1
|
Xu J, Wu YT, Xia W, Zhou T. Antibacterial activity and action mechanism of a novel chitosan oligosaccharide-hydroxypyridinone conjugate and its application in shrimp preservation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40515513 DOI: 10.1002/jsfa.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND To develop new antibacterial agents with the potential application in shrimp preservation, a novel chitosan oligosaccharide (COS)-hydroxypyridinone (HPO) conjugate (COS-HPO2) with strong antioxidant and anti-tyrosinase activities was investigated for its preservation effect on shrimp. RESULTS The antibacterial activity assay indicated that COS-HPO2 possessed greater antibacterial activity than COS against five bacterial strains (Staphylococcus aureus, Listeria monocytogenes, Shewanella putrefaciens, Escherichia coli and Pseudomonas aeruginosa). The antibacterial mechanism survey against S. putrefaciens RMS1 revealed that COS-HPO2 could increase cellular permeability, resulting in the leakage of intracellular substances. COS-HPO2 could also kill the bacteria by chelating iron ions in the environment and inhibiting DNA replication. The treatment with COS-HPO2 was found to extend the shelf life of shrimp to 10 days at 4 °C, whereas the shelf life of shrimp treated with COS, ε-polylysine (ε-PL) and the control group was 8, 8 and 5 days, respectively. Treatment of shrimp with a formulation containing COS-HPO2 and ε-PL (1 g L-1) further extended its shelf life to 12 days. CONCLUSION COS-HPO2 could find application in shrimp preservation. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Xu
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science & Technology, Taizhou, China
| | - Yun-Tao Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Ramezani H, Sazegar H, Rouhi L. Chitosan-casein as novel drug delivery system for transferring Phyllanthus emblica to inhibit Pseudomonas aeruginosa. BMC Biotechnol 2024; 24:101. [PMID: 39696307 DOI: 10.1186/s12896-024-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 12/20/2024] Open
Abstract
This study investigated the ability of Phyllanthus emblica encapsulated within chitosan-coated casein (CS-casein-Amla) nanoparticles to inhibit the growth of multi-drug-resistant Pseudomonas aeruginosa (P. aeruginosa) bacteria and prevent the formation of biofilms. The MDR strains underwent screening, and the morphological characteristics of the resulting nanoparticles were assessed using SEM, DLS, and FTIR. In addition, the efficacy of encapsulation, stability, and drug release were evaluated. The PpgL, BdlA, and GacA biofilm gene transcription quantities were quantified by quantitative real-time PCR. Simultaneously, the nanoparticles were assessed for their antibacterial and cytotoxic effects using the well diffusion and MTT procedures. CS-casein-Amla nanoparticles with a size of 500.73 ± 13 nm, encapsulation efficiency of 76.33 ± 0.81%, and stability for 60 days at 4 °C (Humidity 30%) were created. The biological analysis revealed that CS-casein-Amla nanoparticles exhibited strong antibacterial properties. This was shown by their capacity to markedly reduce the transcription of PpgL, BdlA, and GacA biofilm genes at a statistically significant value of p ≤ 0.01. The nanoparticles demonstrated decreased antibiotic resistance compared to unbound Amla and CS-casein. Compared to Amla, CS-casein-Amla nanoparticles showed very little toxicity against HDF cells at dosages ranging from 1.56 to 100 µg/mL (p ≤ 0.01). The results highlight the potential of CS-casein-Amla nanoparticles as a significant advancement in combating highly resistant P. aeruginosa. The powerful antibacterial properties of CS-casein-Amla nanoparticles against P. aeruginosa MDR strains, which are highly resistant pathogens of great concern, may catalyze the development of novel antibacterial research approaches.
Collapse
Affiliation(s)
- Helia Ramezani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Sazegar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Mahmoud GAE, Abdel Shakor AB, Kamal-Eldin NA, Zohri ANA. Production of kojic acid by Aspergillus flavus OL314748 using box-Behnken statistical design and its antibacterial and anticancer applications using molecular docking technique. BMC Microbiol 2024; 24:140. [PMID: 38658810 PMCID: PMC11044385 DOI: 10.1186/s12866-024-03289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Kojic acid is a wonderful fungal secondary metabolite that has several applications in the food, medical, and agriculture sectors. Many human diseases become resistant to normal antibiotics and normal treatments. We need to search for alternative treatment sources and understand their mode of action. Aspergillus flavus ASU45 (OL314748) was isolated from the caraway rhizosphere as a non-aflatoxin producer and identified genetically using 18S rRNA gene sequencing. After applying the Box-Behnken statistical design to maximize KA production, the production raised from 39.96 to 81.59 g/l utilizing (g/l) glucose 150, yeast extract 5, KH2PO4 1, MgSO4.7H2O 2, and medium pH 3 with a coefficient (R2) of 98.45%. Extracted KA was characterized using FTIR, XRD, and a scanning electron microscope. Crystalized KA was an effective antibacterial agent against six human pathogenic bacteria (Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Serratia marcescens, and Serratia plymuthica). KA achieves high inhibition activity against Bacillus cereus, K. pneumonia, and S. plymuthica at 100 μg/ml concentration by 2.75, 2.85, and 2.85 compared with chloramphenicol which gives inhibition zones 1, 1.1, and 1.6, respectively. Crystalized KA had anticancer activity versus three types of cancer cell lines (Mcf-7, HepG2, and Huh7) and demonstrated high cytotoxic capabilities on HepG-2 cells that propose strong antitumor potent of KA versus hepatocellular carcinoma. The antibacterial and anticancer modes of action were illustrated using the molecular docking technique. Crystalized kojic acid from a biological source represented a promising microbial metabolite that could be utilized as an alternative antibacterial and anticancer agent effectively.
Collapse
Affiliation(s)
| | | | - Nahla A Kamal-Eldin
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, P.O 71516, Egypt
| | - Abdel-Naser A Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, P.O 71516, Egypt
| |
Collapse
|
5
|
Yang H, Zhang J, Li Z, Huang J, Wu J, Zhang Y, Ge H, Zhao Y. Antibacterial Effect of Low-Concentration ZnO Nanoparticles on Sulfate-Reducing Bacteria under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2033. [PMID: 37513044 PMCID: PMC10383825 DOI: 10.3390/nano13142033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The effect of ZnO nanoparticles (ZnO NPs), with different concentrations in simulated water, on the activity of sulfate-reducing bacteria (SRB) and their adhesion behaviour on stainless-steel surfaces, with and without visible light treatment, were investigated. The results showed that the concentration of ZnO NPs and light treatment greatly influenced the antibacterial performance of the NPs. In the water solution without light treatment, the low concentration (no more than 1 mg/L) of ZnO NPs in the aqueous solution promoted the growth of SRB, and the amount of biofilm attached to the stainless-steel surface increased. As the concentration increased, ZnO NPs exhibited antibacterial effects. In water under visible light irradiation, ZnO NPs showed antibacterial performance at all the concentrations studied (0.5~50 mg/L), and the antibacterial efficiency increased with the increase in the concentration of NPs. The determination results of the reactive oxygen species showed that light treatment can stimulate ZnO NPs in water to generate ·OH and O2·-, which exhibited good antibacterial properties. The adhesion amount of SRB on the stainless-steel surface was inversely proportional to the antibacterial efficiency of ZnO NPs.
Collapse
Affiliation(s)
- Hua Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhuoran Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jinrong Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jun Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yixuan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
6
|
Sachdeva B, Sachdeva P, Negi A, Ghosh S, Han S, Dewanjee S, Jha SK, Bhaskar R, Sinha JK, Paiva-Santos AC, Jha NK, Kesari KK. Chitosan Nanoparticles-Based Cancer Drug Delivery: Application and Challenges. Mar Drugs 2023; 21:211. [PMID: 37103352 PMCID: PMC10142570 DOI: 10.3390/md21040211] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, Delhi 110072, India
| | - Punya Sachdeva
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | - Sungsoo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali 140413, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
7
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Saraei M, Sarvari R, Fakhri E, Fariyan S. Antibacterial polymeric micelles based on kojic acid/acrylic acid/chitosan. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mahnaz Saraei
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Sarvaran Shimi Pishro(S.Sh.P) Co, Tabriz, Iran
| | - Elaheh Fakhri
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Fariyan
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
9
|
Yong H, Hu H, Yun D, Jin C, Liu J. Horseradish peroxidase catalyzed grafting of chitosan oligosaccharide with different flavonols: structures, antioxidant activity and edible coating application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4363-4372. [PMID: 35066885 DOI: 10.1002/jsfa.11790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Enzymatic catalyzed grafting of oligosaccharides with polyphenols is a safe and environmentally friendly approach to simultaneously enhance the bioactivity of oligosaccharides and the solubility of polyphenols. In this study, chitosan oligosaccharide (COS) was grafted with three different flavonols including myricetin (MYR), quercetin (QUE) and kaempferol (KAE) by horseradish peroxidase (HRP) catalysis. The structures, antioxidant activity and edible coating application of COS-flavonol conjugates were investigated. RESULTS The total phenol content of COS-MYR, COS-QUE and COS-KAE conjugates was 59.89, 68.37 and 53.77 mg gallic acid equivalents g-1 , respectively. Thin layer chromatography showed the conjugates did not contain ungrafted flavonols. COS-flavonol conjugates showed ultraviolet absorption peak at about 294 nm, corresponding to the A-ring of flavonols. Fourier-transform infrared spectra of conjugates confirmed the formation of Schiff-base and Michael-addition products. The proton-nuclear magnetic resonance spectrum of COS-KAE conjugate exhibited phenyl proton signals of KAE. X-ray diffraction patterns of conjugates showed some diffraction peaks of flavonols. COS-flavonol conjugates presented rough and porous morphologies with sheet-like and/or blocky structures. The conjugates showed higher water solubility, free radical scavenging activity and reducing power than flavonols. Moreover, fish gelatin/COS-flavonol conjugate coatings effectively prolonged the shelf life of refrigerated largemouth bass (Micropterus salmoides) fillets from 5 days to 7-8 days. CONCLUSION COS-flavonol conjugates prepared by HRP catalysis have great potentials as novel antioxidant agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
10
|
Guar gum propionate-kojic acid films for Escherichia coli biofilm disruption and simultaneous inhibition of planktonic growth. Int J Biol Macromol 2022; 211:57-73. [DOI: 10.1016/j.ijbiomac.2022.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
|
11
|
Chitosan-grafted-phenolic acid copolymers against Shewanella putrefaciens by disrupting the permeability of cell membrane. World J Microbiol Biotechnol 2022; 38:73. [PMID: 35288779 DOI: 10.1007/s11274-022-03261-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Chitosan (CS) is a kind of high molecular polymer with antibacterial properties. A copolymer with high bacteriostatic activity can be formed by grafting phenolic acid compounds into the chitosan molecular chain, which can inhibit the growth of dominant spoilage bacteria in aquatic products. The study aimed to investigate the antibacterial effect and mechanism of chitosan-grafted-phenolic acid copolymers on Shewanella putrefaciens (S. putrefaciens). CS-grafted-protocatechuic acid (CS-g-PA) and CS-grafted-gallic acid (CS-g-GA) were attained by EDC/NHS coupling reaction. The antibacterial tests indicated that CS-g-PA and CS-g-GA had the same minimum inhibitory concentration (MIC) (1.25 mg/mL) and minimum bactericidal concentration (MBC) (5.0 mg/mL) against S. putrefaciens. According to the change trend of growth curve, the growth of S. putrefaciens was significantly restrained under 2MIC graft copolymers (P < 0.05). Moreover, the increment of alkaline phosphatase (AKPase) activity and electrical conductivity demonstrated that the cell wall and membrane permeability of S. putrefaciens were damaged respectively. In addition, the increase of lactate dehydrogenase (LDHase) activity, protein and nucleic acid absorbance and the decrease of adenosine triphosphatase (ATPase) activity suggested that the cell membrane was incomplete and poor fluidity. The irregular shape of bacteria and the outflow of intercellular contents were also observed from scanning electron microscope (SEM). The above results manifested a great potential of CS-g-PA and CS-g-GA for use as food preservatives to aquatic products.
Collapse
|
12
|
Wei XY, Xia W, Zhou T. Antibacterial activity and action mechanism of a novel chitosan oligosaccharide derivative against dominant spoilage bacteria isolated from shrimp Penaeus vannamei. Lett Appl Microbiol 2021; 74:268-276. [PMID: 34758122 DOI: 10.1111/lam.13596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
With the aim of exploring the potential application of a novel chitosan oligosaccharide derivative (COS-All-Tio) in shrimp preservation, six dominant spoilage bacteria in the spoiled shrimp (Penaeus vannamei) were isolated and identified as Shewanella putrefaciens (RMS1), S. putrefaciens (S2), Pseudomonas weihenstephanensis (P1), P. gessardii (P2), Aeromonas bestiarum (A1) and Aeromonas molluscorum (A2). The antibacterial effect of COS-All-Tio against the six bacterial isolates were studied. Bacterial inhibition zone determination, and minimum inhibitory concentration and minimum bactericidal concentration assays indicated that the antibacterial activity of COS-All-Tio was greatly improved when compared to that of chitosan oligosaccharide (COS). The antibacterial mechanism investigation against S. putrefaciens (RMS1) revealed that COS-All-Tio could inhibit bacterial growth by influencing of membrane integrity. Such disturbance of membrane structure resulted in the leakage of intracellular substance of the bacteria. A strong synergistic antibacterial effect against S. putrefaciens (RMS1) was observed when COS-All-Tio was used in combination with food preservatives (e.g. ε-polylysine hydrochloride). Therefore, COS-All-Tio might have potential in shrimp preservation.
Collapse
Affiliation(s)
- X-Y Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai, P. R. China
| | - W Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| | - T Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
13
|
Wang R, Fang M, Hu X, Yu Y, Xiao X. Kojic acid and tea polyphenols inactivate
Escherichia coli
O157:H7
in vitro
and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruifei Wang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Meimei Fang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinyi Hu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Yigang Yu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| |
Collapse
|
14
|
Wang J, Potoroko I, Tsirulnichenko L. Wood vinegar and chitosan compound preservative affects on fish balls stability. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Wei S, Chen Y, Huang L, Ma H, Qi L, Wang Q, Sun M, Zhang X, Sha Z. Analysis of lncRNA and mRNA expression profiles in peripheral blood leukocytes of the half-smooth tongue sole (Cynoglossus semilaevis) treated with chitosan oligosaccharide. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104043. [PMID: 33621610 DOI: 10.1016/j.dci.2021.104043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a multifaceted role in transcriptional regulation and are important regulators of immune function. Scarce information is available regarding lncRNAs in fish. Peripheral blood mononuclear cells participate in the immune response of fish and aid resistance to infection with pathogenic microorganisms. Chitosan oligosaccharide can improve cellular and humoral immunity to enhance disease resistance in fish. In this study, we obtained peripheral blood leukocytes from half-smooth tongue sole and studied the effect of chitosan oligosaccharide on the lncRNA-mRNA expression profile of these cells using high-throughput sequencing and bioinformatics techniques. A total of 609 differentially expressed mRNAs and 50 differentially expressed lncRNAs were identified. The GO term enrichment analysis of the differentially expressed genes was annotated by 220 GO terms, 137 biological processes, 18 cellular components, and 65 molecular functions. Sixteen KEGG pathways, including immune signaling pathways, metabolism, and genetic information processing, were significantly enriched in differentially expressed genes. Thirty-six differentially expressed lncRNAs and 32 differentially expressed mRNAs produced a coexpression network containing 90 relationship pairs. The prediction of lncRNA target genes revealed 244 lncRNAs that potentially cis-regulated 294 differentially expressed mRNAs. qPCR verified that the expression levels of 17 differentially expressed lncRNAs and 15 differentially expressed mRNAs were consistent with the RNA-Seq results. Among them, 6 lncRNAs and 7 mRNAs were differentially expressed genes obtained from the prediction and analysis of lncRNA target genes, and 8 lncRNAs and 4 mRNAs were differentially expressed genes that participated in the construction of the coexpression network. In peripheral blood leukocytes after chitosan oligosaccharide treatment, as well as in peripheral blood and spleen after Vibrio anguillarum stimulation, lncRNAs and mRNAs showed significant differential expression. The results indicated that they may be related to the immune response, providing novel reference information for further research on the role of lncRNAs in immune regulation in half-smooth tongue sole.
Collapse
Affiliation(s)
- Shu Wei
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Lin Huang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hui Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Longjiang Qi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Mengjie Sun
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xue Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
17
|
Chapelle C, David G, Caillol S, Negrell C, Desroches Le Foll M. Advances in chitooligosaccharides chemical modifications. Biopolymers 2021; 112:e23461. [PMID: 34115397 DOI: 10.1002/bip.23461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/25/2023]
Abstract
Chitooligosaccharides (COS) differ from chitosan by their molar mass: those of COS are defined to be lower than 20 kg mol-1 . Their functionalization is widely described in the literature and leads to the introduction of new properties that broaden their application fields. Like chitosan, COS modification sites are mainly primary amine and hydroxyl groups. Among their chemical modification, one can find amidation or esterification, epoxy-amine/hydroxyl coupling, Schiff base formation, and Michael addition. When depolymerized through nitrous deamination, COS bear an aldehyde at the chain end that can open the way to other chemical reactions and lead to the synthesis of new interesting amphiphilic structures. This article details the recent developments in COS functionalization, primarily focusing on amine and hydroxyl groups and aldehyde-chain end reactions, as well as paying considerable attention to other types of modification. We also describe and compare the different functionalization protocols found in the literature while highlighting potential mistakes made in the chemical structures accompanied with suggestions. Such chemical modification can lead to new materials that are generally nontoxic, biobased, biodegradable, and usable in various applications.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
18
|
Zhou J, Zhang L, He Y, Liu K, Zhang F, Zhang H, Lu Y, Yang C, Wang Z, Fareed MS, Liang X, Yan W, Wang K. An optimized analog of antimicrobial peptide Jelleine-1 shows enhanced antimicrobial activity against multidrug resistant P. aeruginosa and negligible toxicity in vitro and in vivo. Eur J Med Chem 2021; 219:113433. [PMID: 33878564 DOI: 10.1016/j.ejmech.2021.113433] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023]
Abstract
Due to the threat of escalating multi-drug resistant gram-negative bacteria to human health and life, novel antimicrobial agents against gram-negative pathogens are urgently needed. As antimicrobial peptides are not prone to induce bacteria resistance, they are believed to be one kind of promising class of potential antimicrobial agent candidates to combat multi-drug resistant bacteria for long-term use. Jelleine-1, first isolated from the royal jelly of honeybees, is a typical amphiphilic antimicrobial peptide and shows broad antimicrobial spectrum and negligible toxicity. To promote its antimicrobial activity and extend its potential of clinical use against multi-drug resistant gram-negative bacteria, novel analogs of jelleine-1 were designed, synthesized and their antimicrobial functions and toxicity were examined in this study. Our results showed that fine tuning of the cationic charge, polarity, and basicity of the sequence through amino acids substitution at position 3, 5, 7 and maintaining position 1, 4, 6, 8 unchanged could improve the bioactivity of jelleine-1 significantly. Meanwhile, we also found that the substitution of phenylalanine by tryptophan also could improve the antimicrobial activity of jelleine-1. Among all the analogs, analog 15, which is enriched in arginine and leucine, showed the most potent antimicrobial activity against both gram-negative and gram-positive bacteria, especially to multi-drug resistant Pseudomonas aeruginosa in vivo and in vitro. In addition, analog 15 also showed potent inhibition of the formation of multi-drug resistant P. aeruginosa biofilm and negligible toxicity, which was certified by MTT, hemolysis, blood assay, and biochemical analysis.
Collapse
Affiliation(s)
- Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Lishi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Kexin Liu
- School of Stomatology, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Fangfang Zhang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Hanru Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China; Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Yaqi Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Changyan Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Xiaolei Liang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China.
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| |
Collapse
|
19
|
|
20
|
Characterization of spoilage bacterial communities in chilled duck meat treated by kojic acid. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Bi R, Yue L, Niazi S, Khan IM, Sun D, Wang B, Wang Z, Jiang Q, Xia W. Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydr Polym 2021; 251:117099. [DOI: 10.1016/j.carbpol.2020.117099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
22
|
Yi Z, Luo X, Zhao L. Research Advances in Chitosan Oligosaccharides: From Multiple Biological Activities to Clinical Applications. Curr Med Chem 2020; 27:5037-5055. [PMID: 31309881 DOI: 10.2174/0929867326666190712180147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/12/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COS), hydrolysed products of chitosan, are low-molecular weight polymers with a positive charge and good biocompatibility. COS have recently been reported to possess various biological activities, including hypoglycaemic, hypolipidaemic, antioxidantantioxidant, immune regulation, anti-inflammatory, antitumour, antibacterial, and tissue engineering activities, exhibiting extensive application prospects. Currently, the biological processes and mechanisms of COS are attractive topics of study, ranging from the genetic, molecular and protein levels. This article reviews the recent discoveries about COS, especially in metabolic regulation, immune function and tissue repair, providing important insights into their multiple biological activities, medical benefits, and therapeutic mechanisms.
Collapse
Affiliation(s)
- Zhen Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Luo
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Chitosan-S-triazinyl-bis(2-aminomethylpyridine) and Chitosan-S-triazinyl-bis(8-oxyquinoline) Derivatives: New Reagents for Silver Nanoparticle Preparation and Their Effect of Antimicrobial Evaluation. J CHEM-NY 2020. [DOI: 10.1155/2020/9590120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, we described the modification of chitosan with cyanuric chloride as a mediator for preparation of chitosan-s-triazinyl-bis(2-aminomethylpyridine) and chitosan-s-triazinyl-bis(8-oxyquinoline) derivatives to be used as reagents for preparation of silver nanoparticles under ecofriendly conditions. These two reagents are convenient and effective for reduction of silver ions to silver nanoparticles with particle size less than 10 nm that might be suitable for industrial and medicinal applications. The formation and particle size of AgNPs are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray analysis (EDX). The antimicrobial activity of the two modified chitosan-s-triazine-AgNPs was evaluated against activities against Gram-positive bacteria (M. luteus ATCC 10240 and MRSA ATCC 43300), Gram-negative bacteria (E. coli ATCC 25922 and P. aeruginosa ATCC 75853), and C. albicans. The results showed that chitosan-s-triazinyl-bis(2-aminomethylpyridine) AgNPs showed high antimicrobial activities against all the tested microorganisms, while their analogous chitosan-s-triazinyl-bis(8-oxyquinoline) AgNPs showed moderate activities.
Collapse
|
24
|
Yuan Y, Jin W, Nazir Y, Fercher C, Blaskovich MA, Cooper MA, Barnard RT, Ziora ZM. Tyrosinase inhibitors as potential antibacterial agents. Eur J Med Chem 2020; 187:111892. [DOI: 10.1016/j.ejmech.2019.111892] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
|
25
|
Preparation of BMP-2/chitosan/hydroxyapatite antibacterial bio-composite coatings on titanium surfaces for bone tissue engineering. Biomed Microdevices 2019; 21:89. [PMID: 31655887 DOI: 10.1007/s10544-019-0437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this paper, petaling hydroxyapatite (HA)/TiO2 composite coatings were firstly prepared on titanium (Ti) surface by one-step micro-arc oxidation (MAO), and then pure chitosan (CS) and bone morphogenic protein-2 (BMP-2)-encapsulated CS coatings were respectively loaded on the HA/TiO2 surfaces by dip-coating method to endow Ti with good antibacterial and biological properties. The bonding strength between coatings was studied by scratch method. The degradability of CS, BMP-2 release behavior, bioactivity, biocompatibility and antibacterial activity of the obtained (BMP-2)/CS/HA/TiO2 coatings were examined by in vitro tests. The results showed that, the thicker the HA layer, the larger the loaded BMP-2 and CS amount, resulting in better bonding strength between coatings, antibacterial activity and biocompatibility. In addition, with the increase of CS concentration, more CS was loaded on HA coatings, which benefited the increase of CS degrading amount, the prolonged CS degradation time and BMP-2 release time, resulting in improved antibacterial and biological property. All CS/HA/TiO2 coatings accelerated cell adhesion, spreading and proliferation, and promoted HA formation in simulated body fluids (SBF). After loading BMP-2 in CS, the BMP-2 can significantly improve cell adhesion, spreading and proliferation, and the loaded amount can also be controlled by the concentration of BMP-2 solution. The present study indicates that, by controlling the thickness of HA layers and concentrations of CS and BMP-2 solutions, the Ti implant material with excellent biological and antibacterial properties can be achieved.
Collapse
|
26
|
Li B, Xia X, Guo M, Jiang Y, Li Y, Zhang Z, Liu S, Li H, Liang C, Wang H. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Sci Rep 2019; 9:14052. [PMID: 31575877 PMCID: PMC6773704 DOI: 10.1038/s41598-019-49941-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
Titanium (Ti) is the widely used implant material in clinic, however, failures still frequently occur due to its bioinertness and poor antibacterial property. To improve the biological and antibacterial properties of Ti implants, micro-nanostructured hydroxyapatite (HA) coating was prepared on Ti surface by micro-arc oxidation (MAO), and then the antibacterial agent of chitosan (CS) was loaded on the HA surface through dip-coating method. The results showed that the obtained HA/CS composite coating accelerated the formation of apatite layer in SBF solution, enhanced cell adhesion, spreading and proliferation, and it also inhibited the bacterial growth, showing improved biological and antibacterial properties. Although, with the increased CS amount, the coverage of HA coating would be enlarged, resulting in depressed biological property, however, the antibacterial property of the composite coating was enhanced, and the cytotoxicity about CS was not detected in this work. In conclusion, the HA/CS coating has promising application in orthopedics, dentistry and other biomedical devices.
Collapse
Affiliation(s)
- Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaomei Xia
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Miaoqi Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yu Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shimin Liu
- Department of Gem and Material Technology, Tianjin University of Commerce, Tianjin, 300134, China
| | - Haipeng Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Hongshui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
27
|
Shaoyong W, Li Q, Ren Z, Xiao J, Diao Z, Yang G, Pang W. Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17 C. Theriogenology 2019; 140:124-135. [PMID: 31473495 DOI: 10.1016/j.theriogenology.2019.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Bacteriospermia is a documented risk to sperm quality when boar semen is stored at 17 °C. The objective of this study was to evaluate the effects of kojic acid (KA) on sperm quality and anti-bacterial effect during liquid storage boar semen at 17 °C, as well as to explore sperm-oocyte binding and embryonic development in vitro. Boar semen was diluted with Beltsville thawing solution (BTS), and it contained KA at different concentrations (0, 0.02, 0.04, 0.06, 0.08, and 0.10 g/L). Bacterial concentrations and sperm quality parameters (motility, mitochondrial membrane potential, acrosome integrity, and plasma membrane integrity) were evaluated on each experimental day. Differences in microbial compositions were compared using 16S rDNA sequencing among the control group, 0.04 g/L KA, and 0.25 g/L gentamycin groups on experimental day 5, and the effects of KA on sperm capacitation, Western blot, total anti-oxidant capacity (T-AOC), reactive oxygen species (ROS) content, malondialdehyde (MDA) content, in vitro fertilization (IVF) parameters, sperm-oocyte binding, cleavage rates, and blastocyst rates were evaluated. The results showed that KA at the optimum concentration of 0.04 g/L significantly improved sperm quality parameters and sperm capacitation, increased T-AOC ability, enhanced IVF parameters and sperm-oocyte binding, increased cleavage and blastocyst rates, inhibited bacterial concentrations, reduced ROS and MDA content, and altered bacterial compositions (P < 0.05). Moreover, KA also increased the expression of anti-oxidant-related proteins, SOD1, SOD2 and CAT, and anti-apoptosis-related protein, Bcl 2, and decreased the expression of apoptosis-related proteins, caspase 3 and Bax in sperm (P < 0.05). These findings demonstrated that supplementation of antibiotic-free extenders for boar semen with 0.04 g/L KA has beneficial effects on liquid boar sperm preservation.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiqiang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoxi Diao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Lu J, Chen Q, Pan B, Qin Z, Fan L, Xia Q, Zhao L. Efficient inhibition of Cronobacter biofilms by chitooligosaccharides of specific molecular weight. World J Microbiol Biotechnol 2019; 35:87. [DOI: 10.1007/s11274-019-2662-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
|
29
|
Wang X, Li B, Liu S, Zhang C, Hao J. Antibacterial and Biological Properties of a Micro-structured BMP-2/Chitosan/Hydroxyapatite Hybrid Coating on Ti Surface. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xiaolin Wang
- School of Materials Science and Engineering, Hebei University of Technology
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology
| | - Shimin Liu
- Department of Gem and Material Technology, Tianjin University of Commerce
| | - Ce Zhang
- School of Materials Science and Engineering, Hebei University of Technology
| | - Jingzu Hao
- School of Materials Science and Engineering, Hebei University of Technology
| |
Collapse
|
30
|
Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 2018; 110:582-593. [PMID: 30537675 DOI: 10.1016/j.biopha.2018.12.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/25/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Skin color disorders can be caused by various factors, such as excessive exposure to sunlight, aging and hormonal imbalance during pregnancy, or taking some medications. Kojic acid (KA) is a natural metabolite produced by fungi that has the ability to inhibit tyrosinase activity in synthesis of melanin. The major applications of KA and its derivatives in medicine are based on their biocompatibility, antimicrobial and antiviral, antitumor, antidiabetic, anticancer, anti-speck, anti-parasitic, and pesticidal and insecticidal properties. In addition, KA and its derivatives are used as anti-oxidant, anti-proliferative, anti-inflammatory, radio protective and skin-lightening agent in skin creams, lotions, soaps, and dental care products. KA has the ability to act as a UV protector, suppressor of hyperpigmentation in human and restrainer of melanin formation, due to its tyrosinase inhibitory activity. Also, KA could be developed as a chemo sensitizer to enhance efficacy of commercial antifungal drugs or fungicides. In general, KA and its derivatives have wide applications in cosmetics and pharmaceutical industries.
Collapse
|
31
|
Monteagudo-Olivan R, Paseta L, Potier G, López-Ram-de-Viu P, Coronas J. Solvent-Free Encapsulation at High Pressure with Carboxylate-Based MOFs. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebeca Monteagudo-Olivan
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| | - Lorena Paseta
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| | - Grégory Potier
- Département Sciences des Matériaux; Polytech Nantes; 44306 Nantes France
| | - Pilar López-Ram-de-Viu
- Organic Chemistry Department; Universidad de Zaragoza, and Instituto Universitario de Catálisis Homogénea (Universidad de Zaragoza-CSIC); 50009 Zaragoza Spain
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA); Universidad de Zaragoza; 50018 Zaragoza Spain
| |
Collapse
|
32
|
Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1368-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
33
|
Wu Y, Shi YG, Zeng LY, Pan Y, Huang XY, Bian LQ, Zhu YJ, Zhang RR, Zhang J. Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation. FOOD SCI TECHNOL INT 2018; 25:3-15. [DOI: 10.1177/1082013218793075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the antimicrobial properties of kojic acid have been recognized, the subcellular mechanism of bacterial inactivation caused by it has never been clearly elucidated. In the present study, the antibacterial and anti-biofilm activity of kojic acid was evaluated against five foodborne pathogens including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The antibacterial activity was determined by minimum inhibitory concentration, minimum bactericidal concentration, and the time-kill assay. Among them, the susceptibility of Escherichia coli was significant with the lowest minimum inhibitory concentration and minimum bactericidal concentration values of 10 and 20 mM, respectively. Subcellular mechanism of bacterial inactivation related to kojic acid was revealed through comprehensive factors including cell morphology, membrane permeability, K+ leakage, zeta potential, intracellular enzyme, and DNA assay. Results demonstrated that bacterial inactivation caused by kojic acid, especially for Gram-negative bacteria, was primarily induced by the pronounced damage to the cell membrane integrity. Leakage of intracellular enzyme to the supernatants implied that the cell membrane permeability was compromised. Consequently, the release of K+ from the cytosol leads to the alterations of the zeta potential of cells, which would disturb the subcellular localization of some proteins and thereby cause the bacterial inactivation. The free −CH2OH group at the C-2 of kojic acid could play more significant role in the antimicrobial performance of kojic acid against Gram-negative bacteria. Moreover, remarkable interaction with DNA was also observed. Kojic acid at sub-minimum inhibitory concentration inhibited biofilm formation by these bacteria.
Collapse
Affiliation(s)
- Yu Wu
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yu-gang Shi
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lu-yao Zeng
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Pan
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xin-ying Huang
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Li-qing Bian
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yun-jie Zhu
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Run-run Zhang
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Liang S, Dang Q, Liu C, Zhang Y, Wang Y, Zhu W, Chang G, Sun H, Cha D, Fan B. Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr Polym 2018; 195:275-287. [PMID: 29804977 DOI: 10.1016/j.carbpol.2018.04.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023]
Abstract
This work aims to synthesize poly(aminoethyl) modified chitin (PAEMC) and ascertain its antibacterial activity and mechanism. FTIR and 1H NMR results proved aminoethyl moieties were grafted to C6OH and C3OH on chitin backbone in the form of polymerization. XRD and TG/DTG analyses manifested its well-defined crystallinity and thermostability. PAEMC, with average molecular weight (MW) of 851.0 kDa, degree of deacetylation (DD) of 27.95%, and degree of substitution (DS) of 1.77, had good solubility in aqueous solutions over the pH range of 3-12, and also possessed high antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus proteus, and Klebsiella pneumoniae, commonly causing chronic wound infections. Nucleic acid release, protein leakage, increased inner membrane permeability, and decreased cell surface hydrophobicity implied bacterial cytomembranes were substantially compromised in the presence of PAEMC. Microscopically, PAEMC visually perturbed bacteria, illustrating deformed and even collapsed morphologies. Overall, PAEMC possessed good solubility, effectively destroyed bacteria via a membrane damage mechanism, and might serve as an antibacterial agent for treatments of chronic wound infections.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Yubei Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenjing Zhu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hantian Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Bing Fan
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| |
Collapse
|
35
|
One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan. Int J Biol Macromol 2018; 113:1125-1133. [PMID: 29505872 DOI: 10.1016/j.ijbiomac.2018.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/25/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this work was to develop a nontoxic bioactive material based on a natural pyrone compound (kojic acid, KA) and chitosan oligosaccharides (COS). The bioactive material, chitosan oligosaccharide-N-kojic acid polymer (COS-N-KA), was prepared by one-step environmentally friendly approach. Then, the physicochemical properties and biological activities of COS-N-KA as a prepared water-soluble COS derivative were evaluated. The polymer was characterized by using UV-vis, FTIR, 1H NMR, and 13C NMR spectroscopy, Mw, PID, TGA, water solubility, hemolysis assay, and animal toxicity studies. Particularly, the antioxidant and antimicrobial assays revealed that COS-N-KA significantly enhanced the antimicrobial and antioxidant activities, which remarkably stronger than that of free COS and KA. Hence, the low hemolytic activity to human red blood cells, and nontoxic to female mice of SLAC KM strain made this novel polymer material a promising and effective compound for food and pharmaceutical industries.
Collapse
|
36
|
Faig JJ, Moretti A, Joseph LB, Zhang Y, Nova MJ, Smith K, Uhrich KE. Biodegradable Kojic Acid-Based Polymers: Controlled Delivery of Bioactives for Melanogenesis Inhibition. Biomacromolecules 2017; 18:363-373. [PMID: 28026947 DOI: 10.1021/acs.biomac.6b01353] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.
Collapse
Affiliation(s)
- Jonathan J Faig
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Alysha Moretti
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Laurie B Joseph
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Yingyue Zhang
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Mary Joy Nova
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kervin Smith
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
37
|
Li CW, Wang Q, Li J, Hu M, Shi SJ, Li ZW, Wu GL, Cui HH, Li YY, Zhang Q, Yu XH, Lu LC. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. Int J Nanomedicine 2016; 11:373-86. [PMID: 26855575 PMCID: PMC4725631 DOI: 10.2147/ijn.s91975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin-eosin, Masson's trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway.
Collapse
Affiliation(s)
- Chen-wen Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qing Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Min Hu
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - San-jun Shi
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zi-wei Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Guo-lin Wu
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Huan-huan Cui
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuan-yuan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qian Zhang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiu-heng Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lai-chun Lu
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|