benign bone tumor surgery, i.e. curettage and cementation, is recommended in patients at high risk of fracture. Nonetheless, identifying appropriate cases and devices for augmentation remains debatable. Our goal was to develop a validated biomechanical tool to: predict the post-surgery strength of a femoral bone, assess the precision and accuracy of the predicted strength, and discover the mechanisms of reconstruction failure, with the aim of finding a safe biomechanical fixation. Tumor surgery was mimicked in quantitative-CT (QCT) scanned cadaveric human distal femora, and subsequently tested in compression to measure bone strength (FExp). Finite element (FE) models considering bone material non-homogeneity and non-linearity were constructed to predict bone strength (FFE). Analyses of contact, damage, and crack initiation at the bone-cement interface (BCI) were completed to investigate critical failure locations. Results of paired t-tests did not show a significant difference between FExp and FFE (P > 0.05); linear regression analysis resulted in good correlation between FExp and FFE (R2 = 0.94). Evaluation of the models precision using linear regression analysis yielded R2 = 0.89, with the slope = 1.08 and intercept = -324.16 N. FE analyses showed the initiation of damage and crack and a larger cement debonding area at the proximal end and most interior part of BCI, respectively. Therefore, we speculated that devices that reinforce critical failure locations offer the most biomechanical advantage. The QCT-based FE method proved to be a reliable tool to predict distal femoral strength, identify some causes of reconstruction failure, and assist in a safer selection of fixation devices to reduce post-operative fracture risk.
Collapse
Affiliation(s)
- Azadeh Ghouchani
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
| | - Mohammad Hosein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Ahmad Abad Street. Ghaem Hospital, Mashhad, Iran.
| |
Collapse
|
30
|
Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys 2019; 70:19-28. [PMID: 31280927 DOI: 10.1016/j.medengphy.2019.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/16/2019] [Accepted: 06/23/2019] [Indexed: 02/02/2023]
Abstract
Finite element (FE) models based on quantitative computed tomography (CT) images are better predictors of bone strength than conventional areal bone mineral density measurements. However, FE models require manual segmentation of the femur, which is not clinically applicable. This study developed a method for automated FE analyses from clinical CT images. Clinical in-vivo CT images of 13 elderly female subjects were collected to evaluate the method. Secondly, proximal cadaver femurs were harvested and imaged with clinical CT (N = 17). Of these femurs, 14 were imaged with µCT and three had earlier been tested experimentally in stance-loading, while collecting surface deformations with digital image correlation. Femurs were segmented from clinical CT images using an automated method, based on the segmentation tool Stradwin. The method automatically distinguishes trabecular and cortical bone, corrects partial volume effect and generates input for FE analysis. The manual and automatic segmentations agreed within about one voxel for in-vivo subjects (0.99 ± 0.23 mm) and cadaver femurs (0.21 ± 0.07 mm). The strains from the FE predictions closely matched with the experimentally measured strains (R2 = 0.89). The method can automatically generate meshes suitable for FE analysis. The method may bring us one step closer to enable clinical usage of patient-specific FE analyses.
Collapse
Affiliation(s)
- Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029 Kuopio, Finland; Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB 100, FIN-70029 Kuopio, Finland; Department of Medical Physics, Central Finland Central Hospital, Keskussairaalantie 19, FIN-40620 Jyväskylä, Finland.
| | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.
| | - Mikko S Venäläinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FIN-20520 Turku, Finland.
| | - Hanna Matikka
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029 Kuopio, Finland.
| | - Yi Zheng
- Department of Physics, Technical University of Denmark, Fysikvej, building 311, 2800 Kgs. Lyngby, Denmark.
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.
| |
Collapse
|
31
|
Tatani I, Panagopoulos A, Diamantakos I, Sakellaropoulos G, Pantelakis S, Megas P. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Trials 2019; 20:359. [PMID: 31208433 PMCID: PMC6580512 DOI: 10.1186/s13063-019-3445-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Total hip replacement has recently followed a progressive evolution towards principles of bone- and soft-tissue-sparing surgery. Regarding femoral implants, different stem designs have been developed as an alternative to conventional stems, and there is a renewed interest towards short versions of uncemented femoral implants. Based on both experimental testing and finite element modeling, the proposed study has been designed to compare the biomechanical properties and clinical performance of the newly introduced short-stem Minima S, for which clinical data are lacking with an older generation stem, the Trilock Bone Preservation Stem with an established performance record in short to midterm follow-up. METHODS/DESIGN In the experimental study, the transmission of forces as measured by cortical surface-strain distribution in the proximal femur will be evaluated using digital image correlation (DIC), first on the non-implanted femur and then on the implanted stems. Finite element parametric models of the bone, the stem and their interface will be also developed. Finite element predictions of surface strains in implanted composite femurs, after being validated against biomechanical testing measurements, will be used to assist the comparison of the stems by deriving important data on the developed stress and strain fields, which cannot be measured through biomechanical testing. Finally, a prospective randomized comparative clinical study between these two stems will be also conducted to determine (1) their clinical performance up to 2 years' follow-up using clinical scores and gait analysis (2) stem fixation and remodeling using a detailed radiographic analysis and (3) incidence and types of complications. DISCUSSION Our study would be the first that compares not only the clinical and radiological outcome but also the biomechanical properties of two differently designed femoral implants that are theoretically classified in the same main category of cervico-metaphyseal-diaphyseal short stems. We can hypothesize that even these subtle variations in geometric design between these two stems may create different loading characteristics and thus dissimilar biomechanical behaviors, which in turn could have an influence to their clinical performance. TRIAL REGISTRATION International Standard Randomized Controlled Trial Number, ID: ISRCTN10096716 . Retrospectively registered on May 8 2018.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Patras, Greece.
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - G Sakellaropoulos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Patras, Greece
| |
Collapse
|
32
|
Correction to: Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol 2019; 18:1263-1267. [PMID: 31134388 DOI: 10.1007/s10237-019-01173-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the original publication of the article, Fig. 3 and Tables 2, 4 and 5 were published with errors. The issue was caused by an error in the code used to predict femoral strength in the finite element (FE) models.
Collapse
|
33
|
Marco M, Giner E, Caeiro-Rey JR, Miguélez MH, Larraínzar-Garijo R. Numerical modelling of hip fracture patterns in human femur. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:67-75. [PMID: 31046997 DOI: 10.1016/j.cmpb.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Hip fracture morphology is an important factor determining the ulterior surgical repair and treatment, because of the dependence of the treatment on fracture morphology. Although numerical modelling can be a valuable tool for fracture prediction, the simulation of femur fracture is not simple due to the complexity of bone architecture and the numerical techniques required for simulation of crack propagation. Numerical models assuming homogeneous fracture mechanical properties commonly fail in the prediction of fracture patterns. This paper focuses on the prediction of femur fracture based on the development of a finite element model able to simulate the generation of long crack paths. METHODS The finite element model developed in this work demonstrates the capability of predicting fracture patterns under stance loading configuration, allowing the distinction between the main fracture paths: intracapsular and extracapsular fractures. It is worth noting the prediction of different fracture patterns for the same loading conditions, as observed during experimental tests. RESULTS AND CONCLUSIONS The internal distribution of bone mineral density and femur geometry strongly influences the femur fracture morphology and fracture load. Experimental fracture paths have been analysed by means of micro-computed tomography allowing the comparison of predicted and experimental crack surfaces, confirming the good accuracy of the numerical model.
Collapse
Affiliation(s)
- Miguel Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain.
| | - Eugenio Giner
- CIIM-Department of Mechanical and Materials Engineering, Universitat Politècnica de València Camino de Vera, 46022 Valencia, Spain
| | - José Ramón Caeiro-Rey
- Orthopedic Surgery and Traumatology Service, Complejo Hospitalario Universitario de Santiago de Compostela, Rúa de Ramón Baltar, s/n, 15706 Santiago de Compostela, A Coruña, Spain
| | - M Henar Miguélez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Ricardo Larraínzar-Garijo
- Orthopaedics and Trauma Department, Surgery Department, Hospital Universitario Infanta Leonor, Complutense University, Madrid, Spain
| |
Collapse
|
34
|
Rezaei A, Carlson KD, Giambini H, Javid S, Dragomir-Daescu D. Optimizing Accuracy of Proximal Femur Elastic Modulus Equations. Ann Biomed Eng 2019; 47:1391-1399. [PMID: 30887275 DOI: 10.1007/s10439-019-02238-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Quantitative computed tomography-based finite element analysis (QCT/FEA) is a promising tool to predict femoral properties. One of the modeling parameters required as input for QCT/FEA is the elastic modulus, which varies with the location-dependent bone mineral density (ash density). The aim of this study was to develop optimized equations for the femoral elastic modulus. An inverse QCT/FEA method was employed, using an optimization process to minimize the error between the predicted femoral stiffness values and experimental values. We determined optimal coefficients of an elastic modulus equation that was a function of ash density only, and also optimal coefficients for several other equations that included along with ash density combinations of the variables sex and age. All of the optimized models were found to be more accurate than models from the literature. It was found that the addition of the variables sex and age to ash density made very minor improvements in stiffness predictions compared to the model with ash density alone. Even though the addition of age did not remarkably improve the statistical metrics, the effect of age was reflected in the elastic modulus equations as a decline of about 9% over a 60-year interval.
Collapse
Affiliation(s)
- Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Kent D Carlson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Hugo Giambini
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Samad Javid
- Division of Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
Chethan K, Zuber M, Bhat SN, Shenoy SB. Comparative Study of Femur Bone Having Different Boundary Conditions and Bone Structure Using Finite Element Method. Open Biomed Eng J 2018. [DOI: 10.2174/1874120701812010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:Femur bone is an important part in human which basically gives stability and support to carry out all day to day activities. It carries loads from upper body to lower abdomen.Objective:In this work, the femur having composite structure with cortical, cancellous and bone marrow cavity is bisected from condyle region with respect to 25%, 50% and 75% of its height. There is considerable difference in the region chosen for fixing all degrees of freedom in the analysis of femur.Methods:The CT scans are taken, and 3D model is developed using MIMICS. The developed model is used for static structural analysis by varying the load from 500N to 3000N.Results:The findings for 25% bisected femur model report difference in directional deformation less than 5% for loads 2000N and less. In the study comparing fully solid bone and the composite bone, the total deformation obtained for a complete solid bone was 3.5 mm which was 18.7% less than that determined for the composite bone.Conclusion:The standardization for fixing the bone is developed. And it is required to fix the distal end always with considering full femur bone.
Collapse
|
36
|
Stayton CT. Warped finite element models predict whole shell failure in turtle shells. J Anat 2018; 233:666-678. [PMID: 30058131 PMCID: PMC6182993 DOI: 10.1111/joa.12871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Finite element (FE) models have become increasingly popular in comparative biomechanical studies, with researchers continually developing methods such as 'warping' preexisting models to facilitate analyses. However, few studies have investigated how well FE models can predict biologically crucial whole-structure performance or whether 'warped' models can provide useful information about the mechanical behavior of actual specimens. This study addresses both of these issues through a validation of warped FE models of turtle shells. FE models for 40 turtle specimens were built using 3D landmark coordinates and thin-plate spline interpolations to warp preexisting turtle shell models. Each actual turtle specimen was loaded to failure, and the load at failure and mode of fracture were then compared with the behavior predicted by the models. Overall, the models performed very well, despite the fact that many simplifying assumptions were made for analysis. Regressions of observed on predicted loads were significant for the dataset as a whole, as well as in separate analyses within two turtle species, and the direction of fracture was generally consistent with the patterns of stresses observed in the models. This was true even when size (an important factor in determining strength) was removed from analyses - the models were also able to predict which shells would be relatively stronger or weaker. Although some residual variation remains unexplained, this study supports the idea that warped FE models run with simplifying assumptions at least can provide useful information for comparative biomechanical studies.
Collapse
|
37
|
Eidel B, Gote A, Ohrndorf A, Christ HJ. How can a short stem hip implant preserve the natural, pre-surgery force flow? A finite element analysis on a collar cortex compression concept (CO 4). Med Eng Phys 2018; 58:S1350-4533(18)30076-6. [PMID: 29773487 DOI: 10.1016/j.medengphy.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 03/17/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022]
Abstract
The present work proposes a simple, novel fixation concept for short stem hip endoprostheses, which preserves the pre-surgery force flow through femoral bone to an unprecedented extent. It is demonstrated by finite element analyses that a standard implant model endowed with minor geometrical changes can overcome bone loading reduction and can achieve almost physiological conditions. The numerical results underpin that the key aspect of the novel, so-called "collar cortex compression concept CO4" is the direct, almost full load transmission from the implant collar to the resected femur cortex, which implies that the implant stem must be smooth and therefore interacts mainly by normal contact with the surrounding bone. For a stem endowed with surface porosity at already small areas, it is mainly the stem which transmits axial forces by shear, whereas the collar shows considerable unloading, which is the standard metaphyseal fixation. Only in the latter case the implant-bone stiffness contrast induces stress shielding, whereas for CO4 stress shielding is avoided almost completely, although the implant is made of a stiff Ti-alloy. CO4 is bionics-inspired in that it mimics force transmission at implant-bone interfaces following the natural conditions and it thereby preserves pre-surgery bone architecture as an optimized solution of nature.
Collapse
Affiliation(s)
- B Eidel
- Heisenberg-Group, Universität Siegen 57068 Siegen, Paul-Bonatz-Str. 9-11, Germany.
| | - A Gote
- Heisenberg-Group, Universität Siegen 57068 Siegen, Paul-Bonatz-Str. 9-11, Germany
| | - A Ohrndorf
- Institut für Werkstofftechnik, Universität Siegen, 57068 Siegen, Paul-Bonatz-Str. 9-11, Germany
| | - H-J Christ
- Institut für Werkstofftechnik, Universität Siegen, 57068 Siegen, Paul-Bonatz-Str. 9-11, Germany
| |
Collapse
|
38
|
Nasiri Sarvi M, Luo Y. Sideways fall-induced impact force and its effect on hip fracture risk: a review. Osteoporos Int 2017; 28:2759-2780. [PMID: 28730547 DOI: 10.1007/s00198-017-4138-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023]
Abstract
UNLABELLED Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling. METHODS We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically. RESULTS The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments. CONCLUSIONS The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients. Graphical abstract Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject.
Collapse
Affiliation(s)
- M Nasiri Sarvi
- Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
- AI Incorporated, Toronto, Canada.
| | - Y Luo
- Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
39
|
Rossman T, Uthamaraj S, Rezaei A, McEligot S, Giambini H, Jasiuk I, Yaszemski MJ, Lu L, Dragomir-Daescu D. A Method to Estimate Cadaveric Femur Cortical Strains During Fracture Testing Using Digital Image Correlation. J Vis Exp 2017. [PMID: 28994795 DOI: 10.3791/54942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes the method using digital image correlation to estimate cortical strain from high speed video images of the cadaveric femoral surface obtained from mechanical testing. This optical method requires a texture of many contrasting fiduciary marks on a solid white background for accurate tracking of surface deformation as loading is applied to the specimen. Immediately prior to testing, the surface of interest in the camera view is painted with a water-based white primer and allowed to dry for several minutes. Then, a black paint is speckled carefully over the white background with special consideration for the even size and shape of the droplets. Illumination is carefully designed and set such that there is optimal contrast of these marks while minimizing reflections through the use of filters. Images were obtained through high speed video capture at up to 12,000 frames/s. The key images prior to and including the fracture event are extracted and deformations are estimated between successive frames in carefully sized interrogation windows over a specified region of interest. These deformations are then used to compute surface strain temporally during the fracture test. The strain data is very useful for identifying fracture initiation within the femur, and for eventual validation of proximal femur fracture strength models derived from Quantitative Computed Tomography-based Finite Element Analysis (QCT/FEA).
Collapse
Affiliation(s)
| | | | - Asghar Rezaei
- Division of Engineering, Mayo Clinic; Department of Physiology and Biomedical Engineering, Mayo Clinic
| | | | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | | | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic
| | - Dan Dragomir-Daescu
- Division of Engineering, Mayo Clinic; Department of Physiology and Biomedical Engineering, Mayo Clinic;
| |
Collapse
|
40
|
Marco M, Giner E, Larraínzar-Garijo R, Caeiro JR, Miguélez MH. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant. Ann Biomed Eng 2017. [DOI: 10.1007/s10439-017-1877-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol 2016; 16:989-1000. [PMID: 28004226 PMCID: PMC5422489 DOI: 10.1007/s10237-016-0866-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/10/2016] [Indexed: 12/01/2022]
Abstract
Computed tomography (CT)-based finite element (FE) models may improve the current osteoporosis diagnostics and prediction of fracture risk by providing an estimate for femoral strength. However, the need for a CT scan, as opposed to the conventional use of dual-energy X-ray absorptiometry (DXA) for osteoporosis diagnostics, is considered a major obstacle. The 3D shape and bone mineral density (BMD) distribution of a femur can be reconstructed using a statistical shape and appearance model (SSAM) and the DXA image of the femur. Then, the reconstructed shape and BMD could be used to build FE models to predict bone strength. Since high accuracy is needed in all steps of the analysis, this study aimed at evaluating the ability of a 3D FE model built from one 2D DXA image to predict the strains and fracture load of human femora. Three cadaver femora were retrieved, for which experimental measurements from ex vivo mechanical tests were available. FE models were built using the SSAM-based reconstructions: using only the SSAM-reconstructed shape, only the SSAM-reconstructed BMD distribution, and the full SSAM-based reconstruction (including both shape and BMD distribution). When compared with experimental data, the SSAM-based models predicted accurately principal strains (coefficient of determination >0.83, normalized root-mean-square error <16%) and femoral strength (standard error of the estimate 1215 N). These results were only slightly inferior to those obtained with CT-based FE models, but with the considerable advantage of the models being built from DXA images. In summary, the results support the feasibility of SSAM-based models as a practical tool to introduce FE-based bone strength estimation in the current fracture risk diagnostics.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| |
Collapse
|
42
|
Gustafson HM, Cripton PA, Ferguson SJ, Helgason B. Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements. J Mech Behav Biomed Mater 2016; 65:801-807. [PMID: 27776322 DOI: 10.1016/j.jmbbm.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/07/2016] [Accepted: 10/06/2016] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to load cadaveric vertebral bodies (n=6) in compression and compare the response, measured with digital image correlation (DIC) on the cortex, with the predicted response from specimen-specific vertebral finite element (FE) models. Five modulus-density relationships were evaluated, and for the strongest modulus-density relationship, the correlation between the DIC and FE displacements had R2 values from 0.75 to 0.93. The stiffnesses derived from the DIC measurements were strongly predicted by the FE stiffnesses (R2=0.90). DIC provides full-field measurements of surface displacement, eliminating the influence of system compliance, for validation of specimen-specific models.
Collapse
Affiliation(s)
- Hannah M Gustafson
- Mechanical Engineering, University of British Columbia, 818 W. 10th Ave., Vancouver, BC, Canada V5Z 1M9.
| | - Peter A Cripton
- Mechanical Engineering, University of British Columbia, 818 W. 10th Ave., Vancouver, BC, Canada V5Z 1M9.
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH-Zürich, HPP-O22, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
| | - Benedikt Helgason
- Institute for Biomechanics, ETH-Zürich, HPP-O22, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
| |
Collapse
|
43
|
Chen Y, Dall Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study. J Mech Behav Biomed Mater 2016; 65:644-651. [PMID: 27741494 DOI: 10.1016/j.jmbbm.2016.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022]
Abstract
Non-destructive 3D micro-computed tomography (microCT) based finite element (microFE) models are used to estimate bone mechanical properties at tissue level. However, their validation remains challenging. Recent improvements in the quantification of displacements in bone tissue biopsies subjected to staged compression, using refined Digital Volume Correlation (DVC) techniques, now provide a full field displacement information accurate enough to be used for microFE validation. In this study, three specimens (two humans and one bovine) were tested with two different experimental set-ups, and the resulting data processed with the same DVC algorithm. The resulting displacement vector field was compared to that predicted by microFE models solved with three different boundary conditions (BC): nominal force resultant, nominal displacement resultant, distributed displacement. The first two conditions were obtained directly from the measurements provided by the experimental jigs, whereas in the third case the displacement field measured by the DVC in the top and bottom layer of the specimen was applied. Results show excellent relationship between the numerical predictions (x) and the experiments (y) when using BC derived from the DVC measurements (UX: y=1.07x-0.002, RMSE: 0.001mm; UY: y=1.03x-0.001, RMSE: 0.001mm; UZ: y=x+0.0002, RMSE: 0.001 mm for bovine specimen), whereas only poor correlation was found using BCs according to experiment set-ups. In conclusion, microFE models were found to predict accurately the vectorial displacement field using interpolated displacement boundary condition from DVC measurement.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Mechanical Engineering and INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
| | - Enrico Dall Ara
- Department of Human Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
| | - Erika Sales
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, UK
| | - Krishnagoud Manda
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, UK
| | - Robert Wallace
- Department of Orthopaedics, The University of Edinburgh, UK
| | - Pankaj Pankaj
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, UK
| | - Marco Viceconti
- Department of Mechanical Engineering and INSIGNEO Institute for in silico Medicine, University of Sheffield, UK.
| |
Collapse
|