1
|
Li M, Jiang H, Mo X, Li R, Liu L, Wu W, Liu W, Xie Y, Li X, Yan F, Qiu Z. Biostimulation accelerates landfill stabilization and resource utilization efficiency, providing feasible technical support for the overall lifecycle management of landfills. CHEMOSPHERE 2024; 364:142984. [PMID: 39094700 DOI: 10.1016/j.chemosphere.2024.142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Although sanitary landfill is one of the principal municipal solid waste (MSW) treatment and disposal methods, its limitations, such as insufficient use of resources, long stability time, and high risk of environmental pollution, must be urgently resolved. The effect of multifunctional microbial community (MMC) inoculation on MSW landfill process was investigated using simulated anaerobic bioreactor landfill (ABL), and composition and microbial community structure of waste, leachate water quality, and gas production were monitored. MMC inoculation significantly accelerated lignocellulose degradation, and the (Hemicellulose content + Cellulose content)/Lignin content ((C + H)/L) of MMC inoculation treatment was 0.89 ± 0.04 on day 44, which was significantly lower than that of the control group (1.14 ± 0.02). At the end of the landfill process, the reductive organic matter, ammonia nitrogen, and volatile fatty acids in the leachate of the MMC group decreased to 9400.00 ± 288.68, 332.78 ± 5.77, and 79.33 ± 6.44 mg L-1, respectively, significantly lower than those of the control group (24,167.00 ± 208.17, 551.14 ± 5.60, and 156.33 ± 8.22 mg L-1). Meanwhile, MMC inoculation increased the methane production to 118.12 ± 5.42 L kg-1 of dry matter, significantly higher than the output of the control group (60.60 ± 2.24 L kg-1). MMC inoculation optimized the microbial community structure in ABL and increased lignocellulose-degrading microorganisms (Brevundimonas, Cellvibrio, Leifsonia, and Devosia) and methanogen (Methanosaeta and Methanoculleus) abundance in the middle stage of landfill. Moreover, MMC introduction improved the abundance of carbon metabolism enzymes and increased saprophytic fungal abundance by 30.09% in the middle stage of landfill. Overall, these findings may help in developing an effective method to increase the lifespan of landfills and enhance their post-closure management.
Collapse
Affiliation(s)
- Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Hui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xiang Mo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Ruiding Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Lifeng Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Wenchan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Wendong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Yong Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, 617000, Sichuan, PR China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| |
Collapse
|
2
|
Ye R, Huo W, Shao Y, Wang H, Lu W, Zhang H. Fungal community diversity and their contribution to nitrogen cycling in in-situ aerated landfills: Insights from field and laboratory studies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:1-11. [PMID: 38442433 DOI: 10.1016/j.wasman.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.
Collapse
Affiliation(s)
- Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China; Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Houhu Zhang
- Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| |
Collapse
|
3
|
Cai S, Zhou S, Wang Q, Cheng J, Zeng B. Assessment of metal pollution and effects of physicochemical factors on soil microbial communities around a landfill. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115968. [PMID: 38218107 DOI: 10.1016/j.ecoenv.2024.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The physicochemical properties, chemical fractions of six metals (Cu, Zn, Pb, Cd, Cr, and Mn), and microbial communities of soil around a typical sanitary landfill were analyzed. The results indicate that soils around the landfill were from neutral to weak alkalinity. The contents of organic matter (OM), total nitrogen (TN), total phosphorous (TP), and activities of catalase, cellulase, and urease were significantly higher in landfill soils than those in background soils. Negative correlations were found between pH and metals. Cr was the dominant metal. Cu, Pb, Cr, and Mn were accumulated in the nearby farmland soils. Cd had the highest percentage of exchangeable fraction (33.7%-51.8%) in landfill and farmland soils, suggesting a high bioavailability to the soil environment affected by the landfill. Pb, Cr, and Mn existed mostly in oxidable fraction, and Cu and Zn were dominant in residual fraction. There was a low risk of soil metals around the landfill based on the RI values, while according to RAC classification, Cd had high to very high environmental risk. The MisSeq sequencing results showed that Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria were the dominant phyla of bacteria, and the most abundant phylum of fungi was Ascomycota. The NMDS analysis revealed that the landfill could influence soil fungal communities more intensely than bacterial communities. TN, cellulase, and bioavailable metals (Pb-Bio and Cr-Bio) were identified to have main influences on microbial communities. Pb-Bio was the most dominant driving factor for bacterial community structures. For fungi, Pb-Bio was significantly negatively related to Olpidiomycota and Cr-Bio had a significantly negative correlation with Ascomycota. It manifests that bioavailable metals play important roles in assessing environmental risks and microbial community structures of soil around landfill.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, China.
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Qinghe Wang
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Boping Zeng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| |
Collapse
|
4
|
Ye R, Huo W, Zheng X, Shao Y, Wang H, Lu W. Effect of temperature on fungal nitrification in simulated in-situ aeration of aged MSW landfill. CHEMOSPHERE 2023; 344:140286. [PMID: 37769910 DOI: 10.1016/j.chemosphere.2023.140286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Fungal nitrification is one kind of heterotrophic nitrification that involves certain species of fungi promoting the transformation of organic nitrogen and ammonia nitrogen to nitrite/nitrate. In this study, simulated aerated landfill reactors (SALRs) were constructed to investigate fungal nitrification in aged municipal solid refuse, with a focus on understanding the effect of temperature on the performance of fungal nitrification as well as fungal contribution to ammonia nitrogen transformation. Different nitrogen metabolism patterns have been observed in the system with fungi only (SALRF) and complete microbial consortium, i.e., bacteria + fungi (SALRC). At a temperature of 35 °C, autotrophic nitrification dominated the ammonia nitrogen transformation, while fungal nitrification did not significantly contribute to ammonia removal. However, at elevated temperatures (i.e., 45 °C and 55 °C), fungi played a crucial role in ammonia transformation through fungal assimilation and fungal nitrification, with bacterial function suppressed. Furthermore, 45 °C was found to be the optimal temperature for fungal nitrification, exhibiting the highest nitrification rate (13.98 mg L-1 d-1) which accounted for 49.80% of total nitrification rate in the aerated landfill. High throughput sequencing revealed reshaping of fungal community in response to temperature variation. The abundance of Aspergillus fumigatus, with a relative abundance ranging from 67.13% to 92.71% at elevated temperatures, suggested its significant potential for fungal nitrification. These findings have implications for the promotion of nitrogen cycle through strengthening fungal nitrification in aerated landfill sites which often operate at high temperatures.
Collapse
Affiliation(s)
- Rong Ye
- School of Environment, Tsinghua University, Beijing, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing, China
| | - Xiangyu Zheng
- School of Environment, Tsinghua University, Beijing, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Shao Y, Liu M, Ma X, Wang S, Guo J, Liu D, Zheng X. Investigation on the microbial community of an accelerating stabilization landfill by aeration engineering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94878-94889. [PMID: 37542688 DOI: 10.1007/s11356-023-29039-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
The microbial community of the landfill undergoing aerobic stabilization process by aeration engineering was investigated. The municipal solid wastes (MSWs) were sampled from two aeration well sites with different landfill temperatures (65.5°C and 41.7°C) under higher and lower stabilization level. The physical component, chemical property, and microbial population of MSWs were analyzed and compared. The result showed that the phylum Firmicutes was dominant in the aerobic landfill; and the genus Weissella and Syntrophaceticus were more abundant in high, and low temperature site, respectively. The bacterial distribution showed difference on two temperature sites and four landfill depths, mainly affected by the ammonia-nitrogen and moisture content of MSWs. The ecological profiles of the microorganisms responded the aeration engineering were predicted. The anaerobic hydrolytic and acetogenic microorganisms were decreased in abundance, while the facultative Lactobacillus increased when the landfill under a higher stabilization level. The function abundances of methane oxidation, sulfide oxidation, and aerobic chemoheterotrophy were enriched by aeration engineering, which was the microbial mechanism for accelerating the stabilization process of landfill.
Collapse
Affiliation(s)
- Yan Shao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No. 27, Xisanhuanbei Road, Haidian District, Beijing, 100095, China
| | - Minghui Liu
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No. 27, Xisanhuanbei Road, Haidian District, Beijing, 100095, China
| | - Xiaochun Ma
- Beijing No. 4 Municipal Construction Engineering Co., Ltd., Beijing Municipal Construction Group Co., Ltd., No. 2, Baianzhuang Street, Xicheng District, Beijing, 100176, China
| | - Senjie Wang
- Beijing No. 4 Municipal Construction Engineering Co., Ltd., Beijing Municipal Construction Group Co., Ltd., No. 2, Baianzhuang Street, Xicheng District, Beijing, 100176, China
| | - Jingxin Guo
- Beijing No. 4 Municipal Construction Engineering Co., Ltd., Beijing Municipal Construction Group Co., Ltd., No. 2, Baianzhuang Street, Xicheng District, Beijing, 100176, China
| | - Dan Liu
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No. 27, Xisanhuanbei Road, Haidian District, Beijing, 100095, China
| | - Xiaowei Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No. 27, Xisanhuanbei Road, Haidian District, Beijing, 100095, China.
| |
Collapse
|
6
|
El-Saadony MT, Saad AM, El-Wafai NA, Abou-Aly HE, Salem HM, Soliman SM, Abd El-Mageed TA, Elrys AS, Selim S, Abd El-Hack ME, Kappachery S, El-Tarabily KA, AbuQamar SF. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 31:103150. [DOI: 10.1016/j.eti.2023.103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Mohammad A, Singh DN, Podlasek A, Osinski P, Koda E. Leachate characteristics: Potential indicators for monitoring various phases of municipal solid waste decomposition in a bioreactor landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114683. [PMID: 35180441 DOI: 10.1016/j.jenvman.2022.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Leachate is a contaminated liquid generated during the bio-chemical decomposition processes of municipal solid waste (MSW) that occurred at semi-solid or solid-state in a bioreactor landfill (BLF). Conceptually, leachate from a BLF is analogous to the urine generated in the 'human body', on which the medical practitioners rely to diagnose and remediate ailments. In line with this practice, to monitor the complex MSW decomposition processes, prolonged investigations were performed to establish the temporal variation of different chemical parameters (such as pH, electrical conductivity, chemical oxygen demand, organic- and inorganic carbon, nitrate- and ammonium-nitrogen, sugars and volatile fatty acids) of the leachate collected from different cells (age≈ 6-48 months) of a fully functional BLF in Mumbai, India. Furthermore, to understand the effect of the climate, MSW composition and landfill operating conditions on the rate of the decomposition process, chemical parameters of the leachate obtained from a landfill located in the central part of Poland were compared with the BLF. The study reveals that the chemical parameters, except for the pH, evince a rapid reduction with time and attain a constant value, which indicates the 'stabilized MSW'. Also, native microorganisms that are an integral part of MSW consume volatile fatty acids within a year in the BLF, which facilitate the rapid transformation of the decomposition process from acidogenesis and acetogenesis to the methanogenesis phase. It is worth iterating here that based on the long-term field study, a convenient and efficient methodology, which is currently missing from the literature, has been established to understand the kinetics of different phases of anaerobic decomposition. This study would be very helpful to the landfill operators, who are interested in accelerating MSW decomposition by augmenting leachate properties.
Collapse
Affiliation(s)
- Arif Mohammad
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Anna Podlasek
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Piotr Osinski
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland.
| |
Collapse
|
8
|
Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. SUSTAINABILITY 2022. [DOI: 10.3390/su14063364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Finding a sustainable approach for municipal solid waste (MSW) management is becoming paramount. However, as with many urban areas in developing countries, the approach applied to MSW management in Karachi is neither environmentally sustainable nor suitable for public health. Due to adoption of an inefficient waste management system, society is paying intangible costs such as damage to public health and environment quality. In order to minimize the environmental impacts and health issues associated with waste management practices, a sustainable waste management and disposal strategy is required. The aim of this paper is to present a concept for the development of new bioreactor landfills for sustainable waste management in Karachi. Furthermore, this paper contributes to estimation of methane (CH4) emissions from waste disposal sites by employing the First Order Decay (FOD) Tier 2 model of the Intergovernmental Panel on Climate Change (IPCC) and determining of the biodegradation rate constant (k) value. The design and operational concept of bioreactor landfills is formulated for the study area, including estimation of land requirement, methane production, power generation, and liquid required for recirculation, along with a preliminary sketch of the proposed bioreactor landfill. This study will be helpful for stockholders, policy makers, and researchers in planning, development, and further research for establishment of bioreactor landfill facilities, particularly in the study area as well as more generally in regions with a similar climate and MSW composition.
Collapse
|
9
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential. Life (Basel) 2021; 11:493. [PMID: 34071172 PMCID: PMC8228822 DOI: 10.3390/life11060493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Omics have given rise to research on sparsely studied microbial communities such as the landfill, lignocellulolytic microorganisms and enzymes. The bacterial diversity of Municipal Solid Waste sediments was determined using the illumina MiSeq system after DNA extraction and Polymerase chain reactions. Data analysis was used to determine the community's richness, diversity, and correlation with environmental factors. Physicochemical studies revealed sites with mesophilic and thermophilic temperature ranges and a mixture of acidic and alkaline pH values. Temperature and moisture content showed the highest correlation with the bacteria community. The bacterial analysis of the community DNA revealed 357,030 effective sequences and 1891 operational taxonomic units (OTUs) assigned. Forty phyla were found, with the dominant phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota, while Aerococcus, Stenotrophomonas, and Sporosarcina were the dominant species. PICRUSt provided insight on community's metabolic function, which was narrowed down to search for lignocellulolytic enzymes' function. Cellulase, xylanase, esterase, and peroxidase were gene functions inferred from the data. This article reports on the first phylogenetic analysis of the Pulau Burung landfill bacterial community. These results will help to improve the understanding of organisms dominant in the landfill and the corresponding enzymes that contribute to lignocellulose breakdown.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
10
|
Wang YN, Xu R, Wang H, Shi H, Kai Y, Sun Y, Li W, Bian R, Zhan M. Insights into the stabilization of landfill by assessing the diversity and dynamic succession of bacterial community and its associated bio-metabolic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145466. [PMID: 33736345 DOI: 10.1016/j.scitotenv.2021.145466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The distribution of bacterial community in an actual landfill was analyzed and the bioprocess involved in refuse degradation was clarified. The results showed that the degradation degree of refuse showed great differences with the landfill age, in which the contents of organic matter (OM) and total Kjeldahl nitrogen (TKN) in refuse as well as the chemical oxygen demand (COD) in leachate presented decreasing trends with increasing landfill age. The diversity of bacterial community increased first and then decreased with increasing landfill age. The main bacterial phyla involved in refuse degradation were Proteobacteria, Firmicutes and Bacteroidetes, among which, Proteobacteria had an absolute advantage with a relative abundance ranging of 66-78%. With increasing landfill age, the abundance of Firmicutes decreased gradually, while that of Bacteroidetes increased. Pseudomonas, Thiopseudomonas, Psychrobacter and Desemzia were the main genera. The distribution of bacterial community in samples with landfill ages of 0-1 and 1-3 years were greatly influenced by TKN and pH, respectively. Amino acid and carbohydrate metabolism were the main biological pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the biodegradation of xenobiotics as well as terpenoids and polyketides also accounted relatively high frequencies in the landfill. These results provide a better understanding of landfill microbiology and bioprocesses for landfill stabilization.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rong Xu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Han Shi
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yan Kai
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Meili Zhan
- Qingdao MSW Management & Treatment Co. Ltd., Qingdao, China
| |
Collapse
|
11
|
Tan W, Wang S, Liu N, Xi B. Tracing bacterial and fungal necromass dynamics of municipal sludge in landfill bioreactors using biomarker amino sugars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140513. [PMID: 32887002 DOI: 10.1016/j.scitotenv.2020.140513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The dynamics of microbial necromass of municipal solid waste over long-term landfill remain unknown. This study presents the first investigation on the dynamics of bacterial and fungal necromass of municipal sludge in non-aeration versus alternating aeration landfill bioreactors by using amino sugar biomarkers. Results showed that under non-aeration treatment, the decomposition rate of muramic acid derived from bacteria is higher than that of fungal-derived glucosamine. The relative change in glucosamine and muramic acid in the early period of landfills under the alternating aeration treatment is consistent with that under non-aeration treatment. However, with the increase in alternating aeration cycles, bacterial necromass muramic acid exerts a lower decomposition rate than fungal necromass glucosamine. Throughout the entire landfill period, galactosamine is the amino sugar with the slowest decomposition rate under non-aeration mode but the amino sugar with the fastest decomposition rate under alternating aeration mode. The present work fills the knowledge gap of microbial necromass dynamics of municipal solid waste in landfills.
Collapse
Affiliation(s)
- Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuhan Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Niankai Liu
- Department of the History of Science, Tsinghua University, Beijing 100084, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing. SUSTAINABILITY 2020. [DOI: 10.3390/su12051815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, the impact of exogenous aerobic bacteria mixture (EABM) on municipal solid waste (MSW) is well evaluated in the following aspects: biogas production, leachate analysis, organic waste degradation, EABM population, and the composition of microbial communities. The study was designed and performed as follows: the control bioreactor (R1) was filled up with MSW and the culture medium of EABM and the experimental bioreactor (R2) was filled up with MSW and EABM. The data suggests that the composition of microbial communities (bacterial and methanogenic) in R1 and R2 were similar at day 0, while the addition of EABM in R2 led to a differential abundance of Bacillus cereus, Bacillus subtilis, Staphylococcus saprophyticus, Staphlyoccus xylosus, and Pantoea agglomerans in two bioreactors. The population of exogenous aerobic bacteria in R2 greatly increased during hydrolysis and acidogenesis stages, and subsequently increased the degradation of volatile solid (VS), protein, lipid, and lignin by 59.25%, 25.68%, 60.47%, and 197.62%, respectively, compared to R1. The duration of hydrolysis and acidogenesis in R2 was 33.33% shorter than that in R1. At the end of the study, the accumulative methane yield in R2 (494.4 L) was almost three times more than that in R1 (187.4 L). In addition, the abundance of acetoclasic methanogens increased at acetogenesis and methanogenesis stages in both bioreactors, which indicates that acetoclasic methanogens (especially Methanoseata) could contribute to methane production. This study demonstrates that EABM can accelerate organic waste degradation to promote MSW biodegradation and methane production. Moreover, the operational parameters helped EABM to generate 20.85% more in accumulative methane yield. With a better understanding of how EABM affects MSW and the composition of bacterial community, this study offers a potential practical approach to MSW disposal and cleaner energy generation worldwide.
Collapse
|
13
|
Gu Z, Chen W, Wang F, Li Q. A pilot-scale comparative study of bioreactor landfills for leachate decontamination and municipal solid waste stabilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:113-121. [PMID: 31869722 DOI: 10.1016/j.wasman.2019.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Many studies have sought to optimize operation parameters and enhance the treatment capacity of bioreactor landfills (BL) under ideal laboratory conditions. At pilot scale, conclusions drawn from laboratory-scale experiments will be different due to variations in actual landfill composition and changes in environmental conditions. However, comparative pilot-scale studies of traditional anaerobic landfills (AnL) and BLs are rare. In this study, three pilot-scale landfills, including an AnL, anaerobic BL (AnBL) and semi-aerobic BL (SABL), were monitored to examine the difference in performance at different scales and among types of landfills. Settlement amount followed the order SABL (25.45 cm) > AnBL (18.67 cm) > AnL (14.38 cm). Decomposition of organic matter (i.e., volatile fatty acids) was more rapid in SABL than in the other landfills and no hydrolytic acidification period was observed. Therefore, among the three landfills, SABL entered the methanogenic stage in a much shorter time and MSW stabilization was accelerated due to this landfill's unique combination of aerobic-anoxic-anaerobic ambient. In addition, NH4+-N concentration in leachate from the SABL (~19.96 mg/L) was substantially lower than from AnL (338.28 mg/L) and AnBL (233.22 mg/L), and SABL leachate exhibited the least chloride pollution risk. This study provides theoretical support and strong evidence for using SABLs to treat MSW in practical applications.
Collapse
Affiliation(s)
- Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
14
|
Qiu Z, Li M, Zhang L, Zhao R, Li M. Effect of waste compaction density on stabilization of aerobic bioreactor landfills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4528-4535. [PMID: 31788730 DOI: 10.1007/s11356-019-06902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Landfill stabilization contributes to the safe operation and maintenance of landfills. This study used a simulated aerobic bioreactor landfill to investigate the impact of different compaction densities on its stabilization to provide a basis for optimal parameter selection during landfill design. Samples of municipal solid waste were tested with compaction densities of 450, 500, 550, 600, and 650 kg/m3 during the experiment. The optimum compaction density was obtained by periodically monitoring the temperature of the waste pile, the water quality of leachate, and the composition of the waste. The impacts of waste compaction density on waste pile temperature and leachate were investigated and coupled with the analysis of waste composition to discuss the possible reaction mechanism. Results showed that the most complete waste degradation occurred at 550 kg/m3 compaction density, which was effective at accelerating stabilization of the simulated aerobic bioreactor landfill. Limitations of the experiment are given to lay foundations for further study.
Collapse
Affiliation(s)
- Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Luziping Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Min Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
15
|
Sekhohola-Dlamini L, Tekere M. Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing. Biodegradation 2019; 31:1-21. [PMID: 31512011 DOI: 10.1007/s10532-019-09890-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Municipal solid waste landfills are widely used as a waste management tool and landfill microbiology is at the core of waste degradation in these ecosystems. This review investigates the microbiology of municipal solid waste landfills, focusing on the current state of knowledge pertaining to microbial diversity and functions facilitating in situ waste bioprocessing, as well as ecological factors influencing microbial dynamics in landfills. Bioprocessing of waste in municipal landfills emanates from substrate metabolism and co-metabolism by several syntrophic microorganisms, resulting in partial transformation of complex substrates into simpler polymeric compounds and complete mineralisation into inorganic salts, water and gases including the biofuel gas methane. The substrate decomposition is characterised by evolution and interactions of different bacterial, archaeal and fungal groups due to prevailing biotic and abiotic conditions in the landfills, allowing for hydrolytic, fermentative, acetogenic and methanogenic processes to occur. Application of metagenomics studies based on high throughput Next Generation Sequencing technique has advanced research on profiling of the microbial communities in municipal solid waste landfills. However, functional diversity and bioprocess dynamics, as well as key factors influencing the in situ bioprocesses involved in landfill waste degradation; the very elements that are key in determining the efficiency of municipal landfills as tools of waste management, remain ambiguous. Such gaps also hinder progressive understanding of fundamentals that underlie technology development based on waste biodegradation, and exploration of municipal waste as a bioresource.
Collapse
Affiliation(s)
- Lerato Sekhohola-Dlamini
- Department of Environmental Sciences, University of South Africa (UNISA), Florida, P.O. Box X6, Johannesburg, 1710, South Africa.
| | - Memory Tekere
- Department of Environmental Sciences, University of South Africa (UNISA), Florida, P.O. Box X6, Johannesburg, 1710, South Africa
| |
Collapse
|
16
|
Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I. A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017; 46:23-32. [DOI: 10.1016/j.anaerobe.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
17
|
Wang X, Cao A, Zhao G, Zhou C, Xu R. Microbial community structure and diversity in a municipal solid waste landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:79-87. [PMID: 28442259 DOI: 10.1016/j.wasman.2017.04.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 05/21/2023]
Abstract
Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste.
Collapse
Affiliation(s)
- Xiaolin Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Aixin Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guozhu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chuanbin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Ge S, Liu L, Xue Q, Yuan Z. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 55:93-98. [PMID: 26601890 DOI: 10.1016/j.wasman.2015.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.
Collapse
Affiliation(s)
- Sai Ge
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
19
|
Ziyang L, Luochun W, Nanwen Z, Youcai Z. Martial recycling from renewable landfill and associated risks: A review. CHEMOSPHERE 2015; 131:91-103. [PMID: 25800380 DOI: 10.1016/j.chemosphere.2015.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/04/2015] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction.
Collapse
Affiliation(s)
- Lou Ziyang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wang Luochun
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhu Nanwen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao Youcai
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Maus I, Wibberg D, Stantscheff R, Stolze Y, Blom J, Eikmeyer FG, Fracowiak J, König H, Pühler A, Schlüter A. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. J Biotechnol 2014; 201:43-53. [PMID: 25455016 DOI: 10.1016/j.jbiotec.2014.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 01/13/2023]
Abstract
The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed significant similarities. The absence of genes for a putative ammonium uptake system may indicate that M. bourgensis MS2(T) is adapted to environments rich in ammonium/ammonia. Specific genes featuring predicted functions in the context of osmolyte production were detected in the genome of M. bourgensis MS2(T). Mapping of metagenome sequences derived from a production-scale biogas plant revealed that M. bourgensis MS2(T) almost completely comprises the genetic information of dominant methanogens present in the biogas reactor analyzed. Hence, availability of the M. bourgensis MS2(T) genome sequence may be valuable regarding further research addressing the performance of Methanoculleus species in agricultural biogas plants.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Robbin Stantscheff
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yvonne Stolze
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jochen Blom
- Department of Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Jochen Fracowiak
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
21
|
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Pühler A, König H, Schlüter A. Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.). J Biotechnol 2014; 192 Pt A:40-1. [PMID: 25270020 DOI: 10.1016/j.jbiotec.2014.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/27/2022]
Abstract
The neotype strain Methanobacterium formicicum MF(T) (DSM1535), a hydrogenotrophic methanogenic Archaeon, was isolated from a domestic sewage sludge digestor in Urbana (IL, USA). Here, the complete genome sequence of the methanogen is reported. The genome is 2,478,074bp in size, featuring a GC content of 41.23%. M. formicicum MF(T) encodes several genes predicted to be involved in adaptation to abiotic stress such as high osmolarity. The strain MF(T) is of biotechnological importance since M. formicicum strains are often found in production-scale biogas plants and it is suggested as a starter culture for the anaerobic biomethanation process.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Robbin Stantscheff
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Yvonne Stolze
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|