1
|
Yaserifar M, Oliveira AS. Inter-muscular coordination during running on grass, concrete and treadmill. Eur J Appl Physiol 2023; 123:561-572. [PMID: 36342514 DOI: 10.1007/s00421-022-05083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
Running is an exercise that can be performed in different environments that imposes distinct foot-floor interactions. For instance, running on grass may help reducing instantaneous vertical impact loading, while compromising natural speed. Inter-muscular coordination during running is an important factor to understand motor performance, but little is known regarding the impact of running surface hardness on inter-muscular coordination. Therefore, we investigated whether inter-muscular coordination during running is influenced by running surface. Surface electromyography (EMG) from 12 lower limb muscles were recorded from young male individuals (n = 9) while running on grass, concrete, and on a treadmill. Motor modules consisting of weighting coefficients and activation signals were extracted from the multi-muscle EMG datasets representing 50 consecutive running cycles using non-negative matrix factorization. We found that four motor modules were sufficient to represent the EMG from all running surfaces. The inter-subject similarity across muscle weightings was the lowest for running on grass (r = 0.76 ± 0.11) compared to concrete (r = 0.81 ± 0.07) and treadmill (r = 0.78 ± 0.05), but no differences in weighting coefficients were found when analyzing the number of significantly active muscles and residual muscle weightings (p > 0.05). Statistical parametric mapping showed no temporal differences between activation signals across running surfaces (p > 0.05). However, the activation duration (% time above 15% peak activation) was significantly shorter for treadmill running compared to grass and concrete (p < 0.05). These results suggest predominantly similar neuromuscular strategies to control multiple muscles across different running surfaces. However, individual adjustments in inter-muscular coordination are required when coping with softer surfaces or the treadmill's moving belt.
Collapse
Affiliation(s)
- Morteza Yaserifar
- Department of Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Anderson Souza Oliveira
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, Building 4, 9220, Aalborg Øst, Denmark.
| |
Collapse
|
2
|
De Blasiis P, Fullin A, Sansone M, Perna A, Caravelli S, Mosca M, De Luca A, Lucariello A. Kinematic Evaluation of the Sagittal Posture during Walking in Healthy Subjects by 3D Motion Analysis Using DB-Total Protocol. J Funct Morphol Kinesiol 2022; 7:jfmk7030057. [PMID: 35997373 PMCID: PMC9472028 DOI: 10.3390/jfmk7030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Posture can be evaluated by clinical and instrumental methods. Three-dimensional motion analysis is the gold standard for the static and dynamic postural assessment. Conventional stereophotogrammetric protocols are used to assess the posture of pelvis, hip, knee, ankle, trunk (considered as a single segment) and rarely head and upper limbs during walking. A few studies also analyzed the multi-segmental trunk and whole-body kinematics. Aim of our study was to evaluate the sagittal spine and the whole-body during walking in healthy subjects by 3D motion analysis using a new marker set. Fourteen healthy subjects were assessed by 3D-Stereophotogrammetry using the DB-Total protocol. Excursion Range, Absolute Excursion Range, Average, intra-subject Coefficient of Variation (CV) and inter-subject Standard Deviation Average (SD Average) of eighteen new kinematic parameters related to sagittal spine and whole-body posture were calculated. The analysis of the DB-Total parameters showed a high intra-subject (CV < 50%) and a high inter-subject (SD Average < 1) repeatability for the most of them. Kinematic curves and new additional values were reported. The present study introduced new postural values characterizing the sagittal spinal and whole-body alignment of healthy subjects during walking. DB-Total parameters may be useful for understanding multi-segmental body biomechanics and as a benchmark for pathological patterns.
Collapse
Affiliation(s)
- Paolo De Blasiis
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy
- Correspondence: or ; Tel.: +081-458-225
| | - Allegra Fullin
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy
| | - Mario Sansone
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Silvio Caravelli
- II Clinic of Orthopaedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopaedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Antonio De Luca
- Section of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, 80100 Naples, Italy
| |
Collapse
|
3
|
Schallig W, van den Noort JC, Piening M, Streekstra GJ, Maas M, van der Krogt MM, Harlaar J. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics. J Foot Ankle Res 2022; 15:46. [PMID: 35668453 PMCID: PMC9172122 DOI: 10.1186/s13047-022-00543-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Foot and ankle joint kinematics are measured during clinical gait analyses with marker-based multi-segment foot models. To improve on existing models, measurement errors due to soft tissue artifacts (STAs) and marker misplacements should be reduced. Therefore, the aim of this study is to define a clinically informed, universally applicable multi-segment foot model, which is developed to minimize these measurement errors. METHODS The Amsterdam foot model (AFM) is a follow-up of existing multi-segment foot models. It was developed by consulting a clinical expert panel and optimizing marker locations and segment definitions to minimize measurement errors. Evaluation of the model was performed in three steps. First, kinematic errors due to STAs were evaluated and compared to two frequently used foot models, i.e. the Oxford and Rizzoli foot models (OFM, RFM). Previously collected computed tomography data was used of 15 asymptomatic feet with markers attached, to determine the joint angles with and without STAs taken into account. Second, the sensitivity to marker misplacements was determined for AFM and compared to OFM and RFM using static standing trials of 19 asymptomatic subjects in which each marker was virtually replaced in multiple directions. Third, a preliminary inter- and intra-tester repeatability analysis was performed by acquiring 3D gait analysis data of 15 healthy subjects, who were equipped by two testers for two sessions. Repeatability of all kinematic parameters was assessed through analysis of the standard deviation (σ) and standard error of measurement (SEM). RESULTS The AFM was defined and all calculation methods were provided. Errors in joint angles due to STAs were in general similar or smaller in AFM (≤2.9°) compared to OFM (≤4.0°) and RFM (≤6.7°). AFM was also more robust to marker misplacement than OFM and RFM, as a large sensitivity of kinematic parameters to marker misplacement (i.e. > 1.0°/mm) was found only two times for AFM as opposed to six times for OFM and five times for RFM. The average intra-tester repeatability of AFM angles was σ:2.2[0.9°], SEM:3.3 ± 0.9° and the inter-tester repeatability was σ:3.1[2.1°], SEM:5.2 ± 2.3°. CONCLUSIONS Measurement errors of AFM are smaller compared to two widely-used multi-segment foot models. This qualifies AFM as a follow-up to existing foot models, which should be evaluated further in a range of clinical application areas.
Collapse
Affiliation(s)
- Wouter Schallig
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Josien C van den Noort
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
| | - Marjolein Piening
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Geert J Streekstra
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
| | - Marjolein M van der Krogt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Jaap Harlaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- Department of Orthopedics & Sports Medicine , ErasmusMC, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Caravaggi P, Rogati G, Leardini A, Ortolani M, Barbieri M, Spasiano C, Durante S, Matias AB, Taddei U, Sacco ICN. Accuracy and correlation between skin-marker based and radiographic measurements of medial longitudinal arch deformation. J Biomech 2021; 128:110711. [PMID: 34481280 DOI: 10.1016/j.jbiomech.2021.110711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Static and dynamic measurements of the medial longitudinal arch (MLA) in the foot are critical across different clinical and biomechanical research fields. While MLA deformation can be estimated using skin-markers for gait analysis, the current understanding of the correlates between skin-marker based models and radiographic measures of the MLA is limited. This study aimed at assessing the correlation and accuracy of skin-marker based measures of MLA deformation with respect to standard clinical X-ray based measures, used as reference. 20 asymptomatic subjects without morphological alterations of the foot volunteered in the study. A lateral X-ray of the right foot of each subject was taken in monopodalic upright posture with and without a metatarsophalangeal-joint dorsiflexing wedge. MLA angle was estimated in the two foot postures and during gait using 16 skin-marker based models, which were established according to the marker set of a validated multi-segment foot kinematic protocol. The error of each model in tracking MLA deformation was assessed and correlated with respect to standard radiographic measurements. Estimation of MLA deformation was highly affected by the skin-marker models. Skin-marker models using the marker on the navicular tuberosity as apex of the MLA angle showed the smallest errors (about 2 deg) and the largest correlations (R = 0.64-0.65; p < 0.05) with respect to the radiographic measurements. According to the outcome of this study, skin-marker based definitions of the MLA angle using the navicular tuberosity as apex of the arch may provide a more accurate estimation of MLA deformation with respect to that from radiographic measures.
Collapse
Affiliation(s)
- Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Rogati
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maurizio Ortolani
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Chiara Spasiano
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Durante
- Nursing, Technical and Rehabilitation Assistance Service, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra B Matias
- Physical Therapy, Speech and Occupational Therapy Dept., School of Medicine, University of Sao Paulo, SP, Brazil
| | - Ulisses Taddei
- Physical Therapy, Speech and Occupational Therapy Dept., School of Medicine, University of Sao Paulo, SP, Brazil
| | - Isabel C N Sacco
- Physical Therapy, Speech and Occupational Therapy Dept., School of Medicine, University of Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Leardini A, Stebbins J, Hillstrom H, Caravaggi P, Deschamps K, Arndt A. ISB recommendations for skin-marker-based multi-segment foot kinematics. J Biomech 2021; 125:110581. [PMID: 34217032 DOI: 10.1016/j.jbiomech.2021.110581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
The foot is anatomically and functionally complex, and thus an accurate description of intrinsic kinematics for clinical or sports applications requires multiple segments. This has led to the development of many multi-segment foot models for both kinematic and kinetic analyses. These models differ in the number of segments analyzed, bony landmarks identified, required marker set, defined anatomical axes and frames, the convention used to calculate joint rotations and the determination of neutral positions or other offsets from neutral. Many of these models lack validation. The terminology used is inconsistent and frequently confusing. Biomechanical and clinical studies using these models should use established references and describe how results are obtained and reported. The International Society of Biomechanics has previously published proposals for standards regarding kinematic and kinetic measurements in biomechanical research, and in this paper also addresses multi-segment foot kinematics modeling. The scope of this work is not to prescribe a particular set of standard definitions to be used in all applications, but rather to recommend a set of standards for collecting, calculating and reporting relevant data. The present paper includes recommendations for the overall modeling and grouping of the foot bones, for defining landmarks and other anatomical references, for addressing the many experimental issues in motion data collection, for analysing and reporting relevant results and finally for designing clinical and biomechanical studies in large populations by selecting the most suitable protocol for the specific application. These recommendations should also be applied when writing manuscripts and abstracts.
Collapse
Affiliation(s)
- Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Julie Stebbins
- Oxford Gait Laboratory, Oxford University Hospitals NHS Foundation Trust, UK
| | - Howard Hillstrom
- Leon Root, MD Motion Analysis Laboratory, Hospital for Special Surgery, NY, USA
| | - Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Kevin Deschamps
- Faculty of Movement & Rehabilitation Sciences, KULeuven, Bruges, Belgium
| | - Anton Arndt
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden; Karolinska Institute, Stockholm, Sweden
| |
Collapse
|