1
|
Bilova T, Golushko N, Frolova N, Soboleva A, Silinskaia S, Khakulova A, Orlova A, Sinetova M, Los D, Frolov A. Strain-Specific Features of Primary Metabolome Characteristic for Extremotolerant/Extremophilic Cyanobacteria Under Long-Term Storage. Int J Mol Sci 2025; 26:2201. [PMID: 40076823 PMCID: PMC11900582 DOI: 10.3390/ijms26052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Cyanobacteria isolated from extreme habitats are promising in biotechnology due to their high adaptability to unfavorable environments and their specific natural products. Therefore, these organisms are stored under a reduced light supply in multiple collections worldwide. However, it remains unclear whether these strains maintain constitutively expressed primary metabolome features associated with their unique adaptations. To address this question, a comparative analysis of primary metabolomes of twelve cyanobacterial strains from diverse extreme habitats was performed by a combined GC-MS/LC-MS approach. The results revealed that all these cyanobacterial strains exhibited clear differences in their patterns of primary metabolites. These metabolic differences were more pronounced for the strains originating from ecologically different extreme environments. Extremotolerant terrestrial and freshwater strains contained lower strain-specifically accumulated primary metabolites than extremophilic species from habitats with high salinity and alkalinity. The latter group of strains was highly diverse in amounts of specific primary metabolites. This might indicate essentially different molecular mechanisms and metabolic pathways behind the survival of the microorganisms in saline and alkaline environments. The identified strain-specific metabolites are discussed with respect to the metabolic processes that might impact maintaining the viability of cyanobacteria during their storage and indicate unique adaptations formed in their original extreme habitats.
Collapse
Affiliation(s)
- Tatiana Bilova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Golushko
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Svetlana Silinskaia
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Anna Khakulova
- Chemical Analysis and Materials Research Core Facility Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (M.S.); (D.L.)
| | - Dmitry Los
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (M.S.); (D.L.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| |
Collapse
|
2
|
Du Z, Bhat WW, Poliner E, Johnson S, Bertucci C, Farre E, Hamberger B. Engineering Nannochloropsis oceanica for the production of diterpenoid compounds. MLIFE 2023; 2:428-437. [PMID: 38818264 PMCID: PMC10989085 DOI: 10.1002/mlf2.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 06/01/2024]
Abstract
Photosynthetic microalgae like Nannochloropsis hold enormous potential as sustainable, light-driven biofactories for the production of high-value natural products such as terpenoids. Nannochloropsis oceanica is distinguished as a particularly robust host with extensive genomic and transgenic resources available. Its capacity to grow in wastewater, brackish, and sea waters, coupled with advances in microalgal metabolic engineering, genome editing, and synthetic biology, provides an excellent opportunity. In the present work, we demonstrate how N. oceanica can be engineered to produce the diterpene casbene-an important intermediate in the biosynthesis of pharmacologically relevant macrocyclic diterpenoids. Casbene accumulated after stably expressing and targeting the casbene synthase from Daphne genkwa (DgTPS1) to the algal chloroplast. The engineered strains yielded production titers of up to 0.12 mg g-1 total dry cell weight (DCW) casbene. Heterologous overexpression and chloroplast targeting of two upstream rate-limiting enzymes in the 2-C-methyl- d-erythritol 4-phosphate pathway, Coleus forskohlii 1-deoxy- d-xylulose-5-phosphate synthase and geranylgeranyl diphosphate synthase genes, further enhanced the yield of casbene to a titer up to 1.80 mg g-1 DCW. The results presented here form a basis for further development and production of complex plant diterpenoids in microalgae.
Collapse
Affiliation(s)
- Zhi‐Yan Du
- Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eric Poliner
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Sean Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
New England Biolabs Inc.240 County RoadIpswich01938MAUSA
| | - Conor Bertucci
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eva Farre
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Bjoern Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Di X, Ortega-Alarcon D, Kakumanu R, Iglesias-Fernandez J, Diaz L, Baidoo EEK, Velazquez-Campoy A, Rodríguez-Concepción M, Perez-Gil J. MEP pathway products allosterically promote monomerization of deoxy-D-xylulose-5-phosphate synthase to feedback-regulate their supply. PLANT COMMUNICATIONS 2023; 4:100512. [PMID: 36575800 DOI: 10.1016/j.xplc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 05/11/2023]
Abstract
Isoprenoids are a very large and diverse family of metabolites required by all living organisms. All isoprenoids derive from the double-bond isomers isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are produced by the methylerythritol 4-phosphate (MEP) pathway in bacteria and plant plastids. It has been reported that IPP and DMAPP feedback-regulate the activity of deoxyxylulose 5-phosphate synthase (DXS), a dimeric enzyme that catalyzes the main flux-controlling step of the MEP pathway. Here we provide experimental insights into the underlying mechanism. Isothermal titration calorimetry and dynamic light scattering approaches showed that IPP and DMAPP can allosterically bind to DXS in vitro, causing a size shift. In silico ligand binding site analysis and docking calculations identified a potential allosteric site in the contact region between the two monomers of the active DXS dimer. Modulation of IPP and DMAPP contents in vivo followed by immunoblot analyses confirmed that high IPP/DMAPP levels resulted in monomerization and eventual aggregation of the enzyme in bacterial and plant cells. Loss of the enzymatically active dimeric conformation allows a fast and reversible reduction of DXS activity in response to a sudden increase or decrease in IPP/DMAPP supply, whereas aggregation and subsequent removal of monomers that would otherwise be available for dimerization appears to be a more drastic response in the case of persistent IPP/DMAPP overabundance (e.g., by a blockage in their conversion to downstream isoprenoids). Our results represent an important step toward understanding the regulation of the MEP pathway and rational design of biotechnological endeavors aimed at increasing isoprenoid contents in microbial and plant systems.
Collapse
Affiliation(s)
- Xueni Di
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ramu Kakumanu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Lucia Diaz
- Nostrum Biodiscovery SL, 08029 Barcelona, Spain
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
5
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
7
|
Zhang Y, Zhao Y, Wang J, Hu T, Tong Y, Zhou J, Gao J, Huang L, Gao W. The expression of TwDXS in the MEP pathway specifically affects the accumulation of triptolide. PHYSIOLOGIA PLANTARUM 2020; 169:40-48. [PMID: 31758560 DOI: 10.1111/ppl.13051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
1-Deoxy-d-xylulose-5-phosphate synthase (DXS) is the first enzyme in the plant 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoid synthesis. TwDXS is a prominent protein in the Tripterygium wilfordii proteome, with especially high expression in the root periderm. It is significantly regulated by methyl jasmonate. Here, we studied the influence of TwDXS expression on bioactive terpenoids in T. wilfordii. Specific fragments of TwDXS (GenBank: AKP20998.1) with lengths of 2148 and 437 bp were amplified to construct the overexpression (OE) and RNA-interference (RNAi) vectors, respectively. After transformation of suspension cells, the expression of TwDXS and genes related to the terpenoid biosynthetic pathway was measured using qRT-PCR. TwDXS mRNA level was 153 and 43% of the control in the OE and RNAi lines. Related genes in the 2-C-methyl-d-erythritol 4-phosphate (MEP), mevalonic acid (MVA) and downstream pathways showed similar trends to the changes of TwDXS expression. Ultra Performance Liquid Chromatography (UPLC) was employed to measure the accumulation of terpenoids. Importantly, the triptolide content showed significant differences in both the TwDXS OE (222.35% of the control) and RNAi (34.86% of the control). However, there were no obvious changes in the celastrol content. In this study, we verified that the expression of TwDXS affects triptolide but not celastrol in T. wilfordii via both TwDXS OE and RNAi experiments.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiadian Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
8
|
Hasunuma T, Takaki A, Matsuda M, Kato Y, Vavricka CJ, Kondo A. Single-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in Synechococcus sp. PCC 7002. ACS Synth Biol 2019; 8:2701-2709. [PMID: 31653173 DOI: 10.1021/acssynbio.9b00280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural pigment astaxanthin is widely used in aquaculture, pharmaceutical, nutraceutical, and cosmetic industries due to superior antioxidant properties. The green alga Haematococcus pluvialis is currently used for commercial production of astaxanthin pigment. However, slow growing H. pluvialis requires a complex two-stage stress-induced process with high light intensity leading to increased contamination risks. In contrast, the fast-growing euryhaline cyanobacterium Synechococcus sp. PCC 7002 (Synechococcus 7002) is able to reach high density under stress-free phototrophic conditions, and is therefore a promising metabolic engineering platform for astaxanthin production. In the present study, genes encoding β-carotene hydroxylase and β-carotene ketolase, from the marine bacterium Brevundimonas sp. SD212, are integrated into the endogenous plasmid of Synechococcus 7002, and then expressed to biosynthesize astaxanthin. Although Synechococcus 7002 does not inherently produce astaxanthin, the recombinant ZW strain yields 3 mg/g dry cell weight astaxanthin from CO2 as the sole carbon source, with significantly higher astaxanthin content than previous cyanobacteria reports. Synechococcus 7002 astaxanthin productivity reached 3.35 mg/L/day after just 2 days in a continuous autotrophic process, which is comparable to the best H. pluvialis astaxanthin productivities when factoring in growth times. Metabolomics analysis reveals increases in fractions of hexose-, pentose-, and triose phosphates along with intermediates involved in the nonmevalonate pathway. Dynamic metabolomics analysis of 13C labeled metabolites clearly indicates flux enhancements in the Calvin cycle and glycolysis resulting from the overexpression of astaxanthin biosynthetic genes. This study suggests that cyanobacteria may enhance central metabolism as well as the nonmevalonate pathway in an attempt to replenish depleted pigments such as β-carotene and zeaxanthin.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayako Takaki
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Christopher J. Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro,
Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
10
|
Englund E, Shabestary K, Hudson EP, Lindberg P. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 2018; 49:164-177. [PMID: 30025762 DOI: 10.1016/j.ymben.2018.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/25/2022]
Abstract
Of the two natural metabolic pathways for making terpenoids, biotechnological utilization of the mevalonate (MVA) pathway has enabled commercial production of valuable compounds, while the more recently discovered but stoichiometrically more efficient methylerythritol phosphate (MEP) pathway is underdeveloped. We conducted a study on the overexpression of each enzyme in the MEP pathway in the unicellular cyanobacterium Synechocystis sp. PCC 6803, to identify potential targets for increasing flux towards terpenoid production, using isoprene as a reporter molecule. Results showed that the enzymes Ipi, Dxs and IspD had the biggest impact on isoprene production. By combining and creating operons out of those genes, isoprene production was increased 2-fold compared to the base strain. A genome-scale model was used to identify targets upstream of the MEP pathway that could redirect flux towards terpenoids. A total of ten reactions from the Calvin-Benson-Bassham cycle, lower glycolysis and co-factor synthesis pathways were probed for their effect on isoprene synthesis by co-expressing them with the MEP enzymes, resulting in a 60% increase in production from the best strain. Lastly, we studied two isoprene synthases with the highest reported catalytic rates. Only by expressing them together with Dxs and Ipi could we get stable strains that produced 2.8 mg/g isoprene per dry cell weight, a 40-fold improvement compared to the initial strain.
Collapse
Affiliation(s)
- Elias Englund
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden; School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Kiyan Shabestary
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Elton P Hudson
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
11
|
Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 2018; 102:6451-6458. [DOI: 10.1007/s00253-018-9093-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
|