1
|
Geng X, Yang H, Gao W, Yue J, Mu D, Wei Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. BIORESOURCE TECHNOLOGY 2024; 399:130575. [PMID: 38479629 DOI: 10.1016/j.biortech.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.
Collapse
Affiliation(s)
- Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
2
|
Nelson IE, Baker KA, Faraji A, White GS, Bibbs CS. Diuresis and α-glucosidase inhibition by erythritol in Aedes aegypti (Diptera: Culicidae) and viability for efficacy against mosquitoes. Parasit Vectors 2024; 17:76. [PMID: 38378683 PMCID: PMC10880232 DOI: 10.1186/s13071-024-06169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Sugar alcohols, such as erythritol, are low-impact candidates for attractive toxic sugar baits (ATSB) to kill mosquitoes. To determine whether erythritol has a viable future in ATSB formulations, a suite of assays was conducted to diagnose toxicity mechanisms and starvation effects on mortality in Aedes aegypti (L.) as a model system. METHODS We measured general carbohydrate load, glucosidase levels, and free glucose in intoxicated adult mosquitoes to observe whether sugar digestion was impaired. We assayed the effects of sugar combinations with erythritol on larvae and adults. To measure erythritol effects when mosquitoes were not resource-deprived, additional assays manipulated the prior starvation status. RESULTS Up to 50,000 ppm of erythritol in water had no effect on larvae within 72 h, but an ammonia spike indicated diuresis in larvae as early as 4 h (F8,44 = 22.50, P < 0.0001) after sucrose/erythritol combinations were added. Adult consumption of erythritol was diuretic regardless of the sugar pairing, while sucrose and erythritol together generated above 80% mortality (F2,273 = 33.30, P < 0.0001) alongside triple the normal excretion (F5,78 = 26.80, P < 0.0004). Glucose and fructose paired individually with erythritol had less mortality, but still double the fecal excretion. When ingesting erythritol-laced meals, less sugar was detected in mosquitoes as compared to after sucrose meals (χ2 = 12.54, df = 1, P = 0.0004). CONCLUSIONS Data showed that erythritol is a linear competitive inhibitor of α-glucosidase, marking it as a novel class of insecticide in the current research climate. However, the efficacy on larvae was null and not persistent in adult mosquitoes when compared across various starvation levels. Despite significant diuresis, the combined effects from erythritol are not acute enough for vector control programs considering ATSB against mosquitoes.
Collapse
Affiliation(s)
- Irvane E Nelson
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
- College of Science, Science Research Initiative (SRI), University of Utah, 1390 Presidents Circle, Crocker Science Center, rm 310, Salt Lake City, UT, 84112, USA
| | - Kobi A Baker
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| | - Gregory S White
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA
| | - Christopher S Bibbs
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT, 84116, USA.
| |
Collapse
|
3
|
Cao Q, Li X, Chen Y, Li X, Xie Z, Li D. Nitrification resistance and functional redundancy maintain the system stability of partial nitrification in high-strength ammonium wastewater system. BIORESOURCE TECHNOLOGY 2022; 365:128157. [PMID: 36272680 DOI: 10.1016/j.biortech.2022.128157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The sudden change of ammonia loading in high-strength ammonium wastewater treatment can directly affect the system stability by altering microbial community dynamics. To maintain the system stability, the effects of ammonia shock loading on microbial community dynamics must be studied. Two sets of sequencing batch reactors were operated with 6 shock cycles (maximum volumetric loading rate of 1928 mg N/(L·d)). CN system contained both organic carbon and ammonia and N system contained only ammonia. Comparing with N system, CN system operated more stably and had higher nitrite accumulation rate. Free ammonia (FA) was the select stress for the turnover of CN microbial communities, while the N communities didn t shift much. The increase of Nitrosomonas and the appearance of heterotrophic nitrification-aerobic denitrification bacteria in CN system presented its resistance and redundancy against FA impact, while the increase of functional genes exhibited functional genes redundancy which maintained the system stability.
Collapse
Affiliation(s)
- Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijie Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Cho K, Bae S, Jung J, Choi D. Effect of aerobic microbes' competition for oxygen on nitrogen removal in mainstream nitritation-anammox systems. CHEMOSPHERE 2022; 305:135493. [PMID: 35764117 DOI: 10.1016/j.chemosphere.2022.135493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The effects of C/N ratio in mainstream partial nitritation (PN)-anaerobic ammonia oxidation (ANAMMOX) considering competitive relationship of aerobic microbes competing for oxygen were investigated. Thy system was operated for 501 d with various C/N ratio. Competitive growth of aerobic heterotrophic bacteria (AHB) at ≥ 1 of C/N ratio acted effectively on the selective inhibition of nitrite-oxidizing bacteria (NOB) while contributing to stable PN-A. In-depth kinetic analysis indicated oxygen affinity of aerobic microbes was in the order of AHB > ammonia-oxidizing bacteria (AOB) > NOB. In addition, potential of denitritation by AHB could contributed to improving nitrogen removal up to 87.5 ± 4.3%. AHB was comparatively clustered into two groups with a C/N ratio of 1. Nitrosomonas sp. PY1 became predominant while Nitrospira spp. were the major NOB. The potential of AHB in establishing selective inhibition of NOB was identified, which could be a novel approach to stabilze the mainstream PN-A.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seongeun Bae
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
5
|
Yang Y, Yu Y, Xi H, Zhou Y, Wang C, Wu C, Zhang Z, Guo Z. Effect of carbon source conditions on response of nitrifying sludge to 3,5-dichlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115196. [PMID: 35653841 DOI: 10.1016/j.jenvman.2022.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Nutritional conditions of activated sludge had a significant influence on nitrification inhibition response. This study comprehensively investigated the inhibition of 3,5-dichlorophenol (3,5-DCP) on nitrification of activated sludge with different C/N ratios and carbon source types. The corresponding extracellular polymeric substances (EPS), microbial communities and functional genes were analysed. The results indicated that the addition of carbon source would reduce the nitrification activity and nitrification sensitivity to 3,5-DCP, and the order of the EC50 was sequenced as sodium acetate > methanol > glucose. The response mechanisms of activated sludge under diverse carbon source conditions to 3,5-DCP were summarised as follows. When the 3,5-DCP content was increased from 0.4 mg/L to 0.8 mg/L, the protein content increased from 73.2 ± 2.6 mg/g SS ∼122.4 ± 4 mg/g SS to 92.2 ± 11.2 mg/g SS ∼130.8 ± 9.6 mg/g SS in the tightly bound EPS (TB-EPS). The increase of protein content was attributed to cellular self-protection mechanisms. Furthermore, fluorescence characteristic analysis revealed that tyrosine and tryptophan in loosely bound EPS (LB-EPS) might account for higher EC50 in activated sludge fed with methanol and sodium acetate. In addition, the redundancy analyses (RDA) showed activated sludge with organics enriched the resistant species, such as Proteobacteria and Patescibacteria, while activated sludge without organics enriched the sensitive species, such as Ferruginibacter. Finally, the nitrification genes were found to be consistent with nitrification activity. Thus, the findings provide new insights into nitrification inhibition mechanism under different carbon source conditions.
Collapse
Affiliation(s)
- Yang Yang
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China
| | - Yin Yu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China
| | - Chunrong Wang
- College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China.
| | - Zhuowei Zhang
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhenzhen Guo
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, China
| |
Collapse
|
6
|
He S, Song N, Yao Z, Jiang H. An assessment of the purification performance and resilience of sponge-based aerobic biofilm reactors for treating polluted urban surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45919-45932. [PMID: 35150429 DOI: 10.1007/s11356-022-19083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Pollutants are continuously released into surface waters, which decrease the dissolved oxygen (DO) concentration and leads to the formation of black-odorous water, especially in slow-flowing urban lakes and enclosed small ponds. In situ treatment by artificial aeration or water cycling, coupled with biofilm, can address this problem without occupying large amounts of land. In this study, we designed a novel sponge-based aerobic biofilm reactor (SABR) and evaluated its performance in purifying urban surface water under different conditions. In the urban lake water treatment, the continuous inflow results revealed that the NH4+-N and NO2--N concentrations in the effluent were stable and remained lower than 0.10 mg/L and 0.05 mg/L, respectively. Abrupt increases in the NH4+-N and NO2--N concentrations in the influent and sudden increases in the NH4+-N and NO2--N concentrations in the effluent were observed, and only 4 to 8 days were required for the concentrations to decline below 0.10 mg/L and 0.05 mg/L, respectively. Increases in the polyurethane sponge filling ratios in the SABRs can reduce the DO concentration but do not affect NH4+-N removal. When no biodegradable organic matter was present in the enclosed surface water, the degradation time of NH4+-N from 14.22 to 0.10 mg/L was only 9 days when SABRs were combined with water cycling, which was shorter than the time needed by water cycling alone (16 days), and most of the NH4+-N was converted to NO3--N. When massive amounts of biodegradable organic matter were present in the enclosed surface water, 22 days were required to remove the NH4+-N when SABRs were combined with water cycling. Our results indicated that organic matter could be used as a carbon source to eliminate the produced NO3--N in SABRs. Therefore, the newly developed bioreactor provides an effective approach for treating N-polluted urban surface waters.
Collapse
Affiliation(s)
- Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
7
|
Park S, Cho K, Lee T, Lee E, Bae H. Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153644. [PMID: 35122854 DOI: 10.1016/j.scitotenv.2022.153644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Partial nitritation (PN) is a bioprocess that is essential for developing cost-effective biological nitrogen removal processes. Understanding the abundant bacterial communities responsible for nitrification under salt stress conditions is important to achieve a stable PN system for treating saline wastewater. Therefore, in this study, we identified the core nitrifying communities and investigated their correlations with the process parameters in a nitrifying bioreactor that was used for treating saline high-strength ammonia wastewater. A PN system worked efficiently under saline conditions with varying operational factors, such as temperature, dissolved oxygen (DO), and alkalinity. Interestingly, the specific oxygen uptake rate (SOUR) became similar under salt-free and saline media after the salt adaption. Next generation sequencing results suggested that the inactivation of Nitrobacter winogradskyi was a key factor for the PN reaction under salt stress conditions. We also found that Nitrosomonas europaea, a freshwater type ammonia-oxidizing bacteria (AOB), was predominantly found under both salt-free and saline conditions, whereas other halotolerant or halophilic AOB species, including Nitrosomonas nitrosa and Nitrosomonas mobilis, became selectively abundant under saline conditions. This implies that adaptation (training of N. europaea) and selection (presence of N. nitrosa and N. mobilis) were simultaneously attributed to selective ammonia conversion for the PN reaction. The redundancy analysis showed that the salinity and ammonia loading rates were statistically significant process parameters that determined the nitrifying bacterial community, suggesting that these parameters drive the adaptation and selection of the core AOB species during the PN reaction. Furthermore, the correlation analysis revealed that the abundance of N. nitrosa and N. mobilis was critically correlated with the specific oxygen uptake rates in saline media containing ammonia.
Collapse
Affiliation(s)
- Suin Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| | - Eunsu Lee
- R&D Center, POSCO E&C, 241, Incheon tower-daero, Yeonsu-gu, Incheon 22009, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Janiak K, Jurga A, Wizimirska A, Miodoński S, Muszyński-Huhajło M, Ratkiewicz K, Zięba B. Urine nitrification robustness for application in space: Effect of high salinity and the response to extreme free ammonia concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111610. [PMID: 33223353 DOI: 10.1016/j.jenvman.2020.111610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Urine nitrification is one of the possibilities for the future recovery of water and elements for soilless crop production in space systems. The start-up of artificial urine nitrification was conducted for over 85 days in a sequencing batch reactor (SBR). Two free ammonia (FA) incidents occurred, which gave the opportunity to demonstrate the impressive ability of nitrifiers to resist temporary inhibition by FA without long lasting adverse effects. The failures led to very high FA concentrations of 280 and 84 gN-NH3/m3, respectively. Sludge was exposed to FA for 19 and 27 h. It was possible to restore nitrification with simple remedy actions (dilution and pH restoration). No inhibitory effects on the nitrification rate were seen after implementation of the remedy actions and the nitrification rate increased considerably (up to 300% of the pre-failure value) due to decrease in salinity. After a few days of normal operation and salt concentration, the nitrification rate returned to the pre-failure values in both cases.
Collapse
Affiliation(s)
- Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 14/16 50-421, Wrocław, Poland.
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Anna Wizimirska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Stanisław Miodoński
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Mateusz Muszyński-Huhajło
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Krzysztof Ratkiewicz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Bartosz Zięba
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
9
|
Meng L, Li W, Zhang X, Zhao Y, Chen L, Zhang S. Influence of spent mushroom substrate and molasses amendment on nitrogen loss and humification in sewage sludge composting. Heliyon 2020; 6:e04988. [PMID: 33005797 PMCID: PMC7511750 DOI: 10.1016/j.heliyon.2020.e04988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/04/2022] Open
Abstract
The present study included lab-scale sewage sludge (SS) composting amended by molasses and spent mushroom substrate (SMS) in 5 L composting reactor system. The influence of molasses and SMS amendment on nitrogen loss and humification of SS composting was evaluated. The results showed that SMS amendment, especially combination with molasses raised composting temperature, increased CO2 volatilization, promoted organic matter degradation, improve germination index and humification process. The addition of SMS and molasses contain carbohydrates used as carbon source and energy substance by microorganisms could increase microbial activity and ammonia assimilation. In the SMS + molasses treatments, NH3 volatilization was reduced by 33.1%–37.3% and N2O volatilization was only 17.8%–25.4% of that in the control treatment, furthermore, the nitrogen loss rate was reduced by 27.2%–32.2%. Consequently, the addition of SMS and molasses improved the compost maturity and reduced nitrogen loss in the SS composting process.
Collapse
Affiliation(s)
- Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, 150010, Harbin, China.,Institute of Advanced Technology, Heilongjiang Academy of Sciences, 150020, Harbin, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, 150090, Harbin, China.,State Key Laboratory of Urban Water Resource and Enviroment, Harbin Institute of Technology, 150090, Harbin, China
| | - Xiancheng Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 150010, Harbin, China
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Li Chen
- School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 150010, Harbin, China.,Institute of Advanced Technology, Heilongjiang Academy of Sciences, 150020, Harbin, China
| |
Collapse
|
10
|
Kwon G, Kim H, Song C, Jahng D. Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Golovko K, Tihomirova K, Neilands R, Resetilovs J, Mezule L, Juhna T. Short-term effect of shock ammonium nitrogen load on activated sludge properties. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2191-2199. [PMID: 32198336 DOI: 10.2166/wst.2020.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The activated sludge process suffers from rapid load changes of ammonium (NH4), which may result in process failure during wastewater treatment. In this study, the response of activated sludge properties in terms of microfauna composition and sludge volume index (SVI5 and SVI30) on short-term increase of NH4 concentration (from 55 mg/l to 105 mg/l) was evaluated in batch scale reactors over 72 h. The results show that the first-step nitrification (NH4 transformation to nitrite (NO2)) was inhibited after 24 h, whereas the second-step nitrification (NO2 transformation to nitrate (NO3)) was not significantly affected. Sludge volume indices (sedimentation ability characteristics) SVI5 and SVI30 in the reactor with NH4-N shock concentration increased, whereas microfauna diversity decreased (Shannon-Weaver index decreased from 2.12 at 48 h to 1.23 at 72 h) leading to dominance of stalked ciliate Epistylis sp. Notable changes in inorganic carbon concentration (IC) were observed, indicating that rapid decrease of IC concentration leads to nitrification inhibition and challenges the overall process recovery. To conclude, short-term exposure of about two times higher concentration of NH4 caused significant changes in activated sludge properties by inhibiting NH4-oxidizing bacteria, reducing sludge microfauna diversity and deteriorating sludge sedimentation ability.
Collapse
Affiliation(s)
- Ksenija Golovko
- Faculty of Civil Engineering, Research Center for Civil Engineering, Water Research Laboratory, Riga Technical University, Paula Valdena Street 1 - 204, Riga LV-1048, Latvia E-mail:
| | - Kristina Tihomirova
- Faculty of Civil Engineering, Research Center for Civil Engineering, Water Research Laboratory, Riga Technical University, Paula Valdena Street 1 - 204, Riga LV-1048, Latvia E-mail: ; Animal Health and Environment 'BIOR', Institute of Food Safety, Lejupes Street 3, Riga LV-1076, Latvia
| | - Romans Neilands
- Riga Water Ltd, Dzintara Street 60, Riga LV-1016, Latvia and Faculty of Civil Engineering, Department of Water Engineering and Technology, Riga Technical University, Kipsalas Street 6B-229, Riga LV-1048, Latvia
| | - Jurijs Resetilovs
- RESETILOVS Ltd, Rubenu 48a, Raubeni, Ozolnieku municipality LV-3002, Latvia
| | - Linda Mezule
- Faculty of Civil Engineering, Research Center for Civil Engineering, Water Research Laboratory, Riga Technical University, Paula Valdena Street 1 - 204, Riga LV-1048, Latvia E-mail:
| | - Talis Juhna
- Faculty of Civil Engineering, Research Center for Civil Engineering, Water Research Laboratory, Riga Technical University, Paula Valdena Street 1 - 204, Riga LV-1048, Latvia E-mail:
| |
Collapse
|
12
|
Zhou N, Dang C, Zhao Z, He S, Zheng M, Liu W, Wang X. Role of sludge retention time in mitigation of nitrous oxide emission from a pilot-scale oxidation ditch. BIORESOURCE TECHNOLOGY 2019; 292:121961. [PMID: 31419708 DOI: 10.1016/j.biortech.2019.121961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emission from wastewater treatment plants (WWTPs) has become a focus of attention due to its significant greenhouse effect. In this study, the role of sludge retention time (SRT) in mitigation of N2O emission from a pilot-scale oxidation ditch was systematically investigated. The activated sludge system that operated at SRT of 25 days demonstrated significantly lower N2O emission factor, higher resistance to ammonia overload and aeration failure shock than those obtained at SRT of 15 days no matter which hydraulic retention time (HRT) was adopted. Batch experiments revealed that nitrifier denitrification (ND) was the primary mechanism of N2O generation. However, more microbes affiliated with Nitrospira genera were harbored in the system at SRT 25 d, which could effectively avoid nitrite accumulation, a key factor promoting N2O generation by ND. PICRUSt results further suggested the system at SRT 25 d possessed higher genetic potential for N2O reduction reflected by the more abundant nitrous-oxide reductase.
Collapse
Affiliation(s)
- Nan Zhou
- MOE Key Laboratory of Regional Energy Systems Optimization, Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Chenyuan Dang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhirong Zhao
- MOE Key Laboratory of Regional Energy Systems Optimization, Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Shishi He
- MOE Key Laboratory of Regional Energy Systems Optimization, Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- MOE Key Laboratory of Regional Energy Systems Optimization, Environmental Research Academy, North China Electric Power University, Beijing 102206, China.
| | - Wen Liu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiangke Wang
- MOE Key Laboratory of Regional Energy Systems Optimization, Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
13
|
Farazaki M, Gikas P. Nitrification-denitrification of municipal wastewater without recirculation, using encapsulated microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:258-265. [PMID: 31048231 DOI: 10.1016/j.jenvman.2019.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 05/11/2023]
Abstract
In most municipal wastewater treatment plants, there is need for the removal of nitrogen, which usually takes place using the combined nitrification - denitrification process. Vigorous recirculation between the aeration and the anoxic tanks is enforced, to ensure complete denitrification. The scope of the present work was to investigate the possibility for nitrification-denitrification process in once-through systems (i.e.: without recirculation), without the need for the addition of extra carbon source (i.e. using the BOD in wastewater as carbon source), using encapsulated microorganisms. The primary aim was to increase the concentration of nitrifiers in the aerated reactor with parallel operation at hydraulic retention times (HRTs) below the doubling time of heterotrophic microorganisms, thus ensuring high ammonia oxidation rate and minimal reduction of organic carbon. The preserved organic carbon may be then used as carbon source at the downstream anoxic reactor. Coagulated and clarified wastewater from the effluent of the primary clarifier of a municipal wastewater treatment plant was used as feed to the system. The system comprised of two reactors (with 2 L working volume each) configured in series. The first one (aerated tank) contained encapsulated nitrifiers, while the second one (anoxic tank) contained encapsulated denitrifiers. The system operated at HRTs 8, 4 and 3 h (calculated individually for each reactor). The experiments indicated that at HRT equal to 8 h, almost all N-NH4+ was converted to N-NO3- in the aerated reactor, while the total nitrogen (TN) concentration was below 2 mg L-1 at the exit of the system. At HRT of 4 h a slight decrease in N-NH4+ removal was observed at the exit of the aerated tank (N-NH4+ concentration was measured 3.7 ± 0.1 mg L-1). At HRT equal to 4 h, N-NH4+ concentration did not change significantly during the downstream treatment in the anoxic tank, while N-NO3- concentration at the exit of the system was 1.4 ± 0.1 mg L-1. At the lowest HRT (3 h), N-NH4+ concentration was measured between 10 and 11 mg L-1, both, at the exit of the aeration tank and at the exit of the system; while, N-NO3- was measured 2.6 ± 0.2 mg L-1 at the exit of the system. On the other hand, BOD and TOC removal in the aeration tank decreased with the decrease of the HRT. BOD concentration at the exit of the anoxic tank measured 30.3 ± 2.2 and 19.4 ± 1.7 mg L-1 for HRTs 8 h or 4 h, respectively, while it was measured 51.6 ± 7.6 mg L-1 at HRT 3 h. On the other hand, TOC concentration at the outlet was measured 17.5 ± 1.2 and 13.2 ± 0.6 for HRTs 8 or 4 h, respectively, while it was measured 31.1 ± 5.6 mg L-1 at HRT equal to 3 h. Analysis of variance (ANOVA) showed significant variations of all measured parameters with the applied HRT, apart from N-NO3- concentration at the exit of the aerated tank. The latter was attributed to the complete oxidation oft N-NH4+ in the aerated tank at all HRTs. Based on the efficiency of the system, the volume of the aeration and denitrification tanks of a wastewater treatment plant using encapsulated microorganisms may be designed 16 times smaller, compared to conventional activated sludge plants, while the need for recirculation between the aerated and anoxic tanks may be completely eliminated.
Collapse
Affiliation(s)
- Maria Farazaki
- Design of Environmental Plants Laboratory, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Petros Gikas
- Design of Environmental Plants Laboratory, School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| |
Collapse
|
14
|
Performance and Microbial Community Dynamics in Anaerobic Digestion of Waste Activated Sludge: Impact of Immigration. ENERGIES 2019. [DOI: 10.3390/en12030573] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Waste activated sludge (WAS) is a byproduct of municipal wastewater treatment. WAS contains a large proportion of inactive microbes, so when it is used as a substrate for anaerobic digestion (AD), their presence can interfere with monitoring of active microbial populations. To investigate how influent cells affect the active and inactive microbial communities during digestion of WAS, we operated model mesophilic bioreactors with conventional conditions. Under six different hydraulic retention times (HRTs; 25, 23, 20, 17, 14, and 11.5 d), the chemical oxygen demand (COD) removal and CH4 production of the AD were within a typical range for mesophilic sludge digesters. In the main bacteria were proteobacteria, bacteroidetes, and firmicutes in both the WAS and the bioreactors, while in main archaeal methanogen group was Methanosarcinales in the WAS and methanomicrobiales in the bioreactors. Of the 106 genera identified, the estimated net growth rates were negative in 72 and positive in 34. The genera with negative growth included many aerobic taxa. The genera with positive growth rates included methanogens and syntrophs. In some taxa, the net growth rate could be positive or negative, depending on HRT, so their abundance was also affected by HRT. This study gives insights into the microbial dynamics of a conventional sludge anaerobic digester by distinguishing potentially active (growing) and inactive (non-growing, dormant) microbes and by correlating population dynamics with process parameters.
Collapse
|
15
|
Cho K, Choi M, Lee S, Bae H. Negligible seeding source effect on the final ANAMMOX community under steady and high nitrogen loading rate after enrichment using poly(vinyl alcohol) gel carriers. CHEMOSPHERE 2018; 208:21-30. [PMID: 29859423 DOI: 10.1016/j.chemosphere.2018.05.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m3·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - Minkyu Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea; Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Seockheon Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
16
|
Boog J, Nivala J, Aubron T, Mothes S, van Afferden M, Müller RA. Resilience of carbon and nitrogen removal due to aeration interruption in aerated treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:960-969. [PMID: 29128122 DOI: 10.1016/j.scitotenv.2017.10.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Treatment wetlands have long been used for domestic and industrial wastewater treatment. In recent decades, treatment wetland technology has evolved and now includes intensified designs such as aerated treatment wetlands. Aerated treatment wetlands are particularly dependent on aeration, which requires reliable air pumps and, in most cases, electricity. Whether aerated treatment wetlands are resilient to disturbances such as an aeration interruption is currently not well known. In order to investigate this knowledge gap, we carried out a pilot-scale experiment on one aerated horizontal flow wetland and one aerated vertical flow wetland under warm (Twater>17°C) and cold (Twater<10°C) weather conditions. Both wetlands were monitored before, during and after an aeration interruption of 6d by taking grab samples of the influent and effluent, as well as pore water. The resilience of organic carbon and nitrogen removal processes in the aerated treatment wetlands depended on system design (horizontal or vertical flow) and water temperature. Organic carbon and nitrogen removal for both systems severely deteriorated after 4-5d of aeration interruption, resulting in effluent water quality similar to that expected from a conventional horizontal sub-surface flow treatment wetland. Both experimental aerated treatment wetlands recovered their initial treatment performance within 3-4d at Twater>17°C (warm weather) and within 6-8d (horizontal flow system) and 4-5d (vertical flow system) at Twater<10°C (cold weather). In the vertical flow system, DOC, DN and NH4-N removal were less affected by low water temperatures, however, the decrease of DN removal in the vertical flow aerated wetland at Twater>17°C was twice as high as in the horizontal flow aerated wetland. The quick recovery of treatment performance highlights the benefits of aerated treatment wetlands as resilient wastewater treatment technologies.
Collapse
Affiliation(s)
- Johannes Boog
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department Centre of Environmental and Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany; Dresden University of Technology, Applied Environmental System Analysis, Helmholtzstraße 10, 01069 Dresden.
| | - Jaime Nivala
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department Centre of Environmental and Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Aubron
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department Centre of Environmental and Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sibylle Mothes
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department of Analytical Chemistry (ANA), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Manfred van Afferden
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department Centre of Environmental and Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland A Müller
- Helmholtz Centre for Environmental Research (UFZ) - GmbH, Department Centre of Environmental and Biotechnology (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Li ZH, Zhu YM, Zhang J, Yang CJ, Zhang TY, Yu HQ. Evaluation of robustness of activated sludge using calcium-induced enhancement of respiration. BIORESOURCE TECHNOLOGY 2018; 253:55-63. [PMID: 29328935 DOI: 10.1016/j.biortech.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Robustness of an activated sludge system, describing uncertainty and operational risk, was evaluated using the absence or presence of calcium-induced enhancement of respiration (CaER) effect. Generally, the fast-growing system was susceptible to external environmental variations, of which the sludge exhibited significant CaER effect under normal operational conditions, while the slow growing system showed less significant CaER effect. However, sludge in both systems exhibited CaER effect under stressed conditions of decreasing temperature or ammonia shocking. Therefore, the absence of CaER effect indicates a more robust system, while the presence of CaER effect indicates a susceptible system. Additionally, a method to identify safe and dangerous shocking was established by a hybrid usage of absence or presence of CaER effect and recovery index (RI) curve type. The evaluation of robustness could help determining when adjustment should be really taken to cope with the uncertainty, and thus holds a high promise for field application.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuan-Mo Zhu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cheng-Jian Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tian-Yu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717-2400, USA
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Jo JH, Kim W, Lim J. Ammonia-oxidizers' diversity in wastewater treatment processes. ENVIRONMENTAL TECHNOLOGY 2018; 39:887-894. [PMID: 28394197 DOI: 10.1080/09593330.2017.1316317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
The diversity of ammonia-oxidizing bacteria (AOB) within the beta-subclass of Proteobacteria was investigated by genus- and family-specific real-time quantitative PCR (qPCR) assays on samples drawn from wastewater treatment systems. The 16S rRNA gene copy numbers ranged from 7.0 × 103 to 6.8 × 106, 1.1 × 107 to 1.8 × 107, and 2.9 × 105 to 1.5 × 107 copies/mL, respectively. Volumetric ammonium load (VAL) in the wastewater treatment systems calculated using the AOB numbers was in the range of 2.1-12.6 mM/d. Distribution patterns of eutrophic (i.e. Nitrosomonas europaea and Nitrosomonas nitrosa clusters) and oligotrophic (i.e. Nitrosomonas cryotolerans cluster) AOB groups were correlated with the VAL values. A high possibility of potential false-positive detection by family-specific qPCR assays was established by evaluating theoretical specificity in in silico and experimental investigations. The specificities of genus-specific qPCR assays were confirmed by amoA PCR, followed by cloning and sequencing. VAL must be the factor influencing the inclusion of AOB species. However, there was no significant correlation between the volatile suspended solid concentration representing chemical oxygen demand and N. europaea's community population, indicating that the degree of ammonia oxidation influenced the community cluster of Nitrosomonas relatively more.
Collapse
Affiliation(s)
- Ji Hye Jo
- a Division of Resource Circulation , Korea Environment Institute , Sejong , Republic of Korea
| | - Woong Kim
- b Department of Environmental Engineering , Kyungpook National University , Daegu , Republic of Korea
- c Advanced Institute of Water Industry , Kyungpook National University , Daegu , Republic of Korea
| | - Juntaek Lim
- d Department of Chemical and Biomolecular Engineering , KAIST , Daejeon , Republic of Korea
| |
Collapse
|
19
|
Statistically-Based Comparison of the Removal Efficiencies and Resilience Capacities between Conventional and Natural Wastewater Treatment Systems: A Peak Load Scenario. WATER 2018. [DOI: 10.3390/w10030328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Cho K, Choi M, Jeong D, Lee S, Bae H. Comparison of inoculum sources for long-term process performance and fate of ANAMMOX bacteria niche in poly(vinyl alcohol)/sodium alginate gel beads. CHEMOSPHERE 2017; 185:394-402. [PMID: 28709044 DOI: 10.1016/j.chemosphere.2017.06.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The process performance and microbial niche of anaerobic ammonia oxidation (ANAMMOX) bacteria were compared in two identical bioreactors inoculated with different inoculum sources (i.e., pre-cultured ANAMMOX bacteria: PAB and activated sludge: AS) entrapped in poly(vinyl alcohol)/sodium alginate (PVA/SA) gel beads for a long-term period (i.e., 1.5 years). The start-up period with AS was longer than that with PAB; however, both bioreactors were successfully operated over the long-term with stable ANAMMOX activity. After long-term operation, the 16S rRNA gene concentration of ANAMMOX bacteria in both bioreactors was significantly increased, and thereby became comparable. In addition, Candidatus Jettenia sp. became the dominant ANAMMOX species in both bioreactors. Our results suggested that the ANAMMOX performance and microbial niche of ANAMMOX bacteria became nearly identical during long-term operation despite the use of different inoculum sources. Therefore, the use of PVA/SA gel beads entrapping AS appears to be a relevant option for constructing an ANAMMOX process in places where a full-scale ANAMMOX process has never been done previously.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Republic of Korea
| | - Minkyu Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Republic of Korea; Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea
| | - Dawoon Jeong
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Republic of Korea; Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea
| | - Seockheon Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|