1
|
Chandrasekaran P, Alanazi A, Kwok B, Li Q, Viraraghavan G, Balasubramanian S, Frank DB, Lu XL, Birk DE, Mauck RL, Dyment NA, Koyama E, Han L. Type V collagen exhibits distinct regulatory activities in TMJ articular disc versus condylar cartilage during postnatal growth and remodeling. Acta Biomater 2024; 189:192-207. [PMID: 39362448 PMCID: PMC11640222 DOI: 10.1016/j.actbio.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding matrix molecular activities that regulate the postnatal growth and remodeling of the temporomandibular joint (TMJ) articular disc and condylar cartilage will enable the development of effective regenerative strategies targeting TMJ disorders. This study elucidated the distinct roles of type V collagen (collagen V) in regulating these two units. Studying the TMJ of young adult Col5a1+/- mice, we found that loss of collagen V resulted in substantial changes in the proliferation, clustering and density of progenitors in condylar cartilage, but did not have a major impact on disc cells that are more fibroblast-like. Although loss of collagen V led to thickened collagen fibrils with increased heterogeneity in the disc, there were no significant changes in local micromodulus, except for a reduction at the posterior end of the inferior side. Following the induction of aberrant occlusal loading by the unilateral anterior crossbite (UAC) procedure, both wild-type (WT) and Col5a1+/- condylar cartilage exhibited salient remodeling, and Col5a1+/- condyle developed more pronounced degeneration and tissue hypertrophy at the posterior end than the WT. In contrast, neither UAC nor collagen V deficiency induced marked changes in the morphology or biomechanical properties of the disc. Together, our findings highlight the distinct roles of collagen V in regulating these two units during postnatal growth and remodeling, emphasizing its more crucial role in condylar cartilage due to its impact on the highly mechanosensitive progenitors. These results provide the foundation for using collagen V to improve the regeneration of TMJ and the care of patients with TMJ disorders. STATEMENT OF SIGNIFICANCE: Successful regeneration of the temporomandibular joint (TMJ) articular disc and condylar cartilage remains a significant challenge due to the limited understanding of matrix molecular activities that regulate the formation and remodeling of these tissues. This study demonstrates that collagen V plays distinct and critical roles in these processes. In condylar cartilage, collagen V is essential for regulating progenitor cell fate and maintaining matrix integrity. In the disc, collagen V also regulates fibril structure and local micromechanics, but has a limited impact on cell phenotype or its remodeling response. Our findings establish collagen V as a key component in maintaining the integrity of these two units, with a more crucial role in condylar cartilage due to its impact on progenitor cell activities.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abdulaziz Alanazi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Girish Viraraghavan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
2
|
Krakowski P, Rejniak A, Sobczyk J, Karpiński R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare (Basel) 2024; 12:1648. [PMID: 39201206 PMCID: PMC11353818 DOI: 10.3390/healthcare12161648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.
Collapse
Affiliation(s)
- Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University, 20-059 Lublin, Poland
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Adrian Rejniak
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Jakub Sobczyk
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, University of Technology, 20-618 Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University, 20-059 Lublin, Poland
| |
Collapse
|
3
|
Rao C, Huang G, Mu F, Tan Z, Yuan J. Anesthetic management of patients with difficult intubation due to temporomandibular joint osteoarthritis: A case report. Medicine (Baltimore) 2024; 103:e36956. [PMID: 38215095 PMCID: PMC10783316 DOI: 10.1097/md.0000000000036956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
INTRODUCTION Temporomandibular joint osteoarthritis (TMJOA) affects 8% to 16% of the global population, yet TMJOA remains relatively underappreciated clinically. To anesthesiologists, who is concerned about patient safety, adequate preoperative evaluation and preparation, as well as individualized anesthetic management of patients, are necessary. Therefore, the anesthesiologist should be alert for difficult airways due to TMJOA, have a full and comprehensive understanding of the disease, and possess the appropriate expertise for difficult airway intubation. CASE PRESENTATION A 52-year-old female patient was scheduled for laparoscopic operation of uterine adnexa under general anesthesia. The patient preoperative evaluation showed only 1 finger width of mouth opening, and the computed tomography scan showed bilateral temporomandibular arthritis, which was evident on the right side. Intraoperatively, the expected airway difficulties occurred, and the anesthesiologist opted to use lightwand intubation, which was ultimately successful in 1 pass without any complications. CONCLUSION Intubation using a lightwand for patients with difficult intubation due to TMJOA is a very effective intubation modality.
Collapse
Affiliation(s)
- Changle Rao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guihua Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangfang Mu
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhengquan Tan
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Arnold KM, Sicard D, Tschumperlin DJ, Westendorf JJ. Atomic Force Microscopy Micro-Indentation Methods for Determining the Elastic Modulus of Murine Articular Cartilage. SENSORS (BASEL, SWITZERLAND) 2023; 23:1835. [PMID: 36850434 PMCID: PMC9967621 DOI: 10.3390/s23041835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.
Collapse
Affiliation(s)
- Katherine M. Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
6
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
7
|
Atomic force microscopy (AFM) and its applications to bone-related research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:52-66. [DOI: 10.1016/j.pbiomolbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
8
|
Bu L, Wei X, Zheng J, Qiu Y, Yang C. Evaluation of internal fixation techniques for extracapsular fracture: A finite element analysis and comparison. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107072. [PMID: 36037603 DOI: 10.1016/j.cmpb.2022.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES This study explored the optimal plates and screws fixation for extracapsular fracture by finite element analysis, and provided a biomechanical basis for clinical treatment. METHODS Four extracapsular fixation models were built and evaluated: A. One single straight four-hole plate with two bi-cortical screws on both sides and two mono-cortical screws in the middle; B. One single straight four-hole plate with four bi-cortical screws; C. Two straight four-hole plates, each with two bi-cortical screws on both sides and two mono-cortical screws in the middle; D. One L-shape four-hole plate in the back and one straight four-hole plate in the front, each with two bi-cortical screws on both sides and two mono-cortical screws in the middle. Displacements of fractured bone blocks and stress of plates, screws, cortical and cancellous bone and the deformation of plates were analyzed by finite element analysis to investigate their stability in clinical using. RESULTS Groups A and B showed larger displacements of the fractured bone block, greater deformation of plates and higher risk of the plate breakage during masticatory motion. Groups C and D exhibited the minimum displacements of the fractured bone block, the stress distribution within the safe range and less deformation of the plates. In addition, double plates fixation and bi-cortical screws exceeded single plate fixation and mono-cortical screws in stability, respectively, while an L-shape plate exhibited no significant differences in the stress dispersion and the displacement reduction. CONCLUSIONS Double plates fixation of the extracapsular condylar fracture was a safe and stable way and bi-cortical screws should be selected as far as possible.
Collapse
Affiliation(s)
- Lingtong Bu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Xiang Wei
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Jisi Zheng
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | - Yating Qiu
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Shanghai 200011, China.
| |
Collapse
|
9
|
Men Y, Liu J, Chen W, Wang X, Liu L, Ye J, Jia P, Wang Y. Material parameters identification of 3D printed titanium alloy prosthesis stem based on response surface method. Comput Methods Biomech Biomed Engin 2022; 26:789-798. [PMID: 35748704 DOI: 10.1080/10255842.2022.2089023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
3D printed Titanium alloy is widely used as a material of artificial joints and its mechanical properties is a key factor for improving operation results. Because the elastic modulus of the 3 D printed titanium alloy specimen was related to the size of the metal blank. It is very difficult to identify mechanical parameters by traditional mechanics experiments. In this paper, according to the inverse analysis principle of the parameter estimation, a response surface methodology (RSM) was proposed to identify the mechanical parameters, based on finite element inverse analysis. The finite element models of femoral prosthesis stem were established in line with compression experiments. The material parameters were combined by central composite design (CCD), and the response surface (RS) models were constructed using a quadratic polynomial with cross terms and optimized using a genetic algorithm (GA). Finally, the best mechanical parameter combination of the femoral prosthesis was calculated. The calculated elastic modulus and Poisson's ratio of a 3 D printed titanium alloy femoral prosthesis stem were 109.07 GPa and 0.29, respectively, with the elastic modulus error being very small. The proposed method is effective and can be extended for the identification of mechanical parameters in other 3 D printed models.
Collapse
Affiliation(s)
- Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Jiaxin Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Wei Chen
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Lu Liu
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research Enterprises, Just Huajian Medical Devices (Tianjin) Co., Ltd, China
| | - Jinduo Ye
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Peng Jia
- Department of Trauma Unit, Tianjin Hospital, China
| | - Yeming Wang
- Department of Trauma Unit, Tianjin Hospital, China
| |
Collapse
|
10
|
A review of composition‐structure‐function properties and tissue engineering strategies of articular cartilage: compare condyle process and knee‐joint. ADVANCED ENGINEERING MATERIALS 2022. [DOI: 10.1002/adem.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Zou Y, Cai S, Lin H, Cai J, Zheng DL, Lu YG, Xu L. Experimental functional shift-induced osteoarthritis-like changes at the TMJ and altered integrin expression in a rat model. Ann N Y Acad Sci 2022; 1511:210-227. [PMID: 35188225 DOI: 10.1111/nyas.14741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. We aimed to evaluate, using a rat model, the effect of mandibular functional deviation on the TMJ in relation to the functional roles of integrin β family members. The effects of experimental functional deviation on the TMJ of 6-week-old Sprague-Dawley female rats, randomly assigned to control (n = 42) and experimental groups (n = 42), were evaluated at 3 days and 1, 2, 4, and 8 weeks by histological staining, immunofluorescence, real-time quantitative polymerase chain reaction, and micro-computed tomography. The results showed that the experimental functional shift changed the shape of condyles, thinned the cartilage, and increased the proportion of the hypertrophic layer on the deviated sides of condyles. In addition, the extracellular matrix of the condyle cartilage exhibited degradation at 1 week and subchondral trabecular bone was lost at 4 and 8 weeks. Osteoarthritis (OA)-like changes occurred in the left and right condyles of rats in the experimental group and were aggravated over time. Integrin β family expression, especially integrin β2 , was altered from week 1, possibly related to the OA-like changes. These data may provide insight into the onset of TMJ OA.
Collapse
Affiliation(s)
- Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Orthodontics Department, Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Senxin Cai
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Orthodontics Department, Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Hanyu Lin
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Orthodontics Department, Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Jingwen Cai
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Orthodontics Department, Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linyu Xu
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China.,Orthodontics Department, Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Franklin M, Sperry M, Phillips E, Granquist E, Marcolongo M, Winkelstein BA. Painful temporomandibular joint overloading induces structural remodeling in the pericellular matrix of that joint's chondrocytes. J Orthop Res 2022; 40:348-358. [PMID: 33830541 PMCID: PMC8497636 DOI: 10.1002/jor.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Mechanical stress to the temporomandibular joint (TMJ) is an important factor in cartilage degeneration, with both clinical and preclinical studies suggesting that repeated TMJ overloading could contribute to pain, inflammation, and/or structural damage in the joint. However, the relationship between pain severity and early signs of cartilage matrix microstructural dysregulation is not understood, limiting the advancement of diagnoses and treatments for temporomandibular joint-osteoarthritis (TMJ-OA). Changes in the pericellular matrix (PCM) surrounding chondrocytes may be early indicators of OA. A rat model of TMJ pain induced by repeated jaw loading (1 h/day for 7 days) was used to compare the extent of PCM modulation for different loading magnitudes with distinct pain profiles (3.5N-persistent pain, 2N-resolving pain, or unloaded controls-no pain) and macrostructural changes previously indicated by Mankin scoring. Expression of PCM structural molecules, collagen VI and aggrecan NITEGE neo-epitope, were evaluated at Day 15 by immunohistochemistry within TMJ fibrocartilage and compared between pain conditions. Pericellular collagen VI levels increased at Day 15 in both the 2N (p = 0.003) and 3.5N (p = 0.042) conditions compared to unloaded controls. PCM width expanded to a similar extent for both loading conditions at Day 15 (2N, p < 0.001; 3.5N, p = 0.002). Neo-epitope expression increased in the 3.5N group over levels in the 2N group (p = 0.041), indicating pericellular changes that were not identified in the same groups by Mankin scoring of the pericellular region. Although remodeling occurs in both pain conditions, the presence of pericellular catabolic neo-epitopes may be involved in the macrostructural changes and behavioral sensitivity observed in persistent TMJ pain.
Collapse
Affiliation(s)
- Melissa Franklin
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104
| | - Megan Sperry
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,Corresponding Author(s): Megan Sperry, PhD, Wyss Institute at Harvard University, 3 Blackfan Circle, Boston, MA 02115, , 978-387-3763
| | - Evan Phillips
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Eric Granquist
- Oral & Maxillofacial Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
13
|
Woods PS, Morin AA, Chen PJ, Mahonski S, Xiao L, Hurley M, Yadav S, Schmidt TA. Automated Indentation Demonstrates Structural Stiffness of Femoral Articular Cartilage and Temporomandibular Joint Mandibular Condylar Cartilage Is Altered in FgF2KO Mice. Cartilage 2021; 13:1513S-1521S. [PMID: 33012179 PMCID: PMC8804844 DOI: 10.1177/1947603520962565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Employ an automated indentation technique, using a commercially available machine, to assess the effect of fibroblast growth factor 2 (FGF2) expression on structural stiffness over the surface of both murine femoral articular cartilage (AC) and temporomandibular joint (TMJ) mandibular condylar cartilage (MCC). DESIGN Experiments were performed using 3-month-old female homozygote Fgf2KO mice with wild type (WT) littermates. After euthanization, isolated mandibles and hindlimbs were either processed for histology or subjected to automated indentation on a Biomomentum Mach-1 v500csst with a 3-axis motion controller in a phosphate buffered saline bath using a 0.3 mm spherical tip indenter. The effect of indentation depth on normal force was characterized, then structural stiffness was calculated and mapped at multiple positions on the AC and MCC. RESULTS Automated indentation of the AC and TMJ MCC was successfully completed and was able to demonstrate both regional variation in structural stiffness and differences between WT and Fgf2KO mice. Structural stiffness values for Fgf2KO AC were significantly smaller than WT at both the medial/anterior (P < 0.05) and medial/posterior (P < 0.05) positions. Global Fgf2KO also lead to a decrease in MCC thickness of the TMJ compared with WT (P < 0.05) and increased structural stiffness values for Fgf2KO at both the posterior and anterior location (P < 0.05). CONCLUSIONS Automated indentation spatially resolved differences in structural stiffness between WT and Fgf2KO tissue, demonstrating FGF2 expression affects femoral AC and TMJ MCC. This quantitative method will provide a valuable approach for functional characterization of cartilage tissues in murine models relevant to knee joint and TMJ health and disease.
Collapse
Affiliation(s)
- Paige S. Woods
- Biomedical Engineering Department,
School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Alyssa A. Morin
- Biomedical Engineering Department,
School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Po-Jung Chen
- Division of Orthodontics, School of
Dental Medicine, UConn Health, Farmington, CT, USA
| | - Sarah Mahonski
- Department of Medicine, School of
Medicine, UConn Health, Farmington, CT, USA
| | - Liping Xiao
- Department of Medicine, School of
Medicine, UConn Health, Farmington, CT, USA
| | - Marja Hurley
- Department of Medicine, School of
Medicine, UConn Health, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics, School of
Dental Medicine, UConn Health, Farmington, CT, USA
| | - Tannin A. Schmidt
- Biomedical Engineering Department,
School of Dental Medicine, UConn Health, Farmington, CT, USA,Tannin A. Schmidt, Biomedical Engineering
Department, UConn Health, 263 Farmington Avenue, MC 17121, Farmington, CT 06001,
USA.
| |
Collapse
|
14
|
Duan J, Zhang J, Yang H, Liu Q, Xie M, Zhang M, Chu Y, Zhou P, Yu S, Chen C, Wang M. Mineral deposition intervention through reduction of phosphorus intake suppresses osteoarthritic lesions in temporomandibular joint. Osteoarthritis Cartilage 2021; 29:1370-1381. [PMID: 34126199 DOI: 10.1016/j.joca.2021.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the suppressing impact of low phosphorus intake on osteoarthritic temporomandibular joint and the possible mechanisms of nuclear acid injury in the insulted chondrocytes. DESIGN Chondrocytes were loaded with fluid flow shear stress (FFSS) with or without low phosphorus medium. Seventy-two mice (sampled at 3-, 7- and 11-wk, n = 6) and forty-eight rats (sampled at 12-wks for different testing purpose, n = 6) were applied with unilateral anterior crossbite (UAC) with or without low phosphorus diet. In the FFSS model, the Ca and P content, molecules related to nucleic acid degradation and the mineral-producing responses in chondrocytes were detected. The effect of culture dish stiffness on chondrocytes osteogenic differentiation was measured. In the UAC model, the content of Ca and P in serum were tested. The condylar cartilage ossification and stiffness were detected using micro-CT, scanning electron microscope and atomic force microscope. RESULTS FFSS induced nucleic acid degradation, Pi accumulation and mineral-producing responses in the cultured chondrocytes, all were alleviated by low P medium. Stiffer dish bottoms promoted the osteogenic differentiation of the cultured chondrocytes. UAC stimulated cartilage degeneration and chondrocytes nucleic acid damage, increased PARP 1 and serum P content, and enhanced ossification and stiffening of the cartilage, all were suppressed by low phosphorus diet (all, P < 0.05). CONCLUSION Nucleic acid damage takes a role in phosphorus production in osteoarthritic cartilage, contributing to the enhanced mineralization and stiffness of the cartilage that in turn promotes cartilage degradation, which can be alleviated by low phosphorus intake.
Collapse
Affiliation(s)
- J Duan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - J Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - H Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Q Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - M Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - M Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Y Chu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - P Zhou
- Xiangya Stomatological Hospital, Central South University, No. 72, Xiang Ya Road, Changsha, Hunan, 410000, China
| | - S Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - C Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - M Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Type V Collagen Regulates the Structure and Biomechanics of TMJ Condylar Cartilage: A Fibrous-Hyaline Hybrid. Matrix Biol 2021; 102:1-19. [PMID: 34314838 DOI: 10.1016/j.matbio.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Collins AT, Hu G, Newman H, Reinsvold MH, Goldsmith MR, Twomey-Kozak JN, Leddy HA, Sharma D, Shen L, DeFrate LE, Karner CM. Obesity alters the collagen organization and mechanical properties of murine cartilage. Sci Rep 2021; 11:1626. [PMID: 33452305 PMCID: PMC7810701 DOI: 10.1038/s41598-020-80599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is a debilitating disease characterized by cartilage degradation and altered cartilage mechanical properties. Furthermore, it is well established that obesity is a primary risk factor for osteoarthritis. The purpose of this study was to investigate the influence of obesity on the mechanical properties of murine knee cartilage. Two-month old wild type mice were fed either a normal diet or a high fat diet for 16 weeks. Atomic force microscopy-based nanoindentation was used to quantify the effective indentation modulus of medial femoral condyle cartilage. Osteoarthritis progression was graded using the OARSI system. Additionally, collagen organization was evaluated with picrosirius red staining imaged using polarized light microscopy. Significant differences between diet groups were assessed using t tests with p < 0.05. Following 16 weeks of a high fat diet, no significant differences in OARSI scoring were detected. However, we detected a significant difference in the effective indentation modulus between diet groups. The reduction in cartilage stiffness is likely the result of disrupted collagen organization in the superficial zone, as indicated by altered birefringence on polarized light microscopy. Collectively, these results suggest obesity is associated with changes in knee cartilage mechanical properties, which may be an early indicator of disease progression.
Collapse
Affiliation(s)
- Amber T Collins
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Guoli Hu
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Michael H Reinsvold
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Monique R Goldsmith
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - John N Twomey-Kozak
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Holly A Leddy
- Shared Materials Instrumentation Facility, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA.
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
17
|
Labus KM, Kuiper JP, Rawlinson J, Puttlitz CM. Mechanical characterization and viscoelastic model of the ovine temporomandibular joint Disc in indentation, uniaxial tension, and biaxial tension. J Mech Behav Biomed Mater 2020; 116:104300. [PMID: 33454627 DOI: 10.1016/j.jmbbm.2020.104300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 11/17/2022]
Abstract
There have been recent investigations into developing disc replacements and regenerative medicine to treat internal derangements of the temporomandibular joint (TMJ) disc. Previous attempts at disc replacements have faced challenges related in part to a limited understanding of the TMJ's complex mechanical environment. The purpose of this study was to characterize the mechanical behavior of the ovine TMJ disc and to derive viscoelastic constitutive models from the experimental data. Fresh ovine TMJ discs were tested in indentation stress-relaxation tests on the inferior surface, uniaxial tension tests to failure, and dynamic biaxial tensile tests. Results showed an order of magnitude stiffer behavior in tension in the anteroposterior (primary fiber) direction compared to the mediolateral direction. The stiffness in tension was much greater than in compression. Regional comparisons showed greater elastic moduli in indentation in the posterior and anterior bands compared to the central region. A hyper-viscoelastic constitutive model captured the dynamic stress-stretch behavior in both indentation and biaxial tension with good agreement. These data will support ongoing and future computational modeling of local TMJ mechanics, aid in biomaterials identification, and ultimately enhance development of implant designs for TMJ disc replacement.
Collapse
Affiliation(s)
- Kevin M Labus
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Jason P Kuiper
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Jennifer Rawlinson
- Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA
| | - Christian M Puttlitz
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA; Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, 200 W. Lake St.Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Chin AR, Almarza AJ. Trueness of Fit of Biphasic Transversely Isotropic Parameters Model in the Porcine Temporomandibular Joint Disc and Mandibular Condylar Cartilage and Regional Dependence. J Biomech Eng 2020; 142:081010. [PMID: 32291443 PMCID: PMC7477717 DOI: 10.1115/1.4046922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Indexed: 11/08/2022]
Abstract
Temporomandibular joint (TMJ) disorders (TMDs) are not well understood and the mechanical differences between the regions of the mandibular condylar cartilage (MCC) and the TMJ disc have not been thoroughly compared. As of now, there are no commercially available regenerative therapies for the TMJ. Elucidating the mechanical properties of these two structures of the articulating joint will help future efforts in developing tissue engineering treatments of the TMJ. In this study, we evaluate the compressive properties of the porcine disc and mandibular condylar cartilage by performing unconfined compression at 10% strain with 4.5%/min strain rate. Punches (4 mm biopsy) from both tissues were taken from five different regions of both the MCC and TMJ: anterior, posterior, lateral, medial, and central. Previously, theoretical models of compression in the porcine tissue did not fit the whole ramp-relaxation behavior. Thus, the data stress-relaxation was fitted to the biphasic transversely isotropic model, for both the TMJ disc and cartilage. From the results found in the disc, it was found that the posterior region had the highest values in multiple viscoelastic parameters when compared to the other regions. The mandibular condylar cartilage was only found to be significantly different in the transverse modulus between the posterior and lateral regions. Both the TMJ disc and MCC had similar magnitudes of values (for the modulus and other corresponding compressive properties) and behavior under this testing modality.
Collapse
Affiliation(s)
- Adam R. Chin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Alejandro J. Almarza
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261; Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
19
|
Terajima M, Taga Y, Cabral WA, Liu Y, Nagasawa M, Sumida N, Kayashima Y, Chandrasekaran P, Han L, Maeda N, Perdivara I, Hattori S, Marini JC, Yamauchi M. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLoS Genet 2019; 15:e1008196. [PMID: 31173582 PMCID: PMC6602281 DOI: 10.1371/journal.pgen.1008196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin. Deficiency of cyclophilin B (CypB), an endoplasmic reticulum-resident peptidyl-prolyl cis-trans isomerase, causes recessive osteogenesis imperfecta type IX, resulting in defective connective tissues. Recent studies using CypB null mice revealed that CypB modulates lysine hydroxylation of type I collagen impacting collagen cross-linking. However, the extent of modulation, the molecular mechanism and the effect on tissue properties are not well understood. In the present study, we show that CypB deficiency in mouse skin results in the formation of unusual collagen cross-links, aberrant tissue formation, altered levels of lysine modifying enzymes and their chaperones, and impaired mechanical property. These findings highlight an essential role of CypB in collagen post-translational modifications which are critical in maintaining the structure and function of connective tissues.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Liu
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irina Perdivara
- Fujifilm Diosynth Biotechnologies, Morrisville, North Carolina, United States of America
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Porter MM, Niksiar P. Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts. PLoS One 2018; 13:e0204309. [PMID: 30265707 PMCID: PMC6161877 DOI: 10.1371/journal.pone.0204309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/05/2018] [Indexed: 11/27/2022] Open
Abstract
Comparing the functional performance of biological systems often requires comparing multiple mechanical properties. Such analyses, however, are commonly presented using orthogonal plots that compare N ≤ 3 properties. Here, we develop a multidimensional visualization strategy using permutated radar charts (radial, multi-axis plots) to compare the relative performance distributions of mechanical systems on a single graphic across N ≥ 3 properties. Leveraging the fact that radar charts plot data in the form of closed polygonal profiles, we use shape descriptors for quantitative comparisons. We identify mechanical property-function correlations distinctive to rigid, flexible, and damage-tolerant biological materials in the form of structural ties, beams, shells, and foams. We also show that the microstructures of dentin, bone, tendon, skin, and cartilage dictate their tensile performance, exhibiting a trade-off between stiffness and extensibility. Lastly, we compare the feeding versus singing performance of Darwin’s finches to demonstrate the potential of radar charts for multidimensional comparisons beyond mechanics of materials.
Collapse
Affiliation(s)
- Michael M. Porter
- Department of Mechanical Engineering, Clemson University, Clemson, SC, Untied States of America
- * E-mail:
| | - Pooya Niksiar
- Department of Mechanical Engineering, Clemson University, Clemson, SC, Untied States of America
| |
Collapse
|
21
|
Kurio N, Saunders C, Bechtold TE, Salhab I, Nah HD, Sinha S, Billings PC, Pacifici M, Koyama E. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage. Matrix Biol 2018; 67:15-31. [PMID: 29447948 DOI: 10.1016/j.matbio.2018.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings indicate that the chondroprogenitor layer is continuously engaged in condylar growth postnatally and its organization and functioning depend on hedgehog signaling.
Collapse
Affiliation(s)
- Naito Kurio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, 2-5-1, Okayama, Japan
| | - Cheri Saunders
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Till E Bechtold
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Orofacial Orthopaedics, Center of Dentistry and Oral Medicine, University Hospital Tuebingen, D-72076 Tuebingen, Germany
| | - Imad Salhab
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hyun-Duck Nah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sayantani Sinha
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul C Billings
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Han B, Nia HT, Wang C, Chandrasekaran P, Li Q, Chery DR, Li H, Grodzinsky AJ, Han L. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2033-2049. [PMID: 31423463 PMCID: PMC6697429 DOI: 10.1021/acsbiomaterials.7b00307] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our objective is to provide an in-depth review of the recent technical advances of atomic force microscopy (AFM)-based nanomechanical tests and their contribution to a better understanding and diagnosis of osteoarthritis (OA), as well as the repair of tissues undergoing degeneration during OA progression. We first summarize a range of technical approaches for AFM-based nanoindentation, including considerations in both experimental design and data analysis. We then provide a more detailed description of two recently developed modes of AFM-nanoindentation, a high-bandwidth nanorheometer system for studying poroviscoelasticity and an immunofluorescence-guided nanomechanical mapping technique for delineating the pericellular matrix (PCM) and territorial/interterritorial matrix (T/IT-ECM) of surrounding cells in connective tissues. Next, we summarize recent applications of these approaches to three aspects of joint-related healthcare and disease: cartilage aging and OA, developmental biology and OA pathogenesis in murine models, and nanomechanics of the meniscus. These studies were performed over a hierarchy of length scales, from the molecular, cellular to the whole tissue level. The advances described here have contributed greatly to advancing the fundamental knowledge base for improved understanding, detection, and treatment of OA.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Radiation Oncology, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Daphney R. Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Li
- College of Architecture and the Built Environment, Philadelphia University, Philadelphia, Pennsylvania 19144, United States
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|