1
|
Paul D, Arwood Z, Mulon PY, Penumadu D, Truster T. Method for computer tomography voxel-based finite element analysis and validation with digital image correlation system. MethodsX 2024; 13:102879. [PMID: 39206058 PMCID: PMC11350451 DOI: 10.1016/j.mex.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding the mechanical behavior of heterogeneous materials is becoming increasingly crucial across various fields, including aerospace engineering, composite materials development, geology, and biomechanics. While substantial literature exists on this topic, conventional methods often rely on commercial software packages. This study presents a framework for computed tomography (CT) scan-based finite element (FE) analysis of such materials using open-source software in most of the workflow. Our work focuses on three key aspects:1.Mesh generation that incorporates spatially varying mechanical properties and well-defined boundary conditions.2.Validation of the FE results through comparison with digital image correlation (DIC) system measurements.3.Open-source software utilization throughout the entire process, making it more accessible and cost-effective.This work aims to demonstrate the effectiveness of this framework for analyzing heterogeneous materials in various fields, offering a more accessible and affordable approach.
Collapse
Affiliation(s)
- Debangshu Paul
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zachariah Arwood
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Pierre-Yves Mulon
- University of Tennessee College of Veterinary Medicine, 2407 River Dr, Knoxville, TN 37996, USA
| | - Dayakar Penumadu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Timothy Truster
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Abbassi K, Janghorban M, Javanmardi F, Mobasseri S. Feasibility study of femur bone with continuum model. J Med Eng Technol 2023; 47:355-366. [PMID: 38625882 DOI: 10.1080/03091902.2024.2336512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/23/2024] [Indexed: 04/18/2024]
Abstract
It is known that the geometric structures of bones are very complex. This has made researchers unable to model them with the continuum approach and suffice to model them with simulation or experimental tests. Undoubtedly, provide a simple and accurate continuum model for studying bones is always desirable. In this article, as the first serious endeavour, a suggested beam model is investigated to see whether it is suitable for modelling femur bones or not. If this model gives an acceptable answer, it can be a link to the continuum theories for beams. In other words, the approximated beam model can be formulated with continuum approach to study femur bone. For feasibility study of the approximated model for femur bones, both static and dynamic analysis of them are investigated and compared. It is found that in most cases for vibration analysis, the suggested model has acceptable results but in static analysis, the mean difference between the results is about 16%. This research is hoped to be the first serious step in this category.
Collapse
Affiliation(s)
- Kianoosh Abbassi
- Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maziar Janghorban
- Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Saleh Mobasseri
- Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
3
|
Eliyahu L, Yosibash Z, Avivi I, Cohen YC, Ariel G, Sadovnic O, Sternheim A. On the influence of computed tomography's slice thickness on computer tomography based finite element analyses results. Clin Biomech (Bristol, Avon) 2023; 102:105889. [PMID: 36774735 DOI: 10.1016/j.clinbiomech.2023.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Patient-specific autonomous finite element analyses of femurs, based on clinical computed tomography scans may be used to monitor the progression of bone-related diseases. Some CT scan protocols provide lower resolution (slice thickness of 3 mm) that affects the accuracy. To investigate the impact of low-resolution scans on the CT-based finite element analyses results, identical CT raw data were reconstructed twice to generate a 1 mm ("gold standard") and a 3 mm slice thickness scans. METHODS CT-based finite element analyses of twenty-four femurs (twelve patients) under stance and sideways fall loads were performed based on 1 and 3 mm slice thickness scans. Bone volume, load direction, and strains were extracted at different locations along the femurs and differences were evaluated. FINDINGS Average differences in bone volume were 1.0 ± 1.5%. The largest average difference in strains in stance position was in the neck region (11.0 ± 13.4%), whereas in other regions these were much smaller. For sidewise fall loading, the average differences were at most 9.2 ± 16.0%. INTERPRETATION Whole-body low dose CT scans (3 mm-slice thickness) are suboptimal for monitoring strain changes in patient's femurs but may allow longitudinal studies if larger than 5% in all areas and larger than 12% in the upper neck. CT-based finite element analyses with slice thickness of 3 mm may be used in clinical practice for patients with smoldering myeloma to associate changes in strains with progression to active myeloma if above ∼10%.
Collapse
Affiliation(s)
- Leetal Eliyahu
- Computational Mechanics and Experimental Biomechanics Lab, School of Mechanical Engineering, Tel-Aviv University, Israel
| | - Zohar Yosibash
- Computational Mechanics and Experimental Biomechanics Lab, School of Mechanical Engineering, Tel-Aviv University, Israel.
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Hematology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael C Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Hematology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gal Ariel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; National Unit of Orthopaedic Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Sadovnic
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Radiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amir Sternheim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; National Unit of Orthopaedic Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Hug L, Dahan G, Kollmannsberger S, Rank E, Yosibash Z. Predicting fracture in the proximal humerus using phase field models. J Mech Behav Biomed Mater 2022; 134:105415. [PMID: 36049369 DOI: 10.1016/j.jmbbm.2022.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter ℓ0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726), similarly to the validated finite element method (Dahan et al., 2022). The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures.
Collapse
Affiliation(s)
- L Hug
- Chair for Computational Modeling and Simulation, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany.
| | - G Dahan
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | - S Kollmannsberger
- Chair for Computational Modeling and Simulation, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
| | - E Rank
- Chair for Computational Modeling and Simulation, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
| | - Z Yosibash
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| |
Collapse
|
5
|
Dahan G, Safran O, Yosibash Z. Can neck fractures in proximal humeri be predicted by CT-based FEA? J Biomech 2022; 136:111039. [PMID: 35381504 DOI: 10.1016/j.jbiomech.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Proximal humeri fractures at anatomical and surgical neck (∼5% and ∼50% incidence respectively) are frequent in elderly population. Yet, neither in-vitro experiments nor CT-based finite element analyses (CTFEA) have investigated these in depth. Herein we enhance (Dahan et al., 2019) (addressing anatomical neck fractures) by more experiments and specimens, accounting for surgical neck fractures and explore CTFEA's prediction of humeri mechanical response and yield force. METHODS Four fresh frozen human humeri were tested in a new experimental configuration inducing surgical neck fractures. Digital image correlation (DIC) provided strains and displacements on humeri surfaces and used to validate CTFEA predictions. CTFEA were enhanced herein to improve the accuracy at the proximal neck: A cortical bone mapping (CBM) algorithm was implemented to overcome insufficient scanning resolution, and a new trabecular material mapping was investigated. RESULTS The new experimental setting induced impacted surgical neck fractures in all humeri. Excellent DIC to CTFEA correlation in strains was obtained at the shaft (slope 0.984, R2=0.99) and a fair agreement (slope 0.807, R2=0.73) at the neck. CBM algorithm had worsened the correlation, whereas the new material mapping had a negligible influence. Yield loads predictions improved considerably when trabecular yielding (maximum principal strain criterion) was considered instead of surface cortical yielding. DISCUSSION CTFEA well predicts strains on the shaft and reasonably well on the neck. This enhances former conclusions by past studies conducted using SGs, now also evident by DIC. Yield load prediction for surgical neck fractures (involving crushing of trabecular bone) is predicted better by trabecular failure laws rather than cortex ones. Further FEA studies using trabecular orthotropic constitutive models and failure laws are warrant.
Collapse
|
6
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
7
|
Winsor C, Li X, Qasim M, Henak CR, Pickhardt PJ, Ploeg H, Viceconti M. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone 2021; 143:115759. [PMID: 33212317 DOI: 10.1016/j.bone.2020.115759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
Osteoporosis affects an increasing number of people every year and patient specific finite element analysis of the femur has been proposed to identify patients that could benefit from preventative treatment. The aim of this study was to demonstrate, verify, and validate an objective process for selecting tissues for use as the basis of phantomless calibration to enable patient specific finite element analysis derived hip fracture risk prediction. Retrospective reanalysis of patient computed tomography (CT) scans has the potential to yield insights into more accurate prediction of osteoporotic fracture. Bone mineral density (BMD) specific calibration scans are not typically captured during routine clinical practice. Tissue-based BMD calibration can therefore empower the retrospective study of patient CT scans captured during routine clinical practice. Together the method for selecting tissues as the basis for phantomless calibration coupled with the post-processing steps for deriving a calibration equation using the selected tissues provide an estimation of quantitative equivalent density results derived using calibration phantoms. Patient tissues from a retrospective cohort of 211 patients were evaluated. The best phantomless calibration resulted in a femoral strength (FS) [N] bias of 0.069 ± 0.07% over FS derived from inline calibration and a BMD [kg/cm3] bias of 0.038 ± 0.037% over BMD derived from inline calibration. The phantomless calibration slope for the best method presented was within the range of patient specific calibration curves available for comparison and demonstrated a small bias of 0.028 ± 0.054 HU/(mg/cm3), assuming the Mindways Model 3 BMD inline calibration phantom as the gold standard. The presented method of estimating a calibration equation from tissues showed promise for CT-based femoral fracture analyses of retrospective cohorts without readily available calibration data.
Collapse
Affiliation(s)
- C Winsor
- Mechanical Engineering, University of Wisconsin, USA
| | - X Li
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK.
| | - M Qasim
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
| | - C R Henak
- Mechanical Engineering, University of Wisconsin, USA
| | | | - H Ploeg
- Mechanical Engineering, University of Wisconsin, USA; Mechanical and Materials Engineering, Queen's University, Canada
| | - M Viceconti
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK; Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Medical Technology Lab, IRCCS Rizzoli Orthopaedic Institute, Italy
| |
Collapse
|
8
|
Benca E, Amini M, Pahr DH. Effect of CT imaging on the accuracy of the finite element modelling in bone. Eur Radiol Exp 2020; 4:51. [PMID: 32869123 PMCID: PMC7458968 DOI: 10.1186/s41747-020-00180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The finite element (FE) analysis is a highly promising tool to simulate the behaviour of bone. Skeletal FE models in clinical routine rely on the information about the geometry and bone mineral density distribution from quantitative computed tomography (CT) imaging systems. Several parameters in CT imaging have been reported to affect the accuracy of FE models. FE models of bone are exclusively developed in vitro under scanning conditions deviating from the clinical setting, resulting in variability of FE results (< 10%). Slice thickness and field of view had little effect on FE predicted bone behaviour (≤ 4%), while the reconstruction kernels showed to have a larger effect (≤ 20%). Due to large interscanner variations (≤ 20%), the translation from an experimental model into clinical reality is a critical step. Those variations are assumed to be mostly caused by different “black box” reconstruction kernels and the varying frequency of higher density voxels, representing cortical bone. Considering the low number of studies together with the significant effect of CT imaging on the finite element model outcome leading to high variability in the predicted behaviour, we propose further systematic research and validation studies, ideally preceding multicentre and longitudinal studies.
Collapse
Affiliation(s)
- Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Morteza Amini
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| |
Collapse
|
9
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
10
|
Katz Y, Yosibash Z. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech 2020; 101:109599. [DOI: 10.1016/j.jbiomech.2020.109599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
11
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
12
|
Finite element analyses for predicting anatomical neck fractures in the proximal humerus. Clin Biomech (Bristol, Avon) 2019; 68:114-121. [PMID: 31200295 DOI: 10.1016/j.clinbiomech.2019.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Proximal humerus fractures which occur as a result of a fall on an outstretched arm are frequent among the elderly population. The necessity of stabilizing such fractures by surgical procedures is a controversial matter among surgeons. Validating a personalized FE analysis by ex-vivo experiments of humeri and mimicking such fractures by experiments is the first step along the path to determine the necessity of such surgeries. METHODS Four fresh frozen human humeri were loaded using a new simple experimental setting, so to fracture the humeri at the anatomical neck. Strains on humeri's surfaces predicted by the high order FE analyses (as in Dahan et al., 2016) were compared to the experimental observations to further enhance the validity of the FE analyses. A simplified yield criterion based on a linear elastic analysis and principal strains was used to predict the anatomical neck fracture as observed in the experiment. FINDINGS An excellent correlation between experimental measured and FE predicted strains was obtained (slope of 0.99 and R2=0.98). All humeri were fractured at the anatomical neck. The predicted yield load was within 10%-20% accuracy. INTERPRETATION High-order FE analyses reliably predict strains and yield loads in the humeri. Fractures induced by the experimental setting correspond to anatomical neck fractures noticed in practice and classified as AO C1.1-C1.3. Surgical neck fractures, which are most common in clinical practice, could not be realized in the proposed experiments, and a different experimental setting should be sought to obtain them ex-vivo.
Collapse
|