1
|
Mallinos A, Jones K. The Double-Edged Sword: Anterior Cruciate Ligament Reconstructions on Adolescent Patients-Growth Plate Surgical Challenges and Future Considerations. J Clin Med 2024; 13:7522. [PMID: 39768445 PMCID: PMC11728393 DOI: 10.3390/jcm13247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
The management of anterior cruciate ligament (ACL) injuries in pediatric patients presents unique challenges due to the presence of open growth plates in the proximal tibia and distal femur. Delaying ACL reconstruction until skeletal maturity may protect the physes but increases the risk of secondary injuries, such as meniscal tears and chondral damage, due to prolonged joint instability. Conversely, early surgical intervention restores knee stability but raises concerns about potential growth disturbances, including leg-length discrepancies and angular deformities. This narrative review examines current approaches to pediatric ACL management, highlighting the risks and benefits of both conservative and surgical treatments. Additionally, it explores the role of finite element modeling (FEM) as an innovative tool for pre-surgical planning. FEM offers a non-invasive method to optimize surgical techniques, minimize iatrogenic damage to growth plates, and improve patient outcomes. Despite its potential, FEM remains underutilized in clinical practice. This review underscores the need to integrate FEM into pediatric ACL care to enhance surgical precision, reduce complications, and improve long-term quality of life for young patients. By synthesizing available evidence, this review aims to provide clinicians with a comprehensive framework for decision-making and identify future directions for research in pediatric ACL reconstruction.
Collapse
Affiliation(s)
- Alexandria Mallinos
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44307, USA
| | - Kerwyn Jones
- Department of Orthopedics, Akron Children’s Hospital, Akron, OH 44307, USA;
| |
Collapse
|
2
|
Vakili S, Vivacqua T, Getgood A, Willing R. In Vitro Assessment of Knee Joint Biomechanics Using a Virtual Anterior Cruciate Ligament Reconstruction. J Biomech Eng 2024; 146:101006. [PMID: 38683101 DOI: 10.1115/1.4065417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Understanding the biomechanical impact of injuries and reconstruction of the anterior cruciate ligament (ACL) is vital for improving surgical treatments that restore normal knee function. The purpose of this study was to develop a technique that enables parametric analysis of the effect of the ACL reconstruction (ACLR) in cadaver knees, by replacing its contributions with that of a specimen-specific virtual ACLR that can be enabled, disabled, or modified. Twelve ACLR reconstructed knees were mounted onto a motion simulator. In situ ACLR graft forces were measured using superposition, and these data were used to design specimen-specific virtual ACLRs that would yield the same ligament force-elongation behaviors. Tests were then repeated using the virtual ACLR in place of the real ACLR and following that in ACL deficient knee by disabling the virtual ACLR. In comparison to the ACL deficient state, the virtual ACLRs were able to restore knee stability to the same extent as real ACLRs. The average differences between the anterior tibial translation (ATT) of the virtual ACLR versus the real ACLR were +1.6 ± 0.9 mm (p = 0.4), +2.1 ± 0.4 mm (p = 0.4), and +1.0 ± 0.9 mm (p = 0.4) during Anterior drawer, Lachman and Pivot-shift tests, respectively, which is small in comparison to the full ATT range of motion (ROM) of these knees. Therefore, we conclude that a virtual ACLR can be used in place of real ACLR during biomechanical testing of cadaveric knees. This capability opens the door for future studies that can leverage parameterization of the ACLR for surgical design optimization.
Collapse
Affiliation(s)
- Samira Vakili
- School of Biomedical Engineering, Western University, 1151 Richmond Street N, London, ON N6A 5B9, Canada;Western's Bone and Joint Institute, Western University, London, ON N6A 5B9, Canada
| | - Thiago Vivacqua
- Fowler Kennedy Sport Medicine Clinic, Department of Surgery, Western University, 3M Centre, London, ON N5A 3K7, Canada
- Western University
| | - Alan Getgood
- Department of Orthopaedic Surgery, London Health Sciences Centre University Hospital, 339 Windermere Road, London, ON N6A 5A5, Canada;Fowler Kennedy Sport Medicine Clinic, Department of Surgery, Western University, 3M Centre, London, ON N5A 3K7, Canada;Western's Bone and Joint Institute, Western University, London, ON N6A 5A5, Canada
| | - Ryan Willing
- School of Biomedical Engineering, Western University, 1151 Richmond Street N, London, ON N6A 5B9, Canada;Department of Mechanical & Materials Engineering, Western University, 1151 Richmond Street N, London, ON N6A 5B9, Canada;Western's Bone and Joint Institute, Western University, London, ON N6A 5A5, Canada
| |
Collapse
|
3
|
Imhauser CW, Baumann AP, (Cheryl) Liu X, Bischoff JE, Verdonschot N, Fregly BJ, Elmasry SS, Abdollahi NN, Hume DR, Rooks NB, Schneider MTY, Zaylor W, Besier TF, Halloran JP, Shelburne KB, Erdemir A. Reproducibility in modeling and simulation of the knee: Academic, industry, and regulatory perspectives. J Orthop Res 2023; 41:2569-2578. [PMID: 37350016 PMCID: PMC11345941 DOI: 10.1002/jor.25652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Stakeholders in the modeling and simulation (M&S) community organized a workshop at the 2019 Annual Meeting of the Orthopaedic Research Society (ORS) entitled "Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives." The goal was to discuss efforts among these stakeholders to address irreproducibility in M&S focusing on the knee joint. An academic representative from a leading orthopedic hospital in the United States described a multi-institutional, open effort funded by the National Institutes of Health to assess model reproducibility in computational knee biomechanics. A regulatory representative from the United States Food and Drug Administration indicated the necessity of standards for reproducibility to increase utility of M&S in the regulatory setting. An industry representative from a major orthopedic implant company emphasized improving reproducibility by addressing indeterminacy in personalized modeling through sensitivity analyses, thereby enhancing preclinical evaluation of joint replacement technology. Thought leaders in the M&S community stressed the importance of data sharing to minimize duplication of efforts. A survey comprised 103 attendees revealed strong support for the workshop and for increasing emphasis on computational modeling at future ORS meetings. Nearly all survey respondents (97%) considered reproducibility to be an important issue. Almost half of respondents (45%) tried and failed to reproduce the work of others. Two-thirds of respondents (67%) declared that individual laboratories are most responsible for ensuring reproducible research whereas 44% thought that journals are most responsible. Thought leaders and survey respondents emphasized that computational models must be reproducible and credible to advance knee M&S.
Collapse
Affiliation(s)
- Carl W. Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Andrew P. Baumann
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD
| | | | | | - Nico Verdonschot
- Technical Medical Institute at University of Twente, Enschede, The Netherlands
- Orthopaedic Research Lab, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Shady S. Elmasry
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
- Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Egypt
| | - Neda N. Abdollahi
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donald R. Hume
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Nynke B. Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
| | | | - William Zaylor
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Thor F. Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, NZ
| | - Jason P. Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, WA, USA
| | - Kevin B. Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| |
Collapse
|
4
|
Hafez MA, Halloran JP. Polynomial chaos expansion based sensitivity analysis of predicted knee reactions-assessing the influence of the primary ligaments in distraction based models. Comput Methods Biomech Biomed Engin 2023; 26:1678-1690. [PMID: 36222456 DOI: 10.1080/10255842.2022.2131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
Computational knee models have shown that predicted condylar reactions are sensitive to the utilized ligament mechanical parameters. These models, however, are computationally expensive with multiple sources of uncertainty. Traditional uncertainty analysis using Monte-Carlo (MC) inspired methods are costly to perform. The purpose of this study was to use two example calibrated knee models to compare quasi-MC versus polynomial chaos expansion (PCE) sensitivity analyses of predicted condylar reactions that included uncertainty in the mechanical parameters of the ligaments. PCE was practically identical versus quasi-MC with 95% and 98% reductions in model evaluations for analyses with 10 and 6 uncertain variables, respectively.
Collapse
Affiliation(s)
- Mhd Ammar Hafez
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH, USA
| | - Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, WA, USA
| |
Collapse
|
5
|
Vakili S, Lanting B, Getgood A, Willing R. Development of Multibundle Virtual Ligaments to Simulate Knee Mechanics After Total Knee Arthroplasty. J Biomech Eng 2023; 145:1163160. [PMID: 37216311 DOI: 10.1115/1.4062421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 05/24/2023]
Abstract
Preclinical evaluation of total knee arthroplasty (TKA) components is essential to understanding their mechanical behavior and developing strategies for improving joint stability. While preclinical testing of TKA components has been useful in quantifying their effectiveness, such testing can be criticized for lacking clinical relevance, as the important contributions of surrounding soft tissues are either neglected or greatly simplified. The purpose of our study was to develop and determine if subject-specific virtual ligaments reproduce a similar behavior as native ligaments surrounding TKA joints. Six TKA knees were mounted to a motion simulator. Each was subjected to tests of anterior-posterior (AP), internal-external (IE), and varus-valgus (VV) laxity. The forces transmitted through major ligaments were measured using a sequential resection technique. By tuning the measured ligament forces and elongations to a generic nonlinear elastic ligament model, virtual ligaments were designed and used to simulate the soft tissue envelope around isolated TKA components. The average root-mean-square error (RMSE) between the laxity results of TKA joints with native versus virtual ligaments was 3.5 ± 1.8 mm during AP translation, 7.5 ± 4.2 deg during IE rotations, and 2.0 ± 1.2 deg during VV rotations. Interclass correlation coefficients (ICCs) indicated a good level of reliability for AP and IE laxity (0.85 and 0.84). To conclude, the advancement of virtual ligament envelopes as a more realistic representation of soft tissue constraint around TKA joints is a valuable approach for obtaining clinically relevant kinematics when testing TKA components on joint motion simulators.
Collapse
Affiliation(s)
- Samira Vakili
- School of Biomedical Engineering, Western University, 1151 Richmond Street North, London, ON N6A 3K7, Canada; Western's Bone and Joint Institute, University Hospital, London, ON N6G 2V4, Canada
| | - Brent Lanting
- Department of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Road, London, ON N6A 5A5, Canada; Western's Bone and Joint Institute, University Hospital, London, ON N6G 2V4, Canada
| | - Alan Getgood
- Department of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, London, ON N6A 5A5, Canada; Department of Surgery, Fowler-Kennedy Sport Medicine Clinic 3M Centre, Western University, London, ON N6A 3K7, Canada; Western's Bone and Joint Institute, University Hospital, London, ON N6G 2V4, Canada
| | - Ryan Willing
- School of Biomedical Engineering, Western University, London, ON N6A 3K7, Canada; Department of Mechanical and Materials Engineering, Western University, 1151 Richmond Street North, London, ON N6A 5B9, Canada; Western's Bone and Joint Institute, University Hospital, London, ON N6G 2V4, Canada
| |
Collapse
|
6
|
Razu SS, Jahandar H, Zhu A, Berube EE, Manzi JE, Pearle AD, Nawabi DH, Wickiewicz TL, Santner TJ, Imhauser CW. Bayesian Calibration of Computational Knee Models to Estimate Subject-Specific Ligament Properties, Tibiofemoral Kinematics, and Anterior Cruciate Ligament Force With Uncertainty Quantification. J Biomech Eng 2023; 145:071003. [PMID: 36826392 PMCID: PMC10782874 DOI: 10.1115/1.4056968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
High-grade knee laxity is associated with early anterior cruciate ligament (ACL) graft failure, poor function, and compromised clinical outcome. Yet, the specific ligaments and ligament properties driving knee laxity remain poorly understood. We described a Bayesian calibration methodology for predicting unknown ligament properties in a computational knee model. Then, we applied the method to estimate unknown ligament properties with uncertainty bounds using tibiofemoral kinematics and ACL force measurements from two cadaver knees that spanned a range of laxities; these knees were tested using a robotic manipulator. The unknown ligament properties were from the Bayesian set of plausible ligament properties, as specified by their posterior distribution. Finally, we developed a calibrated predictor of tibiofemoral kinematics and ACL force with their own uncertainty bounds. The calibrated predictor was developed by first collecting the posterior draws of the kinematics and ACL force that are induced by the posterior draws of the ligament properties and model parameters. Bayesian calibration identified unique ligament slack lengths for the two knee models and produced ACL force and kinematic predictions that were closer to the corresponding in vitro measurement than those from a standard optimization technique. This Bayesian framework quantifies uncertainty in both ligament properties and model outputs; an important step towards developing subject-specific computational models to improve treatment for ACL injury.
Collapse
Affiliation(s)
- Swithin S. Razu
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Hamidreza Jahandar
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Andrew Zhu
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Erin E. Berube
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Joseph E. Manzi
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Andrew D. Pearle
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY 10021
| | - Danyal H. Nawabi
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY 10021
| | | | - Thomas J. Santner
- Department of Statistics, The Ohio State University, Columbus, OH 43210-1247
| | - Carl W. Imhauser
- Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
7
|
Mallinos A, Jones K, Davis BL. Comparison of side-cutting maneuvers versus low impact baseball swing on knee ligament loading in adolescent populations. Clin Biomech (Bristol, Avon) 2023; 106:106004. [PMID: 37257274 DOI: 10.1016/j.clinbiomech.2023.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND High impact sports are associated with an increased incidence rate for knee ligament injuries, specifically pertaining to the anterior cruciate ligament and medial collateral ligament. What is less clear is (i) the extent to which high impact activities preferentially load the anterior cruciate ligament versus the medial collateral ligament, and (ii) whether both ligaments experience similar stretch ratios during high loading scenarios. Therefore, the goal of this project was to assess how different loading conditions experienced through more at-risk sporting maneuvers influence the relative displacements of the anterior cruciate ligament and medial collateral ligament. The focus of the study was on adolescent patients - a group that has largely been overlooked when studying knee ligament biomechanics. METHODS Through kinetic knee data obtained through motion capture experimentation, two different loading conditions (high vs low impact) were applied to 22 specimen-specific adolescent finite element knee models to investigate the biomechanical impact various sporting maneuvers place on the knee ligaments. FINDINGS The high impact side cutting maneuver resulted in 102% and 47% increases in ligament displacement compared to the low impact baseball swing (p < 0.05) for both the anterior cruciate ligament and medial collateral ligament. INTERPRETATION Quantifying biomechanical risks that sporting activities place on adolescent subjects provides physicians with insight into knee ligament vulnerability. More specifically, knowing the risks that various sports place on ligaments helps guide the selection of sports for at-risk patients (especially those who have undergone knee ligament surgery).
Collapse
Affiliation(s)
- Alexandria Mallinos
- Department of Biomedical Engineering, Cleveland State University, Cleveland, OH, USA.
| | - Kerwyn Jones
- Department of Orthopedics, Akron Children's Hospital, Akron, OH, USA
| | - Brian L Davis
- Department of Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
8
|
Halloran JP, Abdollahi Nohouji N, Hafez MA, Besier TF, Chokhandre SK, Elmasry S, Hume DR, Imhauser CW, Rooks NB, Schneider MTY, Schwartz A, Shelburne KB, Zaylor W, Erdemir A. Assessment of reporting practices and reproducibility potential of a cohort of published studies in computational knee biomechanics. J Orthop Res 2023; 41:325-334. [PMID: 35502762 PMCID: PMC9630164 DOI: 10.1002/jor.25358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Reproducible research serves as a pillar of the scientific method and is a foundation for scientific advancement. However, estimates for irreproducibility of preclinical science range from 75% to 90%. The importance of reproducible science has not been assessed in the context of mechanics-based modeling of human joints such as the knee, despite this being an area that has seen dramatic growth. Framed in the context of five experienced teams currently documenting knee modeling procedures, the aim of this study was to evaluate reporting and the perceived potential for reproducibility across studies the teams viewed as important contributions to the literature. A cohort of studies was selected by polling, which resulted in an assessment of nine studies as opposed to a broader analysis across the literature. Using a published checklist for reporting of modeling features, the cohort was evaluated for both "reporting" and their potential to be "reproduced," which was delineated into six major modeling categories and three subcategories. Logistic regression analysis revealed that for individual modeling categories, the proportion of "reported" occurrences ranged from 0.31, 95% confidence interval (CI) [0.23, 0.41] to 0.77, 95% CI: [0.68, 0.86]. The proportion of whether a category was perceived as "reproducible" ranged from 0.22, 95% CI: [0.15, 0.31] to 0.44, 95% CI: [0.35, 0.55]. The relatively low ratios highlight an opportunity to improve reporting and reproducibility of knee modeling studies. Ongoing efforts, including our findings, contribute to a dialogue that facilitates adoption of practices that provide both credibility and translation possibilities.
Collapse
Affiliation(s)
- Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, WA, USA,Corresponding author: Applied Sciences Laboratory, Institute for Shock Physics, 412 E Spokane Falls Blvd, Spokane, WA 99202, Phone: 509-358-7713,
| | - Neda Abdollahi Nohouji
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA
| | - Mhd Ammar Hafez
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Civil Engineering, Cleveland State University, Cleveland, OH, USA
| | - Thor F Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ,Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, NZ
| | - Snehal K Chokhandre
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| | - Shady Elmasry
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Donald R Hume
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA,Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Nynke B Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
| | | | - Ariel Schwartz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| | - Kevin B Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA,Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - William Zaylor
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| |
Collapse
|
9
|
Pivot shift and Lachman test simulation-based exploration in juvenile populations for accurately predicting anterior tibial translation. J Biomech 2022; 136:111069. [DOI: 10.1016/j.jbiomech.2022.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
|
10
|
Yáñez-Diaz R, Strömbäck L, Vergara F, Caracciolo G, Saravia A, Sandoval C, Zamorano H, Abusleme S, De la Fuente C. A Balanced Arthroscopic Debridement of the Inner Layer of the Knee Retinaculum Increases the Tibiofemoral Joint Space Width. Adv Orthop 2022; 2022:1766401. [PMID: 35132365 PMCID: PMC8817879 DOI: 10.1155/2022/1766401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Traditional techniques can enlarge the medial tibiofemoral joint space width (JSW) for meniscal repairs, but a remnant ligament laxity may be developed. Alternatively, the debridement of the inner retinaculum layer may result in a balanced JSW without causing extra-ligament damage (retinaculum layers II and collateral ligament). PURPOSE The purpose of this study was to determine whether a concentric arthroscopic debridement of the inner retinaculum layer increases the tibiofemoral JSW in patients with meniscal injuries. Secondarily, we determine whether the increase in JSW is symmetrical between compartments and describe the rate of complications and patient satisfaction. METHOD Twenty middle-aged (15 male and five female) patients diagnosed with acute meniscal injury aged 36 ± 12 years were enrolled. The patients were submitted to an arthroscopic debridement of the inner layer of the knee retinaculum for both the medial and lateral compartments. The tibiofemoral JSW was measured intra-articularly using a custom instrument. A two-way ANOVA for repeated measures was used to compare the JSW. A Bland-Altman analysis and test-retest analysis were performed. RESULTS The JSW increased following the debridement of the inner retinaculum layer, for both the medial and lateral compartments (p < 0.001). No complications were identified, and the patients were satisfied with the intervention. The minimal detectable change and bias of the custom instrument were 0.06 mm and 0.02 mm, respectively. CONCLUSION The debridement allows a clinically important (>1 mm) symmetric tibiofemoral JSW enlargement. The technique suggests favoring the diagnosis of meniscus injuries and manipulating arthroscopic instruments without secondary complications after one year.
Collapse
Affiliation(s)
- Roberto Yáñez-Diaz
- Traumatologia, Clínica MEDS, Santiago, Chile
- Centro de Innovación, Clínica MEDS, Santiago, Chile
| | | | | | | | | | | | | | | | - Carlos De la Fuente
- Centro de Innovación, Clínica MEDS, Santiago, Chile
- Carrera de Kinesiología, Departamento de Cs. de La Salud, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
- Laboratory of Neuromechanics, Universidade Federal Do Pampa, Campus Uruguaiana, Uruguaiana, Brazil
| |
Collapse
|
11
|
Zaylor W, Halloran JP. WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology. J Biomech Eng 2021; 143:081012. [PMID: 33825816 DOI: 10.1115/1.4050810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force-length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.
Collapse
Affiliation(s)
- William Zaylor
- Department of Mechanical Engineering, Cleveland State University, Cleveland OH 44115
| | - Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, DC 99164
| |
Collapse
|
12
|
Lahkar BK, Rohan PY, Pillet H, Thoreux P, Skalli W. Development and evaluation of a new procedure for subject-specific tensioning of finite element knee ligaments. Comput Methods Biomech Biomed Engin 2021; 24:1195-1205. [PMID: 33427509 DOI: 10.1080/10255842.2020.1870220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Subject-specific tensioning of ligaments is essential for the stability of the knee joint and represents a challenging aspect in the development of finite element models. We aimed to introduce and evaluate a new procedure for the quantification of ligament prestrains from biplanar X-ray and CT data. Subject-specific model evaluation was performed by comparing predicted femorotibial kinematics with the in vitro response of six cadaveric specimens. The differences obtained using personalized models were comparable to those reported in similar studies in the literature. This study is the first step toward the use of simplified, personalized knee FE models in clinical context such as ligament balancing.
Collapse
Affiliation(s)
- Bhrigu K Lahkar
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| | - Pierre-Yves Rohan
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| | - Helene Pillet
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| | - Patricia Thoreux
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Wafa Skalli
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Sciences et Technologies, Paris, France
| |
Collapse
|