1
|
Allaire BT, Johannesdottir F, Bouxsein ML, Anderson DE. Physiological and Anthropometric Factors Associated With Spine Loading Estimates From Imaging-Based Subject-Specific Musculoskeletal Models. JOR Spine 2025; 8:e70059. [PMID: 40225046 PMCID: PMC11987705 DOI: 10.1002/jsp2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/15/2025] Open
Abstract
Background Subject-specific musculoskeletal models may be used to estimate spine loads that cannot be measured in vivo. Model generation methods may use detailed measurements extracted from medical imaging, but it may be possible to create accurate models without these measurements. We aimed to determine which physiological and anthropometric factors are associated with spine loading and should be accounted for in model creation. Methods We created models of 440 subjects from the Framingham Heart Study Multi-detector CT Study, extracting muscle morphology and spine profile information from CT scans of the trunk. Five lifting activities were simulated, and compressive and shear loading estimates were produced. We performed principal component analysis on the loading data from three locations in the spine, as well as univariate correlations between predictor variables and each principal component (PC). We identified multivariate predictive regression models for each PC and individual loading estimate. Results A single PC explained 90% of the variability in compressive loading, while four PCs were identified that explained 10%-37% individually, 86% in total, of the variability in shear loading. Univariate analysis showed that body weight, BMI, lean mass, and waist circumference were most associated with the compression PC and first shear PC. Multivariate regression modeling showed predictor variables predicted 94% of the variability in the compression PC, but only 54% in the first shear PC, with body weight having the highest contribution. Additional shear PCs were less predictable. Level- and activity-specific compressive loading was predicted using a limited set of physiological and anthropometric factors. Conclusions This work identifies easily measured characteristics, particularly weight and height, along with sex, associated with subject-specific loading estimates. It suggests that compressive loading, or models to evaluate compressive loading, may be based on a limited set of anthropometric attributes. Shear loading appears more complex and may require additional information not captured in the set of factors we examined.
Collapse
Affiliation(s)
- Brett T. Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Fjola Johannesdottir
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| | - Dennis E. Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Orthopaedic SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Fischer L, Schroll A, Schmidt H, Arampatzis A. Sex-specific trunk movement coordination in participants with low-back pain and asymptomatic controls. Front Sports Act Living 2025; 7:1524489. [PMID: 40235462 PMCID: PMC11996882 DOI: 10.3389/fspor.2025.1524489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
Background Trunk posture and lumbo-pelvic coordination can influence spinal loading and are commonly used as clinical measures in the diagnosis and management of low-back pain and injury risk. However, sex and pain specific characteristics have rarely been investigated in a large cohort of both healthy individuals and low-back pain patients. It has also been suggested that the motor control of trunk stability and trunk movement variability is altered in individuals with low-back pain, with possible implications for pain progression. Nonetheless, clear links to low-back pain are currently lacking. Objective To investigate trunk posture, lumbo-pelvic coordination, trunk dynamic stability and trunk movement variability in an adequately large cohort of individuals with low-back pain and asymptomatic controls and to explore specific effects of sex, pain intensity and pain chronicity. Methods We measured lumbo-pelvic kinematics during trunk flexion and trunk dynamic stability and movement variability during a cyclic pointing task in 306 adults (156 females) aged between 18 and 64 years, reporting either no low-back pain or pain in the lumbar area of the trunk. Participants were grouped based on their characteristic pain intensity as asymptomatic (ASY, N = 53), low to medium pain (LMP, N = 185) or medium to high pain (MHP, N = 68). Participants with low-back pain that persisted for 12 weeks or longer were categorized as chronic (N = 104). Data were analyzed using linear mixed models in the style of a two way anova. Results Female participants showed a higher range of motion in both the trunk and pelvis during trunk flexion, as well as an increased lumbar lordosis in standing attributed to a higher pelvic angle that persisted throughout the entire trunk flexion movement, resulting in a longer duration of lumbar lordosis. The intensity and chronicity of the pain had a negligible effect on trunk posture and the lumbo-pelvic coordination. Pain chronicity had an effect on trunk dynamic stability (i.e., increased trunk instability), while no effects of sex and pain intensity were detected in trunk dynamic stability and movement variability. Conclusions Low-back pain intensity and chronicity was not associated with lumbo-pelvic posture and kinematics, indicating that lumbo-pelvic posture and kinematics during a trunk flexion movement have limited practicality in the clinical diagnosis and management of low-back pain. On the other hand, the increased local instability of the trunk during the cyclic coordination task studied indicates control errors in the regulation of trunk movement in participants with chronic low-back pain and could be considered a useful diagnostic tool in chronic low-back pain.
Collapse
Affiliation(s)
- Lukas Fischer
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Meng Y, Xue Y, Yang S, Wu F, Dong Y. The associations between sedentary behavior and neck pain: a systematic review and meta-analysis. BMC Public Health 2025; 25:453. [PMID: 39905389 PMCID: PMC11796249 DOI: 10.1186/s12889-025-21685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND This study aimed to systematically evaluate the associations between sedentary behavior (SB) in daily life and the risk of neck pain (NP), and to investigate the dose-response relationships between these variables across different populations, including variations in age, sex, occupation, and lifestyle practices. METHODS We conducted a systematic literature search of PubMed, Web of Science, Scopus, and Embase for cross-sectional, cohort and case-control studies examining the association between SB and NP risk. The National Institute of Health (NIH) quality assessment tool was utilized to evaluate study quality. Odds ratios (ORs) and relative risks (RRs) with 95% confidence intervals (CIs) were used to assess the association between SB and NP. Due to significant heterogeneity among the studies, a random-effects model was employed for the meta-analysis to obtain pooled estimates. RESULTS A total of 25 studies with 43,184 participants met the eligibility criteria. Overall, the meta-analysis revealed a significant relationship between SB and NP (OR = 1.46, 95%CI: 1.33, 1.60). Subgroup analyses revealed that the risk of NP was greater in female (OR = 1.43, 95%CI: 1.22, 1.67) than in male (OR = 1.13, 95%CI: 1.01, 1.27) and was greater in employees (OR = 1.97, 95%CI: 1.70, 2.28) than in students (OR = 1.26, 95%CI: 1.15, 1.39). Among screen-based SB, using mobile phones conferred the greatest risk of NP (OR = 1.82, 95%CI: 1.27, 2.61), followed by using computers (OR = 1.23, 95%CI: 1.08, 1.40), whereas watching TV was not a significant risk (OR = 1.20, 95%CI: 0.99, 1.44). Moreover, SB ≥ 4 h per day (h/d) increased the risk of NP (OR = 1.60, 95%CI: 1.38, 1.87), and the risk further increased with SB ≥ 6 h/d (OR = 1.88, 95%CI: 1.42, 2.48). The risk of NP increased with a screen-based SB dose ≥ 1 h/d (OR = 1.28, 95%CI: 1.17, 1.44), ≥ 2 h/d (OR = 1.35, 95%CI: 1.18, 1.55), and ≥ 4 h/d (OR = 1.45, 95%CI: 1.26, 1.67). CONCLUSION SB is a notable risk factor for NP, with the risk escalating with longer durations of sedentary time. Targeted preventative measures, particularly for high-risk groups like female and employees, are necessary. Public health initiatives should encourage the reduction of sedentary behaviors and the promotion of physical activity to enhance neck health and alleviate the global prevalence of NP.
Collapse
Affiliation(s)
- Yunchen Meng
- Department of P. E., China University of Mining and Technology-Beijing, Beijing, China
- Institute for Emergency Rescue Ergonomics and Protection, China University of Mining and Technology-Beijing, Beijing, China
| | - Yaqi Xue
- College of P. E. and Sports, Beijing Normal University, Beijing, China
| | - Sanjun Yang
- Department of P. E., China University of Mining and Technology-Beijing, Beijing, China
- Institute for Emergency Rescue Ergonomics and Protection, China University of Mining and Technology-Beijing, Beijing, China
| | - Fang Wu
- Department of P. E., China University of Mining and Technology-Beijing, Beijing, China
- Institute for Emergency Rescue Ergonomics and Protection, China University of Mining and Technology-Beijing, Beijing, China
| | - Yanyu Dong
- Department of P. E., Capital Medical University Yanjing Medical College, Beijing, China.
| |
Collapse
|
4
|
Banks JJ, Zhou J, Riehle CO, Wiggermann NE. Low back demands from assisting a patient with an unexpected loss of balance. Clin Biomech (Bristol, Avon) 2025; 122:106448. [PMID: 39903965 DOI: 10.1016/j.clinbiomech.2025.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND To combat the high incidence of lower back musculoskeletal injuries in healthcare workers, it is important to identify potentially injurious tasks. Although risk of injury has been estimated for many clinical tasks, assisting a patient following an unexpected loss of balance or sudden fall has not been assessed. This study aimed to quantify the lower back forces of healthcare workers when assisting a patient from a standing loss of balance. METHODS Peak L5/S1 intervertebral joint forces were estimated from thirteen healthcare workers in a laboratory setting as they assisted a patient from a standing loss of balance to a nearby wheelchair. The patient was a healthy male (64 kg) who simulated a loss of balance by buckling at the knees. An additional condition with 18 % of the patient's body weight unloaded was also tested. FINDINGS In a minority of trials, lower back demands exceeded ergonomic guidelines of 3400 and 1000 N for compression and shear, respectively. Patient body weight affected both compression and resultant shear forces (p-values < .001). INTERPRETATION The lower back demands when assisting a 64-kg patient during a simulated loss of balance did not consistently exceed ergonomic safety guidelines. However, the results imply a high-risk task for heavier patients in simulated settings, or potentially all patients in realistic clinical settings. Several experimental design considerations and limitations may have created a best-case scenario that underestimated the lack of injury risk during the task studied. Use of safe patient handling and mobility equipment is advisable to minimize risk when ambulating patients.
Collapse
Affiliation(s)
| | - Jie Zhou
- Baxter International Inc., Batesville, IN, USA
| | | | | |
Collapse
|
5
|
Anderson DE, Keko M, James J, Allaire BT, Kozono D, Doyle PF, Kang H, Caplan S, Balboni T, Spektor A, Huynh MA, Hackney DB, Alkalay RN. Metastatic spine disease alters spinal load-to-strength ratios in patients compared to healthy individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320075. [PMID: 39830276 PMCID: PMC11741471 DOI: 10.1101/2025.01.06.25320075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pathologic vertebral fractures (PVF) are common and serious complications in patients with metastatic lesions affecting the spine. Accurate assessment of cancer patients' PVF risk is an unmet clinical need. Load-to-strength ratios (LSRs) evaluated in vivo by estimating vertebral loading from biomechanical modeling and strength from computed tomography imaging (CT) have been associated with osteoporotic vertebral fractures in older adults. Here, for the first time, we investigate LSRs of thoracic and lumbar vertebrae of 135 spine metastases patients compared to LSRs of 246 healthy adults, comparable by age and sex, from the Framingham Heart Study under four loading tasks. Findings include: (1) Osteolytic vertebrae have higher LSRs than osteosclerotic and mixed vertebrae; (2). In patients' vertebrae without CT observed metastases, LSRs were greater than healthy controls. (3) LSRs depend on the spinal region (Thoracic, Thoracolumbar, Lumbar). These findings suggest that LSRs may contribute to identifying patients at risk of incident PVF in metastatic spine disease patients. The lesion-mediated difference suggests that risk thresholds should be established based on spinal region, simulated task, and metastatic lesion type.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Mario Keko
- Department of Orthopedics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanna James
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Brett T. Allaire
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - David Kozono
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick F Doyle
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Heejoo Kang
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sarah Caplan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mai Anh Huynh
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David B. Hackney
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Marijančić V, Peharec S, Starčević-Klasan G, Grubić Kezele T. Gender Differences in the Relationship between Physical Activity, Postural Characteristics and Non-Specific Low Back Pain in Young Adults. J Funct Morphol Kinesiol 2024; 9:189. [PMID: 39449483 PMCID: PMC11503320 DOI: 10.3390/jfmk9040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Aim: University students are a particularly vulnerable population, as they spend increasing amounts of time sitting, which poses a major threat to their musculoskeletal health and posture. The aim of this cross-sectional study was to investigate gender differences in the relationships between physical activity (PA) and sedentary behavior, spinal curvatures and mobility, the endurance and balance of the trunk muscles, and the possible presence of non-specific low back pain (NS-LBP) in young adults aged 18-25 years. Methods: A total of 139 students completed all required tests. Results: Male students engaged in significantly more PA related to recreation, sports and leisure and were significantly more likely to be hyperkyphotic than female students. The more the male students participated in sports, the more pronounced the thoracic kyphosis. Female students had significantly more pronounced lumbar lordosis and anterior pelvic tilt that correlated with lumbar lordosis. Female students generally had significantly higher trunk extensor endurance and more balanced trunk musculature than males. NS-LBP correlated with PA in female students who generally had higher levels of NS-LBP than male students, with a statistically significant difference between those who practiced the most PA. Conclusions: Our results suggest that female students practice less PA and have pronounced lordosis and trunk extensor endurance, in contrast to males who practice more PA and have pronounced trunk flexor endurance and hyperkyphosis. Our findings suggest that more PA should be encouraged but implemented with caution and as an individualized gender-specific approach to prevent postural deformities and chronic musculoskeletal disorders, including NS-LBP.
Collapse
Affiliation(s)
- Verner Marijančić
- Department of Physiotherapy, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (S.P.)
| | - Stanislav Peharec
- Department of Physiotherapy, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (S.P.)
| | - Gordana Starčević-Klasan
- Department of Basic Medical Science, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Clinical Microbiology, Clinical Hospital Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Yücel AF, Kozanoğlu E, Emekli U, Arıncı RA. Investigation of the Relationship of Functional Improvement and Body Mass Index in Breast Reduction Patients. Aesthetic Plast Surg 2024; 48:3340-3350. [PMID: 38355743 DOI: 10.1007/s00266-024-03855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Due to macromastia, center of gravity changes and neck, shoulder, back pain become prominent. Macromastia and obesity separately cause pain and an increase in curves of vertebra. The aim of this study is to compare the functional benefits of reduction mammoplasty between obese and non-obese patients. MATERIALS AND METHODS Data of this retrospective study were collected from archives and include preoperative/postoperative thoracic Cobb angles, preoperative/postoperative VAS scores, BMI and resected breast tissue weight of patients who underwent reduction mammaplasty operations between August 2017 and April 2019 in Plastic, Reconstructive and Aesthetic Surgery Department. RESULTS This study shows that reduction mammoplasty enables significant decrease both in thoracic kyphosis angles and in neck, shoulder and back VAS scores. However, no significant difference was found in preoperative/postoperative values and mean amount of changes of thoracic kyphosis angles between obese and non-obese patients. Decreases in neck, shoulder and back VAS scores were not found statistically significant between two groups. The breast resection amount was not related to correction of kyphosis, but it enabled only a significant decrease in neck VAS scores. CONCLUSION Functional improvement was not related to body mass index in reduction mammoplasty patients. Functional benefits were observed similarly in both obese and non-obese patients. A precise threshold value for body weight, body mass index and amount of breast tissue could not be defined as an indication for functional reduction mammoplasty. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Erol Kozanoğlu
- Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey
| | - Ufuk Emekli
- Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul, Turkey
| | | |
Collapse
|
8
|
Gould SL, Davico G, Palanca M, Viceconti M, Cristofolini L. Identification of a lumped-parameter model of the intervertebral joint from experimental data. Front Bioeng Biotechnol 2024; 12:1304334. [PMID: 39104629 PMCID: PMC11298350 DOI: 10.3389/fbioe.2024.1304334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Through predictive simulations, multibody models can aid the treatment of spinal pathologies by identifying optimal surgical procedures. Critical to achieving accurate predictions is the definition of the intervertebral joint. The joint pose is often defined by virtual palpation. Intervertebral joint stiffnesses are either derived from literature, or specimen-specific stiffnesses are calculated with optimisation methods. This study tested the feasibility of an optimisation method for determining the specimen-specific stiffnesses and investigated the influence of the assigned joint pose on the subject-specific estimated stiffness. Furthermore, the influence of the joint pose and the stiffness on the accuracy of the predicted motion was investigated. A computed tomography based model of a lumbar spine segment was created. Joints were defined from virtually palpated landmarks sampled with a Latin Hypercube technique from a possible Cartesian space. An optimisation method was used to determine specimen-specific stiffnesses for 500 models. A two-factor analysis was performed by running forward dynamic simulations for ten different stiffnesses for each successfully optimised model. The optimisations calculated a large range of stiffnesses, indicating the optimised specimen-specific stiffnesses were highly sensitive to the assigned joint pose and related uncertainties. A limited number of combinations of optimised joint stiffnesses and joint poses could accurately predict the kinematics. The two-factor analysis indicated that, for the ranges explored, the joint pose definition was more important than the stiffness. To obtain kinematic prediction errors below 1 mm and 1° and suitable specimen-specific stiffnesses the precision of virtually palpated landmarks for joint definition should be better than 2.9 mm.
Collapse
Affiliation(s)
- Samuele L. Gould
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgio Davico
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Lerchl T, Nispel K, Bodden J, Sekuboyina A, El Husseini M, Fritzsche C, Senner V, Kirschke JS. Musculoskeletal spine modeling in large patient cohorts: how morphological individualization affects lumbar load estimation. Front Bioeng Biotechnol 2024; 12:1363081. [PMID: 38933541 PMCID: PMC11199547 DOI: 10.3389/fbioe.2024.1363081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Achieving an adequate level of detail is a crucial part of any modeling process. Thus, oversimplification of complex systems can lead to overestimation, underestimation, and general bias of effects, while elaborate models run the risk of losing validity due to the uncontrolled interaction of multiple influencing factors and error propagation. Methods: We used a validated pipeline for the automated generation of multi-body models of the trunk to create 279 models based on CT data from 93 patients to investigate how different degrees of individualization affect the observed effects of different morphological characteristics on lumbar loads. Specifically, individual parameters related to spinal morphology (thoracic kyphosis (TK), lumbar lordosis (LL), and torso height (TH)), as well as torso weight (TW) and distribution, were fully or partly considered in the respective models according to their degree of individualization, and the effect strengths of these parameters on spinal loading were compared between semi- and highly individualized models. T-distributed stochastic neighbor embedding (T-SNE) analysis was performed for overarching pattern recognition and multiple regression analyses to evaluate changes in occurring effects and significance. Results: We were able to identify significant effects (p < 0.05) of various morphological parameters on lumbar loads in models with different degrees of individualization. Torso weight and lumbar lordosis showed the strongest effects on compression (β ≈ 0.9) and anterior-posterior shear forces (β ≈ 0.7), respectively. We could further show that the effect strength of individual parameters tended to decrease if more individual characteristics were included in the models. Discussion: The induced variability due to model individualization could only partly be explained by simple morphological parameters. Our study shows that model simplification can lead to an emphasis on individual effects, which needs to be critically assessed with regard to in vivo complexity. At the same time, we demonstrated that individualized models representing a population-based cohort are still able to identify relevant influences on spinal loading while considering a variety of influencing factors and their interactions.
Collapse
Affiliation(s)
- Tanja Lerchl
- Associate Professorship of Sports Equipment and Sports Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kati Nispel
- Associate Professorship of Sports Equipment and Sports Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jannis Bodden
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Malek El Husseini
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Fritzsche
- Associate Professorship of Sports Equipment and Sports Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Veit Senner
- Associate Professorship of Sports Equipment and Sports Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Rieger F, Rothenfluh DA, Ferguson SJ, Ignasiak D. Comprehensive assessment of global spinal sagittal alignment and related normal spinal loads in a healthy population. J Biomech 2024; 170:112127. [PMID: 38781798 DOI: 10.1016/j.jbiomech.2024.112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Abnormal postoperative global sagittal alignment (GSA) is associated with an increased risk of mechanical complications after spinal surgery. Typical assessment of sagittal alignment relies on a few selected measures, disregarding global complexity and variability of the sagittal curvature. The normative range of spinal loads associated with GSA has not yet been considered in clinical evaluation. The study objectives were to develop a new GSA assessment method that holistically describes the inherent relationships within GSA and to estimate the related spinal loads. Vertebral endplates were annotated on radiographs of 85 non-pathological subjects. A Principal Component Analysis (PCA) was performed to derive a Statistical Shape Model (SSM). Associations between identified GSA variability modes and conventional alignment measures were assessed. Simulations of respective Shape Modes (SMs) were performed using an established musculoskeletal AnyBody model to estimate normal variation in cervico-thoraco-lumbar loads. The first six principal components explained 97.96% of GSA variance. The SSM provides the normative range of GSA and a visual representation of the main variability modes. Normal variation relative to the population mean in identified alignment features was found to influence spinal loads, e.g. the lower bound of the second shape mode (SM2-2σ) corresponds to an increase in L4L5-compression by 378.64 N (67.86%). Six unique alignment features were sufficient to describe GSA almost entirely, demonstrating the value of the proposed method for an objective and comprehensive analysis of GSA. The influence of these features on spinal loads provides a normative biomechanical reference, eventually guiding surgical planning of deformity correction in the future.
Collapse
Affiliation(s)
- Florian Rieger
- Institute for Biomechanics, LOT, ETH Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
11
|
Xiao Z, Li C, Wang X, Guo J, Tian Q. Muscle Strength Identification Based on Isokinetic Testing and Spine Musculoskeletal Modeling. CYBORG AND BIONIC SYSTEMS 2024; 5:0113. [PMID: 39040710 PMCID: PMC11261815 DOI: 10.34133/cbsystems.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/15/2024] [Indexed: 07/24/2024] Open
Abstract
Subject-specific spinal musculoskeletal modeling can help understand the spinal loading mechanism during human locomotion. However, existing literature lacks methods to identify the maximum isometric strength of individual spinal muscles. In this study, a muscle strength identification method combining isokinetic testing and musculoskeletal simulations was proposed, and the influence of muscle synergy and intra-abdominal pressure (IAP) on identified spinal muscle strength was further discussed. A multibody dynamic model of the spinal musculoskeletal system was established and controlled by a feedback controller. Muscle strength parameters were adjusted based on the measured isokinetic moments, and muscle synergy vectors and the IAP piston model were further introduced. The results of five healthy subjects showed that the proposed method successfully identified the subject-specific spinal flexor/extensor strength. Considering the synergistic activations of antagonist muscles improved the correlation between the simulated and measured spinal moments, and the introduction of IAP slightly increased the identified spinal extensor strength. The established method is beneficial for understanding spinal loading distributions for athletes and patients with sarcopenia.
Collapse
Affiliation(s)
- Zuming Xiao
- MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Chang Li
- Professional and Technical Innovation Center for Exercise Diagnosis and Evaluation, Shenyang Sport University, Shenyang, China
| | - Xin Wang
- Professional and Technical Innovation Center for Exercise Diagnosis and Evaluation, Shenyang Sport University, Shenyang, China
| | - Jianqiao Guo
- MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Qiang Tian
- MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Dehghan P, Arjmand N. The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study. HUMAN FACTORS 2024; 66:1387-1398. [PMID: 36433743 DOI: 10.1177/00187208221141652] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Adequacy of the Revised NIOSH Lifting Equation (RNLE) in maintaining lumbosacral (L5-S1) loads below their recommended action limits in stoop, full-squat, and semi-squat load-handling activities was investigated using a full-body musculoskeletal model. BACKGROUND The NIOSH committee did not consider the lifting technique adapted by workers when estimating the recommended weight limit (RWL). It is currently unknown whether the lifting technique adapted by workers would affect the competence of the RNLE in keeping spine loads below their recommended limits. METHOD A full-body subject-specific musculoskeletal model (Anybody Modeling System, AMS) driven by a 10-camera Vicon motion capture system (Vicon Motion Systems Inc., Oxford, UK) was used to simulate different static stoop, semi-squat, and full-squat load-handling activities of ten normal-weight volunteers (mean of ∼70 kg corresponding to the 15th percentile of adult American males) with the task-specific NIOSH RWL held in hands. RESULTS Two-way repeated measures ANOVA revealed a significant effect of lifting technique on both the L5-S1 compression (p = 0.003) and shear (p = 0.004) loads with semi-squat technique resulting in significantly larger loads than both stoop and full-squat techniques (p < 0.05). While mean of L5-S1 loads remained smaller than their recommended limits, it is much expected that they pass these limits for heavier individuals, that is, for the 50th percentile of adult American males. CONCLUSION Spinal loads are expected to pass their recommended limits for heavier individuals especially during semi-squat lifting as the most frequently adapted technique by workers. APPLICATION Caution is required for the assessment of semi-squat lifting activities by the RNLE.
Collapse
Affiliation(s)
- Parisa Dehghan
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Cardoso MR, Armstrong DP, Fischer SL, Albert WJ. Differential effects of sex on upper body kinematics and kinetics during fatiguing, Asymmetric lifting. APPLIED ERGONOMICS 2024; 116:104203. [PMID: 38101162 DOI: 10.1016/j.apergo.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This study quantified sex-specific biomechanical adaptations to fatigue in asymmetric lifting. Twenty-one females and fifteen males performed a prolonged asymmetric lifting protocol while upper body, trunk and pelvis kinematics were collected. Features of movement identified with principal component analysis, and peak joint angular velocities and moments were calculated. Sex-specific kinematic adaptations to fatigue included females adopting a 'stoop-like' lifting strategy to a greater extent than males. Additionally, females exhibited higher vertical elbow positions during load rotation, moved their body toward the destination for load deposit, and did not reduce peak right shoulder flexion velocities, in contrast to male participants. Females also had greater low back and shoulder peak normalized joint moments. When fatigued, females adopted an asymmetric lifting strategy that minimized metabolic demand as supported by smaller decreases in maximum voluntary contractions. However, females' fatigue-related adaptations increased biomechanical exposures associated with injury risk.
Collapse
Affiliation(s)
| | - Daniel P Armstrong
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
| | - Steven L Fischer
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
| | - Wayne J Albert
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
14
|
Firouzabadi A, Arjmand N, Zhang T, Pumberger M, Schmidt H. Effect of low back pain on the kinetics and kinematics of the lumbar spine - a combined in vivo and in silico investigation. J Biomech 2024; 164:111954. [PMID: 38310006 DOI: 10.1016/j.jbiomech.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Lifting is a significant risk factor for low back pain (LBP). Different biomechanical factors including spinal loads, kinematics, and muscle electromyography (EMG) activities have previously been investigated during lifting activities in LBP patients and asymptomatic individuals to identify their association with LBP. However, the findings were contradictory and inconclusive. Accurate and subject-specific prediction of spinal loads is crucial for understanding, diagnosing, planning tailored treatments, and preventing recurrent pain in LBP patients. Therefore, the present study aimed to estimate the L5-S1 compressive and resultant shear loads in 19 healthy and 17 non-specific chronic LBP individuals during various static load-holding tasks (holding a 10 kg box at hip, chest, and head height) using full-body and personalized musculoskeletal models driven by subject-specific in vivo kinematic/kinetic, EMG, and physiological cross-sectional areas (PCSAs) data. These biomechanical characteristics were concurrently analyzed to identify potential differences between the two groups. Statistical analyses showed that LBP had almost no significant effect on the range of motion (trunk, lumbar, pelvis), PCSA, and EMG. There were no significant differences (p > 0.05) in the predicted L5-S1 loads. However, as the task became more demanding, by elevating the hand-load from hip to head, LBP patients experienced significant increases in both compressive (33 %, p = 0.00) and shear (25 %, p = 0.02) loads, while asymptomatic individuals showed significant increases only in compressive loads (30 %, p = 0.01). This suggests that engaging in more challenging activities could potentially magnify the effect of LBP on the biomechanical factors and increase their discrimination capacity between LBP and asymptomatic individuals.
Collapse
Affiliation(s)
- Ali Firouzabadi
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Tianwei Zhang
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Bellina E, Laurino ME, Perego A, Pezzinga A, Carpenedo L, Ninarello D, La Barbera L. Assessment of a fully-parametric thoraco-lumbar spine model generator with articulated ribcage. J Biomech 2024; 164:111951. [PMID: 38310005 DOI: 10.1016/j.jbiomech.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The present paper describes a novel user-friendly fully-parametric thoraco-lumbar spine CAD model generator including the ribcage, based on 22 independent parameters (1 posterior vertebral body height per vertebra + 4 sagittal alignment parameters, namely pelvic incidence, sacral slope, L1-L5 lumbar lordosis, and T1-T12 thoracic kyphosis). Reliable third-order polynomial regression equations were implemented in Solidworks to analytically calculate 56 morphological dependent parameters and to automatically generate the spine CAD model based on primitive geometrical features. A standard spine CAD model, representing the case-study of an average healthy adult, was then created and positively assessed in terms of spinal anatomy, ribcage morphology, and sagittal profile. The immediate translation from CAD to FEM for relevant biomechanical analyses was successfully demonstrated, first, importing the CAD model into Abaqus, and then, iteratively calibrating the constitutive parameters of one lumbar and three thoracic FSUs, with particular interest on the hyperelastic material properties of the IVD, and the spinal and costo-vertebral ligaments. The credibility of the resulting lumbo-sacral and thoracic spine FEM with/without ribcage were assessed and validated throughout comparison with extensive in vitro and in vivo data both in terms of kinematics (range of motion) and dynamics (intradiscal pressure) either collected under pure bending moments and complex loading conditions (bending moments + axial compressive force).
Collapse
Affiliation(s)
- Emilia Bellina
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maria Elvira Laurino
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Perego
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Pezzinga
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Linda Carpenedo
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Davide Ninarello
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luigi La Barbera
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|
16
|
Mohseni M, Zargarzadeh S, Arjmand N. Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities. J Biomech 2024; 162:111884. [PMID: 38043495 DOI: 10.1016/j.jbiomech.2023.111884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
Collapse
Affiliation(s)
- Mahdi Mohseni
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadra Zargarzadeh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
17
|
Cepková A, Zemková E, Šooš Ľ, Uvaček M, Muyor JM. Sedentary lifestyle of university students is detrimental to the thoracic spine in men and to the lumbar spine in women. PLoS One 2023; 18:e0288553. [PMID: 38051703 PMCID: PMC10697567 DOI: 10.1371/journal.pone.0288553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/29/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Sitting for long periods of time and lack of physical activity in young adults can cause postural deterioration leading to rapid onset of fatigue and increase the risk of back pain. We were interested in whether there are gender differences in spinal curvature among university students with a predominantly sedentary lifestyle. METHODS 20 sedentary female (age 20 ± 0.73 years) and 39 sedentary male university students (age 20 ± 1.08 years) participated in this study. Their thoracic and lumbar curvatures were assessed while standing and sitting using a Spinal Mouse. RESULTS In standing, 80.0% of the females and 69.2% of the males had a neutral position of the thoracic spine (33.25° and 35.33°, respectively). However, more males, 30.8%, than females, 10.0%, had hyperkyphosis (54.27° and 47.0°, respectively). Hypokyphosis was found in 10.0% of the females (18.50°) and none in the males. Similarly, 90.0% of the females and 97.4% of the males had neutral position of the lumbar spine (-33.11° and -29.76°, respectively). Increased hyperlordosis was found in 10.0% of the females and 2.6% of the males (-41.0° and -50.0°, respectively). Hypolordosis was not detected in either females or males. In sitting, on the other hand, 70.0% of the females and only 33.3% of the males had a neutral position of the thoracic spine (30.20° and 30.62°, respectively). Increased hyperkyphosis was found in 46.2% of the males (59.76°) and none of the females. 30.0% of the females and 23.1% of the males had light hypokyphosis (47.50° and 46.67°, respectively). Similarly, 70.0% of the females and only 38.5% of the males had a neutral position of the lumbar spine (7.0° and 6.6°, respectively). 35.9% of the males and only 5.0% of the females had a light hypokyphosis (16.14° and 16.0°, respectively). Slightly increased hyperkyphosis was identified in 25.6% of the males and 25.0% of the females (23.9° and 22.5°, respectively). CONCLUSION There are significant gender differences in spinal curvature. While in the thoracic spine it was to the detriment of the males when both standing and sitting, in the lumbar spine it is related to the females only when standing. It is therefore necessary to eliminate these spinal deviations in young adults induced by prolonged sitting during university courses by appropriate recovery modalities.
Collapse
Affiliation(s)
- Alena Cepková
- Faculty of Mechanical Engineering, Slovak University of Technology, Bratislava, Slovakia
| | - Erika Zemková
- Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Ľubomír Šooš
- Faculty of Mechanical Engineering, Slovak University of Technology, Bratislava, Slovakia
| | - Marián Uvaček
- Faculty of Mechanical Engineering, Slovak University of Technology, Bratislava, Slovakia
| | - José M. Muyor
- Health Research Centre, University of Almería, Almería, Spain
| |
Collapse
|
18
|
Kibria MG, Parvez MS, Saha P, Talapatra S. Evaluating the ergonomic deficiencies in computer workstations and investigating their correlation with reported musculoskeletal disorders and visual symptoms among computer users in Bangladeshi university. Heliyon 2023; 9:e22179. [PMID: 38045124 PMCID: PMC10692799 DOI: 10.1016/j.heliyon.2023.e22179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Nowadays, computer users are facing musculoskeletal disorders (MSDs) and visual symptoms. Prolonged sitting in inappropriate, awkward, and static postures on the computer workstation may cause musculoskeletal disorders (MSDs). Similarly, inappropriate placement of monitors, illumination, and other factors such as prolonged usage of computers are related to visual symptoms. OBJECTIVE This study aims to evaluate the ergonomic deficiencies of computer workstations and their correlation with MSDs and visual symptoms. METHODS This study involved 271 university employees from a Bangladeshi engineering university. Ergonomic deficiencies were evaluated through direct observations and Occupational Safety and Health Administration checklists. In addition, the Nordic Musculoskeletal Questionnaire was used to assess the prevalence of MSDs and visual discomforts. Binary Logistic Regression (BLR) analysis was also used to examine the correlation between musculoskeletal symptoms and ergonomic deficiencies. RESULTS Results showed serious deficiencies in workstation setup, seating arrangement, monitor orientations, keyboard orientations, other input device orientations, and accessory setup. Employees reported that the MSDs in different body regions during the last 12 months including lower back (62 %), upper back (53 %), shoulders (47 %), and neck (25 %). Moreover, itchy eyes (69 %), tired eyes (83 %), and unclear vision (56.83 %) were the most common visual discomforts or visual symptoms among the participants. Results also revealed that monitor ergonomics and its orientation deficits were significantly associated with visual discomforts. Gender, job type, age, BMI, work experience, duration of computer work, and beak taking after 2 h were the independent variables reliably predicting the MSDs and visual symptoms. CONCLUSION It is evident that MSDs and visual symptoms were associated with computer workstation deficiencies and other work-related factors.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Shohel Parvez
- Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Palash Saha
- Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Subrata Talapatra
- Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
19
|
Marijančić V, Grubić Kezele T, Peharec S, Dragaš-Zubalj N, Pavičić Žeželj S, Starčević-Klasan G. Relationship between Physical Activity and Sedentary Behavior, Spinal Curvatures, Endurance and Balance of the Trunk Muscles-Extended Physical Health Analysis in Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6938. [PMID: 37887676 PMCID: PMC10606682 DOI: 10.3390/ijerph20206938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Physical inactivity and sedentary behavior are associated with poor well-being in young people with adverse effects extending into adulthood. To date, there are many studies investigating the relationship between physical activity (PA) and posture, but there are no data on the relationship between the type and intensity of PA and sedentary behavior, their association with thoracic and lumbar spine angles, and with endurance and balance of the trunk muscles, especially in healthy young adults aged 18-25 years. Moreover, there are no data on the relationship between PA and sedentary behavior and musculoskeletal and cardiopulmonary health, as well as quality of life (QoL) and sleep that would provide a more comprehensive picture of physical health status. AIM Therefore, the aim of this cross-sectional study was to investigate the extent to which PA and sedentary behavior are associated with each other and with changes in spinal curvatures, endurance and balance of trunk muscles in an extended analysis of physical health status in young adults aged 18-25 years by additionally including measures of body composition, cardiorespiratory capacity, and QoL and sleep. METHODS A total of 82 students (58% female, 42% male) aged 18-25 years completed all required tests. Primary outcome measures included the following: PA and sedentary behavior calculated from the long form of International PA Questionnaire (IPAQ-LF), spinal curvatures measured by a Spinal Mouse® device, endurance and balance of the trunk muscles measured using trunk endurance tests and their ratio. RESULTS Overall, 50% of students were classified as minimally active and 50% as health-enhancing PA (HEPA) active. The angles of thoracic kyphosis and lumbar lordosis showed no correlation with PA or time spent sitting. However, students with the lowest PA had significantly higher scores on the trunk extensor endurance test and trunk extensor/flexor endurance test ratio, indicating imbalanced trunk muscles. Moreover, these students spent the most their time sitting. Only PA of vigorous intensity and PA during recreation, leisure, and sports significantly correlated with QoL related to physical health. QoL related to physical and psychosocial health had significantly higher scores when students spent less time sitting. In addition, we found significantly better respiratory performance and SQ at higher PA values, i.e., PA during recreation, leisure, and sport. CONCLUSIONS Our results suggest that students with low PA levels and more time spent sitting have imbalanced trunk muscles, worse respiratory function, and poorer QoL and sleep. Moreover, these findings in college students may reflect their lifestyle and suggest that more PA needs to be promoted to prevent the development of chronic diseases including musculoskeletal disorders.
Collapse
Affiliation(s)
- Verner Marijančić
- Department of Physiotherapy, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (S.P.)
| | - Tanja Grubić Kezele
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Rijeka, 51000 Rijeka, Croatia
| | - Stanislav Peharec
- Department of Physiotherapy, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (S.P.)
| | - Nataša Dragaš-Zubalj
- Department of School and University Medicine, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia;
| | - Sandra Pavičić Žeželj
- Department of Health Ecology, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia;
| | - Gordana Starčević-Klasan
- Department of Basic Medical Science, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
20
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Gagnon D, Mecheri H, Larivière C. Validation of an EMG submaximal method to calibrate a novel dynamic EMG-driven musculoskeletal model of the trunk: Effects on model estimates. J Electromyogr Kinesiol 2023; 68:102728. [PMID: 36512937 DOI: 10.1016/j.jelekin.2022.102728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multijoint EMG-assisted optimization models are reliable tools to predict muscle forces as they account for inter- and intra-individual variations in activation. However, the conventional method of normalizing EMG signals using maximum voluntary contractions (MVCs) is problematic and introduces major limitations. The sub-maximal voluntary contraction (SVC) approaches have been proposed as a remedy, but their performance against the MVC approach needs further validation particularly during dynamic tasks. METHODS To compare model outcomes between MVC and SVC approaches, nineteen healthy subjects performed a dynamic lifting task with two loading conditions. RESULTS Results demonstrated that these two approaches produced highly correlated results with relatively small absolute and relative differences (<10 %) when considering highly-aggregated model outcomes (e.g. compression forces, stability indices). Larger differences were, however, observed in estimated muscle forces. Although some model outcomes, e.g. force of abdominal muscles, were statistically different, their effect sizes remained mostly small (ηG2 ≤ 0.13) and in a few cases moderate (ηG2 ≤ 0.165). CONCLUSION The findings highlight that the MVC calibration approach can reliably be replaced by the SVC approach when the true MVC exertion is not accessible due to pain, kinesiophobia and/or the lack of proper training.
Collapse
Affiliation(s)
| | - Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Denis Gagnon
- Department of Physical Activity Sciences, University of Sherbrooke, Canada
| | - Hakim Mecheri
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada.
| |
Collapse
|
21
|
Evaluation of spinal force normalization techniques. J Biomech 2023; 147:111441. [PMID: 36680886 DOI: 10.1016/j.jbiomech.2023.111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/19/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Division normalization is commonly used in biomechanics studies to remove the effect of anthropometric differences (e.g., body weight) on kinetic variables, facilitating comparison across a population. In spine biomechanics, spinal forces are commonly divided by the body weight or the intervertebral load during a standing posture. However, it has been suggested that offset and power curve normalization are more appropriate than division normalization for normalizing kinetic variables such as ground reaction forces during walking and running. The present study investigated, for the first time, the effectiveness of four techniques for normalizing spinal forces to remove the effect of body weight. Spinal forces at all lumbar levels were estimated using a detailed OpenSim musculoskeletal model of the spine for 11 scaled models (50-100 kg) and during 13 trunk flexion tasks. Pearson correlations of raw and normalized forces against body weight were used to assess the effectiveness of each normalization technique. Body weight and standing division normalization could only successfully normalize L4L5 spinal forces in three tasks, and L5S1 loads in five and three tasks, respectively; however, offset and power curve normalization techniques were successful across all lumbar spine levels and all tasks. Offset normalization successfully removed the effect of body weight and maintained the influence of flexion angle on spinal forces. Thus, we recommend offset normalization to account for anthropometric differences in studies of spinal forces.
Collapse
|
22
|
Knapik GG, Mendel E, Bourekas E, Marras WS. Computational lumbar spine models: A literature review. Clin Biomech (Bristol, Avon) 2022; 100:105816. [PMID: 36435080 DOI: 10.1016/j.clinbiomech.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Computational spine models of various types have been employed to understand spine function, assess the risk that different activities pose to the spine, and evaluate techniques to prevent injury. The areas in which these models are applied has expanded greatly, potentially beyond the appropriate scope of each, given their capabilities. A comprehensive understanding of the components of these models provides insight into their current capabilities and limitations. METHODS The objective of this review was to provide a critical assessment of the different characteristics of model elements employed across the spectrum of lumbar spine modeling and in newer combined methodologies to help better evaluate existing studies and delineate areas for future research and refinement. FINDINGS A total of 155 studies met selection criteria and were included in this review. Most current studies use either highly detailed Finite Element models or simpler Musculoskeletal models driven with in vivo data. Many models feature significant geometric or loading simplifications that limit their realism and validity. Frequently, studies only create a single model and thus can't account for the impact of subject variability. The lack of model representation for certain subject cohorts leaves significant gaps in spine knowledge. Combining features from both types of modeling could result in more accurate and predictive models. INTERPRETATION Development of integrated models combining elements from different model types in a framework that enables the evaluation of larger populations of subjects could address existing voids and enable more realistic representation of the biomechanics of the lumbar spine.
Collapse
Affiliation(s)
- Gregory G Knapik
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA.
| | - Ehud Mendel
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Eric Bourekas
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - William S Marras
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Anderson DE, Groff MW, Flood TF, Allaire BT, Davis RB, Stadelmann MA, Zysset PK, Alkalay RN. Evaluation of Load-To-Strength Ratios in Metastatic Vertebrae and Comparison With Age- and Sex-Matched Healthy Individuals. Front Bioeng Biotechnol 2022; 10:866970. [PMID: 35992350 PMCID: PMC9388746 DOI: 10.3389/fbioe.2022.866970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data. We established a musculoskeletal model for each spine to compute vertebral loading for natural standing, natural standing + weights, forward flexion + weights, and lateral bending + weights and derived the individual vertebral load-to-strength ratio (LSR). For each activity, we compared the metastatic spines' predicted LSRs with the normative LSRs generated from a population-based sample of 250 men and women of comparable ages. Bone metastases classification significantly affected the CT-estimated vertebral strength (Kruskal-Wallis, p < 0.0001). Post-test analysis showed that the estimated vertebral strength of osteosclerotic and mixed metastases vertebrae was significantly higher than that of osteolytic vertebrae (p = 0.0016 and p = 0.0003) or vertebrae without radiographic evidence of bone metastasis (p = 0.0010 and p = 0.0003). Compared with the median (50%) LSRs of the normative dataset, osteolytic vertebrae had higher median (50%) LSRs under natural standing (p = 0.0375), natural standing + weights (p = 0.0118), and lateral bending + weights (p = 0.0111). Surprisingly, vertebrae showing minimal radiographic evidence of bone metastasis presented significantly higher median (50%) LSRs under natural standing (p < 0.0001) and lateral bending + weights (p = 0.0009) than the normative dataset. Osteosclerotic vertebrae had lower median (50%) LSRs under natural standing (p < 0.0001), natural standing + weights (p = 0.0005), forward flexion + weights (p < 0.0001), and lateral bending + weights (p = 0.0002), a trend shared by vertebrae with mixed lesions. This study is the first to apply musculoskeletal modeling to estimate individual vertebral loading in pathologic spines and highlights the role of task-specific loading in augmenting PVF risk associated with specific bone metastatic types. Our finding of high LSRs in vertebrae without radiologically observed bone metastasis highlights that patients with metastatic spine disease could be at an increased risk of vertebral fractures even at levels where lesions have not been identified radiologically.
Collapse
Affiliation(s)
- Dennis E. Anderson
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Michael W. Groff
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Thomas F. Flood
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Brett T. Allaire
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Roger B. Davis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Marc A. Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe K. Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Ron N. Alkalay
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Ghaneh-Ezabadi S, Abdoli-Eramaki M, Arjmand N, Abouhossein A, Zakerian SA. The Validity and Inter-Rater Reliability of a Video-Based Posture-Matching Tool to Estimate Cumulative Loads on the Lower Back. J Biomed Phys Eng 2022; 12:417-430. [PMID: 36059286 PMCID: PMC9395627 DOI: 10.31661/jbpe.v0i0.2203-1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Background Low back pain (LBP) is known as one of the most common work-related musculoskeletal disorders. Spinal cumulative loads (CLs) during manual material handling (MMH) tasks are the main risk factors for LBP. However, there is no valid and reliable quantitative lifting analysis tool available for quantifying CLs among Iranian workers performing MMH tasks. Objective This study aimed to investigate the validity and inter-rater reliability of a posture-matching load assessment tool (PLAT) for estimating the L5-S1 static cumulative compression (CC) and shear (CS) loads based on predictive regression equations. Material and Methods This experimental study was conducted among six participants performing four lifting tasks, each comprised of five trials during which their posture was recorded via a motion capture (Vicon) and simultaneously a three-camera system located at three different angles (0°, 45°, and 90°) to the sagittal plane. Results There were no significant differences between the two CLs estimated by PLAT from the three-camera system and the gold-standard Vicon. In addition, ten raters estimated CLs of the tasks using PLAT in three sessions. The calculated intra-class correlation coefficients for the estimated CLs within each task revealed excellent inter-rater reliability (> 0.75), except for CS in the first and third tasks, which were good (0.6 to 0.75). Conclusion The proposed posture-matching approach provides a valid and reliable ergonomic assessment tool suitable for assessing spinal CLs during various lifting activities.
Collapse
Affiliation(s)
- Saeed Ghaneh-Ezabadi
- PhD Candidate, Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdoli-Eramaki
- PhD, Professor, School of Occupational and Public Health, Ryerson University, Toronto, Canada
| | - Navid Arjmand
- PhD, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Abouhossein
- PhD, Department of Ergonomics, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- PhD, Workplace Health Promotion Research Center (WHPRC), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abolfazl Zakerian
- PhD, Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Evaluating Anthropometric Scaling of a Generic Adult Model to Represent Pediatric Shoulder Strength. J Biomech 2022; 141:111170. [DOI: 10.1016/j.jbiomech.2022.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
26
|
Biomechanical analysis of the impact of increasing levels of body mass index on the ability of a bracing orthosis to alter the asymmetric compressive growth plate loading in a scoliotic spine. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Warren JM, Hey LA, Mazzoleni AP. A finite element study of the relationship between upper body weight and the loads experienced by the human lumbosacral spine, and fusion instrumentation, in a standing upright posture. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Firouzabadi A, Arjmand N, Pan F, Zander T, Schmidt H. Sex-Dependent Estimation of Spinal Loads During Static Manual Material Handling Activities-Combined in vivo and in silico Analyses. Front Bioeng Biotechnol 2021; 9:750862. [PMID: 34796167 PMCID: PMC8592996 DOI: 10.3389/fbioe.2021.750862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Manual material handling (MMH) is considered as one of the main contributors to low back pain. While males traditionally perform MMH tasks, recently the number of females who undertake these physically-demanding activities is also increasing. To evaluate the risk of mechanical injuries, the majority of previous studies have estimated spinal forces using different modeling approaches that mostly focus on male individuals. Notable sex-dependent differences have, however, been reported in torso muscle strength and anatomy, segmental mass distribution, as well as lifting strategy during MMH. Therefore, this study aimed to use sex-specific models to estimate lumbar spinal and muscle forces during static MHH tasks in 10 healthy males and 10 females. Motion-capture, surface electromyographic from select trunk muscles, and ground reaction force data were simultaneously collected while subjects performed twelve symmetric and asymmetric static lifting (10 kg) tasks. AnyBody Modeling System was used to develop base-models (subject-specific segmental length, muscle architecture, and kinematics data) for both sexes. For females, female-specific models were also developed by taking into account for the female’s muscle physiological cross-sectional areas, segmental mass distributions, and body fat percentage. Males showed higher absolute L5-S1 compressive and shear loads as compared to both female base-models (25.3% compressive and 14% shear) and female-specific models (41% compressive and 23.6% shear). When the predicted spine loads were normalized to subjects’ body weight, however, female base-models showed larger loads (9% compressive and 16.2% shear on average), and female-specific models showed 2.4% smaller and 9.4% larger loads than males. Females showed larger forces in oblique abdominal muscles during both symmetric and asymmetric lifting tasks, while males had larger back extensor muscle forces during symmetric lifting tasks. A stronger correlation between measured and predicted muscle activities was found in females than males. Results indicate that female-specific characteristics affect the predicted spinal loads and must be considered in musculoskeletal models. Neglecting sex-specific parameters in these models could lead to the overestimation of spinal loads in females.
Collapse
Affiliation(s)
- Ali Firouzabadi
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Fumin Pan
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Zander
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Gould SL, Cristofolini L, Davico G, Viceconti M. Computational modelling of the scoliotic spine: A literature review. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3503. [PMID: 34114367 PMCID: PMC8518780 DOI: 10.1002/cnm.3503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Scoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed.
Collapse
Affiliation(s)
- Samuele L. Gould
- Department of Industrial EngineeringAlma Mater Studiorum‐University of Bologna (IT)BolognaItaly
- Medical Technology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Luca Cristofolini
- Department of Industrial EngineeringAlma Mater Studiorum‐University of Bologna (IT)BolognaItaly
| | - Giorgio Davico
- Department of Industrial EngineeringAlma Mater Studiorum‐University of Bologna (IT)BolognaItaly
- Medical Technology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Marco Viceconti
- Department of Industrial EngineeringAlma Mater Studiorum‐University of Bologna (IT)BolognaItaly
- Medical Technology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
30
|
Park KH, Baek S, Kang EK, Park HW, Kim G, Kim SH. The Association Between Sagittal Plane Alignment and Disc Space Narrowing of Lumbar Spine in Farmers. Ann Rehabil Med 2021; 45:294-303. [PMID: 34496472 PMCID: PMC8435469 DOI: 10.5535/arm.21037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate whether lumbar lordosis (LL) and lumbar segmental lordosis (LSL) are related to sex, age, low back pain (LBP), and lumbar disc space narrowing (DSN). METHODS A total of 569 farmers were recruited. In lateral spine radiograph, LL (L1-L5) and LSL (L1, L2, L3, L4, and L5) were measured using Cobb's method. The differences in LSL values (ΔLSL) according to the presence or absence of a DSN were calculated as LSLDSN - LSLnoDSN for each DSN level. RESULTS In male, the lateral spine radiograph showed significantly greater L4-LSL and L5-LSL and smaller L1-LSL and L2-LSL compared to female. LLs in the 50-59 and ≥60 years age groups were significantly smaller compared to those in the <50 years age group. In subjects with LBP, LL and L4-LSL were significantly smaller than in those without. The ΔLSLs at the disc level with DSN showed the greatest decrease: L1-ΔLSL (Δ-3.99°), L2-ΔLSL (Δ-3.31°), L3-ΔLSL (Δ-2.87°), L4-ΔLSL (Δ-3.31°), and L5-ΔLSL (Δ-4.44°) in L1/2, L2/3, L3/4, L4/5, and L5/S1 DSN, respectively. Conversely, distant ΔLSLs were inversely increased: L1-LSL (Δ0.75°) with L4/5 DSN and L2-LSL (Δ0.94°) with L5/S1 DSN. CONCLUSION Sagittal plane alignment was significantly associated with sex, age, LBP, and DSN. LSLs around the levels of DSN were decreased, and there was compensational increase of LSL distant to the DSN to maintain the overall LL.
Collapse
Affiliation(s)
- Ki Hoon Park
- Department of Rehabilitation Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sora Baek
- Department of Rehabilitation Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Center for Farmers' Safety and Health and Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Eun Kyoung Kang
- Department of Rehabilitation Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Center for Farmers' Safety and Health and Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Hee-Won Park
- Department of Rehabilitation Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Center for Farmers' Safety and Health and Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Gowun Kim
- Department of Rehabilitation Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Center for Farmers' Safety and Health and Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Sung Hyun Kim
- Human Medical Imaging and Intervention Center, Seoul, Korea
| |
Collapse
|
31
|
Müller A, Rockenfeller R, Damm N, Kosterhon M, Kantelhardt SR, Aiyangar AK, Gruber K. Load Distribution in the Lumbar Spine During Modeled Compression Depends on Lordosis. Front Bioeng Biotechnol 2021; 9:661258. [PMID: 34178959 PMCID: PMC8222614 DOI: 10.3389/fbioe.2021.661258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Excessive or incorrect loading of lumbar spinal structures is commonly assumed as one of the factors to accelerate degenerative processes, which may lead to lower back pain. Accordingly, the mechanics of the spine under medical conditions, such as scoliosis or spondylolisthesis, is well-investigated. Treatments via both conventional therapy and surgical methods alike aim at restoring a "healthy" (or at least pain-free) load distribution. Yet, surprisingly little is known about the inter-subject variability of load bearings within a "healthy" lumbar spine. Hence, we utilized computer tomography data from 28 trauma-room patients, whose lumbar spines showed no visible sign of degeneration, to construct simplified multi-body simulation models. The subject-specific geometries, measured by the corresponding lumbar lordosis (LL) between the endplates of vertebra L1 and the sacrum, served as ceteris paribus condition in a standardized forward dynamic compression procedure. Further, the influence of stimulating muscles from the M. multifidus group was assessed. For the range of available LL from 28 to 66°, changes in compressive and shear forces, bending moments, as well as facet joint forces between adjacent vertebrae were calculated. While compressive forces tended to decrease with increasing LL, facet forces were tendentiously increasing. Shear forces decreased between more cranial vertebrae and increased between more caudal ones, while bending moments remained constant. Our results suggest that there exist significant, LL-dependent variations in the loading of "healthy" spinal structures, which should be considered when striving for individually appropriate therapeutic measures.
Collapse
Affiliation(s)
- Andreas Müller
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Koblenz, Germany
- Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Duebendorf, Switzerland
- Department of Mathematics and Natural Sciences, Institute of Sports Science, University Koblenz-Landau, Koblenz, Germany
| | - Robert Rockenfeller
- Department of Mathematics and Natural Sciences, Mathematical Institute, UniversityKoblenz-Landau, Koblenz, Germany
| | - Nicolas Damm
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Koblenz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven R. Kantelhardt
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ameet K. Aiyangar
- Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Duebendorf, Switzerland
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karin Gruber
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Koblenz, Germany
- Department of Mathematics and Natural Sciences, Institute of Sports Science, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
32
|
Nishizawa A, Katsuhira J, Watanabe M, Oka H, Matsudaira K. A simple method for estimating the intervertebral disc compressive force based on the posture analysis of community-dwelling older adults. J Phys Ther Sci 2021; 33:423-428. [PMID: 34083882 PMCID: PMC8165360 DOI: 10.1589/jpts.33.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
[Purpose] The purpose of this study was to develop a simpler method to estimate the intervertebral disc compressive force in healthy older adults. We also examined the validity of a simpler estimation formula for patients with spinal diseases. [Participants and Methods] Fifty-two older adults participated in the study. The standing posture was measured using a three-dimensional motion capture system. The intervertebral disc compressive force was calculated using a previously reported method. Correlation analysis was used to detect the relationship between the measured parameters and the intervertebral disc compressive force. Multiple regression analysis was performed to obtain an equation for the intervertebral disc compressive force. Correlation analysis was used to determine the regression equation for the patients with spinal diseases. [Results] Multiple regression analysis showed that trunk flexion/extension angle and body mass were significantly associated with intervertebral disc compressive force. A correlation was found between the measured and predicted values in the healthy older adults, whereas both values were inconsistent in patients with spinal diseases. [Conclusion] The results of our study demonstrated that the trunk flexion/extension angle and body mass are indicators of intervertebral disc compressive force and can be used to assess low back mechanical stress in healthy older adults.
Collapse
Affiliation(s)
- Azusa Nishizawa
- Prosthetics & Orthotics and Assistive Technology,
Niigata University of Health and Welfare: 1398 Shimamicho, Kita-ku, Niigata-shi, Niigata
950-3198, Japan
| | - PO
- Prosthetics & Orthotics and Assistive Technology,
Niigata University of Health and Welfare: 1398 Shimamicho, Kita-ku, Niigata-shi, Niigata
950-3198, Japan,Corresponding author. Azusa Nishizawa (E-mail: )
| | - Junji Katsuhira
- Department of Human Environment Design, Faculty of Human
Life Design, Toyo University, Japan
| | - Makoto Watanabe
- Prosthetics & Orthotics and Assistive Technology,
Niigata University of Health and Welfare: 1398 Shimamicho, Kita-ku, Niigata-shi, Niigata
950-3198, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, Faculty of Medicine, The
University of Tokyo Hospital, Japan
| | - Ko Matsudaira
- Department of Medical Research and Management for
Musculoskeletal Pain, 22nd Century Medical and Research Center, Faculty of Medicine, The
University of Tokyo Hospital, Japan
| |
Collapse
|
33
|
Xu YZ, Wang YT, Fan P, Yin XJ, Liu H, Jiang F. Complications and outcomes of open posterior lumbar spinal fusion surgery in obese patients: a meta-analysis. Br J Neurosurg 2020; 36:427-435. [PMID: 33377806 DOI: 10.1080/02688697.2020.1867059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether obesity affects the operation, complications and outcomes after open posterior lumbar spinal fusion surgery for the treatment of low back pain and leg pain. METHODS A meta-analysis of studies that compared the outcome of posterior lumbar spinal fusion in obese and non-obese patients. A total of 16 studies were included. RESULTS There was no difference in pain and functional outcomes. Posterior lumbar spinal fusion in obese patients resulted in a statistically significant increase in intra-operative blood loss (weighted mean difference 40.93, 95% confidence interval (CI) 15.97-65.90, n = 243, and p=.001), longer duration of surgery (weighted mean difference -1.64, 95% CI -4.12 to 0.84, n = 1460, and p=.19), more complications (odds ratio: 1.59, 95% CI 1.24-2.05, n = 339, and p<.001) and extend length of stay (weighted mean difference 0.31, 95% CI 0.07-0.55, n = 1408, and p=.01). CONCLUSIONS Obese patients experience more blood loss, longer duration of surgery, more complications and extended length of stay, but their back and leg pain and functional outcomes are similar to non-obese patients. Based on these results, obesity is not a contraindication to open posterior lumbar spinal fusion surgery.
Collapse
Affiliation(s)
- Yu-Zhu Xu
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yun-Tao Wang
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Pan Fan
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xiang-Jie Yin
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Hang Liu
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Feng Jiang
- Department of Orthopaedics, The Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
34
|
Liu YS, Zhong X, Ghebreiyesus W, Ji J, Xi FJ. Analysis and modeling of human seat interaction with a focus on the upper body and backrest using biomechanics and contact mechanics. Work 2020; 68:S161-S182. [PMID: 33337417 DOI: 10.3233/wor-208015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This paper outlines a method to study the interaction between the human body and the aircraft seat concerning the seat comfort. METHOD Firstly, the human body is modeled based on biomechanics and divided into a number of body segments connected by joints according to human anatomy. The angles between the body segments are obtained by curve fitting of the existing biomechanical research data. The contact forces between the human body and the seat are modeled using pairs of bi-lateral point forces. These forces are calculated and located through the analysis of the center of gravity of each body segment and average muscular structure of the human body. The geometry of the human and the seat is obtained from a 3D scan model or a CAD model. Secondly, the pressure distribution between the human body and the seat is modeled and calculated using the contact stress theory. The results of the two parts are combined to analyze the comfortability in relation to different postures, backrest recline angles and changing in shape and material. RESULTS Simulations were performed and they are compared with experimental measurement and various FEM studies for validation. It is found that accuracy of this method is comparable with most FEM calculation. CONCLUSION This method provides a new direction in cushion conform research. It is faster and convenient to use comparing to the FEM, and the result is reliable.
Collapse
Affiliation(s)
- Yuezhi Sean Liu
- Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada
| | - Xianzhi Zhong
- Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada
| | - Wintta Ghebreiyesus
- Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada
| | - Jiancheng Ji
- Department of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Fengfeng Jeff Xi
- Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
35
|
Comparison of different lifting analysis tools in estimating lower spinal loads - Evaluation of NIOSH criterion. J Biomech 2020; 112:110024. [PMID: 32961423 DOI: 10.1016/j.jbiomech.2020.110024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022]
Abstract
Excessive loads on the human spine is recognized as a risk factor for back injuries/pain. Various lifting analysis tools such as musculoskeletal models, regression equations and NIOSH (National Institute for Occupational Safety and Health) lifting equation (NLE) have been proposed to evaluate and mitigate associated risks during manual material handling activities. Present study aims to compare predicted spinal loads from 5 different lifting analysis tools as well as to critically evaluate the NIOSH recommended weight limit (RWL). Spinal loads were estimated under different symmetric/asymmetric lifting tasks in which hand-load mass at each task was set based on RWL from NLE. Estimated intradiscal pressures (IDPs) of various tools were also compared with in vivo measurements. We compared RWL by NLE versus our estimations of RWL calculated from our regression equations using biomechanical criteria (compression <3400 N with/without shear <1000, 1250 or 1500 N). Our regression equations followed by OpenSim, AnyBody, simple polynomial and 3DSSPP satisfactorily predicted L4-L5 IDPs. Lifting analysis tools estimated comparable spinal compression forces (mean Pearson's r = 0.80; standard deviation of relative difference = 26%) while in shear, differences were greater (mean Pearson's r = 0.68; standard deviation of relative difference = 56%). NLE estimations of RWL were conservative in comparison with our estimations for lean individuals (BMI < 25 kg/m2) when compression <3400 N and shear <1250 N were considered as the biomechanical criteria. For heavier individuals, however, NLE estimations of RWL generated spinal compression >3400 N (NIOSH biomechanical safety threshold) as well as shear >1000 N. Although RWLs estimated by NLE was body weight independent, body weight substantially altered RWLs estimated from our regression equations. For improved estimation of the risk of injury, more accurate failure criteria for spinal segments are essential.
Collapse
|
36
|
Warren JM, Mazzoleni AP, Hey LA. Development and Validation of a Computationally Efficient Finite Element Model of the Human Lumbar Spine: Application to Disc Degeneration. Int J Spine Surg 2020; 14:502-510. [PMID: 32986570 DOI: 10.14444/7066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION This study develops and validates an accurate, computationally efficient, 3-dimensional finite element model (FEM) of the human lumbar spine. Advantages of this simplified model are shown by its application to a disc degeneration study that we demonstrate is completed in one-sixth the time required when using more complicated computed tomography (CT) scan-based models. METHODS An osseoligamentous FEM of the L1-L5 spine is developed using simple shapes based on average anatomical dimensions of key features of the spine rather than CT scan images. Pure moments of 7.5 Nm and a compressive follower load of 1000 N are individually applied to the L1 vertebra. Validation is achieved by comparing rotations and intradiscal pressures to other widely accepted FEMs and in vitro studies. Then degenerative disc properties are modeled and rotations calculated. Required computation times are compared between the model presented in this paper and other models developed using CT scans. RESULTS For the validation study, parameter values for a healthy spine were used with the loading conditions described above. Total L1-L5 rotations for flexion, extension, lateral bending, and axial rotation under pure moment loading were calculated as 20.3°, 10.7°, 19.7°, and 10.3°, respectively, and under a compressive follower load, maximum intradiscal pressures were calculated as 0.68 MPa. These values compare favorably with the data used for validation. When studying the effects of disc degeneration, the affected segment is shown to experience decreases in rotations during flexion, extension, and lateral bending (24%-56%), while rotations are shown to increase during axial rotation (14%-40%). Adjacent levels realize relatively minor changes in rotation (1%-6%). This parametric study required 17.5 hours of computation time compared to more than 4 days required if utilizing typical published CT scan-based models, illustrating one of the primary advantages of the model presented in this article. CONCLUSIONS The FEM presented in this article produces a biomechanical response comparable to widely accepted, complex, CT scan-based models and in vitro studies while requiring much shorter computation times. This makes the model ideal for conducting parametric studies of spinal pathologies and spinal correction techniques.
Collapse
Affiliation(s)
- Justin M Warren
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Andre P Mazzoleni
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Lloyd A Hey
- Hey Clinic for Scoliosis and Spine Surgery, Raleigh, North Carolina
| |
Collapse
|
37
|
Ignasiak D. A novel method for prediction of postoperative global sagittal alignment based on full-body musculoskeletal modeling and posture optimization. J Biomech 2020; 102:109324. [PMID: 31526589 DOI: 10.1016/j.jbiomech.2019.109324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 01/09/2023]
Abstract
Associations between spinal sagittal balance and pain and disability are well documented. Reciprocal changes after spinal surgery might be critical for the outcomes, but assessing their extent remains a challenge. This paper proposes a method for predicting full-body sagittal alignment including reciprocal changes in response to spinal fusion, based on musculoskeletal modeling and inverse-inverse dynamics approach. An established body model (AnyBody) was used, with fused segments modeled as rigid. Posture was optimized based on muscle expenditure minimization, following the concept of the cone of economy. The data of adult spinal fusion patients were obtained retrospectively from an ongoing clinical study. Patient spino-pelvic alignment, body weight and height, age- and pathology-related muscle deterioration, and underwent treatment details were represented in the model. Predicted postural changes were compared to follow-up radiographs to evaluate method validity. Twenty-one cases were analyzed in this preliminary study (age range = 48-74; number of fused segments 1-14). The model predictions correlated well with the radiographic measures at follow-up: TPA, r = 0.83; ΔPILL, r = 0.90; LL, r = 0.90; TK, r = 0.77. The model demonstrated high accuracy in predicting sagittal imbalance (positive predictive value = 1.00, negative predictive value = 0.75). The presented method for patient- and treatment-specific postoperative posture prediction can be used to guide preoperative planning of spinal fusion, but more extensive validation is needed.
Collapse
|
38
|
Damm P, Reitmaier S, Hahn S, Waldheim V, Firouzabadi A, Schmidt H. In vivo hip and lumbar spine implant loads during activities in forward bent postures. J Biomech 2020; 102:109517. [PMID: 31767284 DOI: 10.1016/j.jbiomech.2019.109517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
Abstract
Long-term measurements on the lumbar spinal alignment during daily life revealed that humans spent 90% of the day in a forward bent posture. Compared to standing, this posture leads to a substantial increase in spinal loading. The lumbar spine and pelvis, however, contribute differently to the total amount of flexion, which could possibly indicate a different timing of maximum loads in both structures during flexion. This study aimed to evaluate the in vivo implant forces in the hip and lumbar spine during activities in forward bent postures. This work utilized data collected in earlier in vivo measurements on patients either with telemeterized hip endoprostheses (HE) or vertebral body replacements (VBR). The following activities were investigated: standing, upper body flexion with and without weights in the hands using different lifting techniques (straight and bent knees). The maximum resultant forces in VBR were considerably lower than in HE. Increases in flexion inclinations caused direct increases of the resultant forces within VBR, followed by a plateau or even a decrease of the force until maximum inclination. The resultant force in HE displayed an almost continuous increase until the maximum inclination. This general curve behavior resulted in different HE-VBR load ratios, which were affected by lifting additional weights or different lifting techniques. The results emphasize that maximum loads in the spine, in contrast to the hip, do not necessarily occur at maximum upper body flexion as normally expected, rather already at intermediate flexion angles in VBR patients. The results form the basis for more detailed insilico analyzes.
Collapse
Affiliation(s)
- Philipp Damm
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany
| | - Sandra Reitmaier
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany
| | - Sabine Hahn
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany
| | - Vivian Waldheim
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany
| | - Ali Firouzabadi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
39
|
Ghezelbash F, Shirazi-Adl A, El Ouaaid Z, Plamondon A, Arjmand N. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting. J Biomech 2020; 102:109550. [DOI: 10.1016/j.jbiomech.2019.109550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/11/2023]
|
40
|
Pan F, Firouzabadi A, Zander T, Schmidt H. Sex-dependent differences in lumbo-pelvic coordination for different lifting tasks: A study on asymptomatic adults. J Biomech 2019; 102:109505. [PMID: 31761433 DOI: 10.1016/j.jbiomech.2019.109505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/01/2022]
Abstract
During manual material lifting, the sagittal motion is mainly characterized through the lumbo-pelvic coordination, which is quantified by the ratio between the lumbar and hip rotations (L/P ratio). Alteration in the L/P ratio is an important indicator for low back pain (LBP). Previous studies demonstrated sex-dependent differences in LBP prevalence during lifting activities. However, the sex-dependent differences in the L/P ratio during different lifting tasks has to data not been investigated. An optoelectronic system was used to measure the sagittal lumbo-pelvic motion in 10 males and 10 females. Task A was lifting one weight from the ground in front of the body to three target heights with straight knees (A1-3: abdomen, chest and head levels, respectively). Task B was lifting two identical weights from the ground at the sides of the body to three target angles with bended knees (B1-3: arms close and 45° and 90° abducted to the trunk, respectively). Lifts of 10 kg (males and females) and 20 kg (males only) were performed and three phases were investigated: Phase 1 - pure flexion without load, Phase 2 - lifting up weights, Phase 3 - lowering down weights. Females generally displayed a smaller L/P ratio than males. In Phases 2 and 3, the L/P ratio was greater than in Phase 1 for Tasks A and B. The L/P ratio increased with a greater lifting height for Task B, but displayed no difference neither between lifting 10 kg and 20 kg, nor between weight lifting and lowering for both tasks. These results can provide indications for sex-specific recommendations for safer lifting activities.
Collapse
Affiliation(s)
- Fumin Pan
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Ali Firouzabadi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Thomas Zander
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| |
Collapse
|
41
|
Beach TAC, Frost DM, Zehr JD, Howarth SJ, McGill SM, Callaghan JP. Spine loading during laboratory-simulated fireground operations - inter-individual variation and method of load quantification. ERGONOMICS 2019; 62:1426-1438. [PMID: 31424329 DOI: 10.1080/00140139.2019.1657183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Spine loading data are needed to design low-back health-preserving ergonomic interventions for firefighters. Study objectives were to quantify spine loads during simulated fireground operations using simple (polynomial) and advanced (EMG-assisted musculoskeletal model) methods and to describe the variation in spine loads between performers (N = 20). Spine compression forces differed by as much as 5.5 times bodyweight between individuals performing identical tasks. Anteroposterior and mediolateral shear forces varied by as much 3.2 and 2.1 times bodyweight between individuals performing the same tasks, respectively. Large variations in spine load magnitudes were documented regardless of whether simple or advanced quantification methods were used. Results suggest that low-back loading demands on the fireground would vary widely depending on the physical characteristics of individual firefighters, movement strategies employed, and tasks performed. Thus, personalised ergonomic interventions are warranted to regulate spine loading and load tolerance in firefighters. Practitioner summary: Even when performing the same work, the associated spine loading demands will vary widely across people due to differences in their body sizes, shapes, and movement strategies. Therefore, personalised interventions are needed to regulate spine loading and load tolerance in workers (e.g. obesity prevention, physical capacity-building exercise, and movement [re]training).
Collapse
Affiliation(s)
- Tyson A C Beach
- Faculty of Kinesiology and Physical Education, University of Toronto , Toronto , ON , Canada
| | - David M Frost
- Faculty of Kinesiology and Physical Education, University of Toronto , Toronto , ON , Canada
| | - Jackie D Zehr
- Department of Kinesiology, University of Waterloo , Waterloo , ON , Canada
| | - Samuel J Howarth
- Faculty of Kinesiology and Physical Education, University of Toronto , Toronto , ON , Canada
- Department of Research, Canadian Memorial Chiropractic College , North York , ON , Canada
| | - Stuart M McGill
- Department of Kinesiology, University of Waterloo , Waterloo , ON , Canada
| | - Jack P Callaghan
- Department of Kinesiology, University of Waterloo , Waterloo , ON , Canada
| |
Collapse
|
42
|
Arampatzis A, Frank J, Laube G, Mersmann F. Trunk muscle strength and lumbo-pelvic kinematics in adolescent athletes: Effects of age and sex. Scand J Med Sci Sports 2019; 29:1691-1698. [PMID: 31206810 DOI: 10.1111/sms.13503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Considering their potential relevance for low-back pain, we investigated trunk muscle strength, sagittal lumbo-pelvic alignment while standing and lumbo-pelvic ratio during trunk flexion in adolescent athletes with regard to the effects of age and sex. Twenty-two early adolescent (EA: 13-15 years, 10 females) and 28 late adolescent (LA: 16-19 years, 14 females) high-level athletes (training duration more than 12 hours per week) participated in the study. We measured trunk extension and trunk flexion moments during maximum voluntary isometric contractions using a dynamometer. Further, we examined lumbo-pelvic kinematics in the upright standing position and during forward trunk bending using two 3-dimensional accelerometers. Using a lineal regression model in which the flexion moment from each participant was used as predictor for the corresponding extension moment, we found higher residuals (P < 0.001) in the EA compared to LA, indicating greater imbalances in the trunk muscle strength in EA. We found a higher lordosis in the upright position, greater pelvic rotation, and greater lordotic posture during the forward bending in females (P < 0.01). These age-related imbalances and sex-related characteristics in lumbo-pelvic kinematics might affect the neuromuscular control of trunk stability and the magnitude of spine loading. We recommend the implementation of specific coordination and stabilization programs for muscle groups that contribute to lumbo-pelvic kinematics and training routines that support a balanced strength development within the trunk muscles in adolescent athletes.
Collapse
Affiliation(s)
- Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| | - Johannes Frank
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Laube
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| |
Collapse
|
43
|
Marouane H, Shirazi-Adl A. Sensitivity of medial-lateral load sharing to changes in adduction moments or angles in an asymptomatic knee joint model during gait. Gait Posture 2019; 70:39-47. [PMID: 30802643 DOI: 10.1016/j.gaitpost.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) of the knee joint is a common disease accompanied by pain and impaired mobility. Despite some recent concerns on the lack of correlation between the medial load and the knee adduction moment (KAM), KAM is routinely considered as a surrogate measure of medial load and hence a marker where its reduction is the main focus of preventive and treatment interventions. RESEARCH QUESTION Determine the relative sensitivity of the tibiofemoral medial-lateral contact load partitioning to changes in the knee adduction angle (KAA) versus KAM. METHODS Using a lower extremity hybrid musculoskeletal (MS) model driven by gait kinematics and kinetics, we compute here in asymptomatic subjects the sensitivity of the knee joint biomechanical response (muscle and ligament forces) in general and medial/lateral load partitioning in particular to the relative changes in the reported KAA versus changes in reported KAM (both by one standard deviation). RESULTS As KAA increased (at constant KAM), so did the passive moment resistance of the knee joint which as a result and at all stance periods substantially reduced forces in lateral hamstrings while increasing those in medial hamstrings. At 25% and 75% stance as two highly loaded periods of gait, the drop in KAA (from + SD to -SD while at constant KAM) drastically reduced the medial contact force by 44% and 30% and the medial over lateral contact load and area ratios by 92% and 79% as well as 64% and 51%, respectively. In contrast, the equivalent alterations in KAM (by ± SD at constant KAA) had lower and less consistent effects (<7%) showing much smaller sensitivity to changes in KAM alone. Ligament forces altered at various stance periods with inconsistent trends; peak values of 418 N in the anterior cruciate ligament (90% carried by the posterolateral bundle) and 1056 N in the patellar tendon were computed both at 25% stance and minimum KAA. SIGNIFICANCE These findings indicate a poor correlation between KAM and tibiofemoral load distribution suggesting instead that KAA and knee alignment should be in focus as the primary marker of knee joint load partitioning and associated prevention and treatment interventions.
Collapse
Affiliation(s)
- H Marouane
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Québec, Canada.
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Québec, Canada
| |
Collapse
|
44
|
Behjati M, Arjmand N. Biomechanical Assessment of the NIOSH Lifting Equation in Asymmetric Load-Handling Activities Using a Detailed Musculoskeletal Model. HUMAN FACTORS 2019; 61:191-202. [PMID: 30222936 DOI: 10.1177/0018720818795038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To assess adequacy of the National Institute for Occupational Safety and Health (NIOSH) Lifting Equation (NLE) in controlling lumbar spine loads below their recommended action limits during asymmetric load-handling activities using a detailed musculoskeletal model, that is, the AnyBody Modeling System. BACKGROUND The NIOSH committee employed simplistic biomechanical models for the calculation of the spine compressive loads with no estimates of the shear loads. It is therefore unknown whether the NLE would adequately control lumbar compression and shear loads below their recommended action limits during asymmetric load-handling activities. METHOD Twenty-four static stoop lifting tasks at different load asymmetry angles, heights, and horizontal distances were performed by one normal-weight (70 kg) and one obese (93 kg) individual. For each task, the recommended weight limit computed by the NLE and body segment angles measured by a video-camera system (VICON) were prescribed in the participant-specific models developed in the AnyBody Modeling System that estimated spinal loads. RESULTS For both individuals, the NLE adequately controlled L5-S1 loads below their recommended action limits for all activities performed in upright postures. Both individuals, however, experienced compressive and/or shear L5-S1 loads beyond the recommended action limits when lifting was performed near the floor with large load asymmetry. CONCLUSION The NLE failed to control spinal loads below the recommended limits during asymmetric lifting tasks performed near the floor. APPLICATION The NLE should be used with caution for extreme tasks involving load handling near the floor with large load asymmetry.
Collapse
|
45
|
Shariat A, Cardoso JR, Cleland JA, Danaee M, Ansari NN, Kargarfard M, Mohd Tamrin SB. Prevalence rate of neck, shoulder and lower back pain in association with age, body mass index and gender among Malaysian office workers. Work 2019; 60:191-199. [PMID: 29865103 DOI: 10.3233/wor-2738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaysian office workers often experience Musculoskeletal Discomfort (MSD) which is typically related to the low back, shoulders, and neck. OBJECTIVES The objective of this study was to examine the occurrence of lower back, shoulder, and neck pain among Malaysian office workers. METHODS 752 subjects (478 women and 274 men) were randomly selected from the Malaysian office workers population of 10,000 individuals. The participants were aged between 20-50 years and had at least one year of work experience. All participants completed the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ). Instructions to complete the questinnaire were given to the participants under the researchers supervision in the morning before they started a day of work. The participants were then classified into four categories based on body mas index (BMI) (BMI:≤18.4, 18.5-24.99, 25-29.99, ≥30) and age (Age: 20-29, 30-39, 40-49, ≥50). RESULTS There was a significant association between pain severity in gender and right (p = 0.046) and left (p = 0.041) sides of the shoulders. There was also a significant association between BMI and severity of pain in the lower back area (p = 0.047). It was revealed that total pain score in the shoulders was significantly associated with age (p = 0.041). CONCLUSIONS The results of this study demonstrated that a significant correlation existed between pain servity for gender in both right and left shoulder. These findings require further scientific investigation as do the identification of effective preventative stratgies.
Collapse
Affiliation(s)
- Ardalan Shariat
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Malaysia
| | - Jefferson Rosa Cardoso
- Laboratory of Biomechanics and Clinical Epidemiology, PAIFIT Research Group, Universidade Estadual de Londrina, Londrina, PR - Brazil
| | | | - Mahmoud Danaee
- University of Malaya Centre of Addiction Sciences (Umcas), Malaysia
| | - Noureddin Nakhostin Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Shamsul Bahri Mohd Tamrin
- Department of Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Malaysia
| |
Collapse
|
46
|
Corbeil P, Plamondon A, Handrigan G, Vallée-Marcotte J, Laurendeau S, Ten Have J, Manzerolle N. Biomechanical analysis of manual material handling movement in healthy weight and obese workers. APPLIED ERGONOMICS 2019; 74:124-133. [PMID: 30487091 DOI: 10.1016/j.apergo.2018.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/29/2018] [Accepted: 08/18/2018] [Indexed: 06/09/2023]
Abstract
The risk of back injury during work remains high today for manual materials handler. The purpose of this study is to identify the potential presence of compensatory strategies in obese and non-obese handlers and evaluate the impact these strategies have on trunk kinematics and kinetics. The biomechanical and ergonomic impacts in 17 obese and 20 healthy-weight handlers were evaluated. The task studied consisted in moving boxes from a conveyor to a hand trolley and back. The results show that the anthropometric characteristics of obese handlers are linked to a significant increase in peak lumbar loading during lifting and lowering of boxes. Few postural differences between the two groups were observed. These results suggest that the excess weight of an obese worker has a significant added effect on the musculoskeletal structures of the back, which exposes obese handlers to a higher risk of developing a musculoskeletal disorder during load handling.
Collapse
Affiliation(s)
- Philippe Corbeil
- Department of Kinesiology, Laval University, Quebec City, QC, Canada; Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Centre Intégré Universitaire de Santé et de Services Sociaux de la Capitale-Nationale (CIUSSS-CN), Quebec City, QC, Canada.
| | - André Plamondon
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montreal, Canada
| | - Grant Handrigan
- School of Kinesiology and Leisure Studies, Université de Moncton, Moncton, NB, Canada
| | | | - Simon Laurendeau
- Department of Kinesiology, Laval University, Quebec City, QC, Canada
| | - Jasmin Ten Have
- Department of Kinesiology, Laval University, Quebec City, QC, Canada
| | - Nancy Manzerolle
- Department of Kinesiology, Laval University, Quebec City, QC, Canada
| |
Collapse
|
47
|
Gagnon D, Plamondon A, Larivière C. A comparison of lumbar spine and muscle loading between male and female workers during box transfers. J Biomech 2018; 81:76-85. [PMID: 30286979 DOI: 10.1016/j.jbiomech.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
There is a clear relationship between lumbar spine loading and back musculoskeletal disorders in manual materials handling. The incidence of back disorders is greater in women than men, and for similar work demands females are functioning closer to their physiological limit. It is crucial to study loading on the spine musculoskeletal system with actual handlers, including females, to better understand the risk of back disorders. Extrapolation from biomechanical studies conducted on unexperienced subjects (mainly males) might not be applicable to actual female workers. For male workers, expertise changes the lumbar spine flexion, passive spine resistance, and active/passive muscle forces. However, experienced females select similar postures to those of novices when spine loading is critical. This study proposes that the techniques adopted by male experts, male novices, and females (with considerable experience but not categorized as experts) impact their lumbar spine musculoskeletal systems differently. Spinal loads, muscle forces, and passive resistance (muscle and ligamentous spine) were predicted by a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Expert males flexed their lumbar spine less (avg. 21.9° vs 30.3-31.7°) and showed decreased passive internal moments (muscle avg. 8.9% vs 15.9-16.0%; spine avg. 4.7% vs 7.1-7.8%) and increased active internal moments (avg. 72.9% vs 62.0-63.9%), thus producing a different impact on their lumbar spine musculoskeletal systems. Experienced females sustained the highest relative spine loads (compression avg. 7.3 N/BW vs 6.2-6.4 N/BW; shear avg. 2.3 N/BW vs 1.7-1.8 N/BW) in addition to passive muscle and ligamentous spine resistance similar to novices. Combined with smaller body size, less strength, and the sequential lifting technique used by females, this could potentially mean greater risk of back injury. Workers should be trained early to limit excessive and repetitive stretching of their lumbar spine passive tissues.
Collapse
Affiliation(s)
- Denis Gagnon
- Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - André Plamondon
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| |
Collapse
|
48
|
Computation of the role of kinetics, kinematics, posterior tibial slope and muscle cocontraction on the stability of ACL-deficient knee joint at heel strike – Towards identification of copers from non-copers. J Biomech 2018; 77:171-182. [DOI: 10.1016/j.jbiomech.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/21/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
49
|
Vasavada AN, Hughes E, Nevins DD, Monda SM, Lin DC. Effect of Subject-Specific Vertebral Position and Head and Neck Size on Calculation of Spine Musculoskeletal Moments. Ann Biomed Eng 2018; 46:1844-1856. [PMID: 29987540 DOI: 10.1007/s10439-018-2084-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Abstract
Spine musculoskeletal models used to estimate loads and displacements require many simplifying assumptions. We examined how assumptions about subject size and vertebral positions can affect the model outcomes. Head and neck models were developed to represent 30 subjects (15 males and 15 females) in neutral posture and in forward head postures adopted while using tablet computers. We examined the effects of (1) subject size-specific parameters for head mass and muscle strength; and (2) vertebral positions obtained either directly from X-ray or estimated from photographs. The outcome metrics were maximum neck extensor muscle moment, gravitational moment of the head, and gravitational demand, the ratio between gravitational moment and maximum muscle moment. The estimates of maximum muscle moment, gravitational moment and gravitational demand were significantly different when models included subject-specific vertebral positions. Outcome metrics of models that included subject-specific head and neck size were not significantly different from generic models on average, but they had significant sex differences. This work suggests that developing models from X-rays rather than photographs has a large effect on model predictions. Moreover, size-specific model parameters may be important to evaluate sex differences in neck musculoskeletal disorders.
Collapse
Affiliation(s)
- Anita N Vasavada
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA. .,Department of Integrative Physiology and Neuroscience, Pullman, WA, USA. .,Washington Center for Muscle Biology, Pullman, WA, USA.
| | - Ellis Hughes
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - Derek D Nevins
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.,School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Steven M Monda
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.,Department of Integrative Physiology and Neuroscience, Pullman, WA, USA.,Washington Center for Muscle Biology, Pullman, WA, USA
| |
Collapse
|
50
|
Ghezelbash F, El Ouaaid Z, Shirazi-Adl A, Plamondon A, Arjmand N. Trunk musculoskeletal response in maximum voluntary exertions: A combined measurement-modeling investigation. J Biomech 2018; 70:124-133. [PMID: 29198368 DOI: 10.1016/j.jbiomech.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 02/05/2023]
Abstract
Maximum voluntary exertion (MVE) tasks quantify trunk strength and maximal muscle electromyography (EMG) activities with both clinical and biomechanical implications. The aims here are to evaluate the performance of an existing trunk musculoskeletal model, estimate maximum muscle stresses and spinal forces, and explore likely differences between males and females in maximum voluntary exertions. We, therefore, measured trunk strength and EMG activities of 19 healthy right-handed subjects (9 females and 10 males) in flexion, extension, lateral and axial directions. MVEs for all subjects were then simulated in a subject-specific trunk musculoskeletal model, and estimated muscle activities were compared with EMGs. Analysis of variance was used to compare measured moments and estimated spinal loads at the L5-S1 level between females and males. MVE moments in both sexes were greatest in extension (means of 236 Nm in males and 190 Nm in females) and least in left axial torque (97 Nm in males and 64 Nm in females). Being much greater in lateral and axial MVEs, coupled moments reached ∼50% of primary moments in average. Females exerted less moments in all directions reaching significance except in flexion. Muscle activity estimations were strongly correlated with measurements in flexion and extension (Pearson's r = 0.69 and 0.76), but the correlations were very weak in lateral and axial MVEs (Pearson's r = 0.27 and 0.13). Maximum muscle stress was in average 0.80 ± 0.42 MPa but varied among muscles from 0.40 ± 0.22 MPa in rectus abdominis to 0.99 ± 0.29 MPa in external oblique. To estimate maximum muscle stresses and evaluate validity of a musculoskeletal model, MVEs in all directions with all coupled moments should be considered.
Collapse
Affiliation(s)
- F Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Canada.
| | - Z El Ouaaid
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Canada
| | - A Plamondon
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|