1
|
Cho K, Kim ES, Ki H, Kim KY, Pan CH, Hwang HJ, An SM. Estimation of optimal culture conditions for Gedaniella panicellus GPYS21 (Fragilariaceae) as a high-yield bioresource for palmitoleic acid and fucoxanthin production. Biochem Biophys Res Commun 2025; 756:151579. [PMID: 40073535 DOI: 10.1016/j.bbrc.2025.151579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Gedaniella panicellus, a marine diatom belonging to the family Fragilariaceae, has not yet been explored for its biotechnological potential. This study aimed to optimize the growth of G. panicellus using response surface methodology and assess its cellular biochemical composition to verify the production of value-added compounds. The strain was identified through morphological and phylogenetic analyses, with optimal conditions of 20.50 °C, pH 7.33, and 42.32 PSU salinity. Its biochemical profile revealed 24.38 % proteins, 33.05 % carbohydrates, and 37.28 % lipids. Fatty acid analysis showed that the G. panicellus produces a high level of palmitoleic acid (62.37 %), exceeding the yields from macadamia nut and other microalgae. Pigment analysis indicated significant fucoxanthin production (9.21 mg/g), along with diadinoxanthin (2.21 mg/g), and β-carotene (0.49 mg/g) contents. Additionally, the strain synthesises various essential and nonessential amino acids. These findings highlight G. panicellus-first recorded in South Korea-as a promising bioresource for palmitoleic acid and carotenoid production, with potential applications in cosmetics and nutraceuticals.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Eun Song Kim
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Hyunji Ki
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, 48228, Republic of Korea
| | - Cheol-Ho Pan
- Microalgae Ask Us Co., Ltd, Gangneung, 25441, Republic of Korea
| | - Hyun-Ju Hwang
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Sung Min An
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea.
| |
Collapse
|
2
|
Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing Green: Microalgae-Based Materials for 3D Printing with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402786. [PMID: 38876261 DOI: 10.1002/adma.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Collapse
Affiliation(s)
- Clara Vazquez-Martel
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Lilliana Florido Martins
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Elisa Genthner
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Carlos Almeida
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juan Luis Gómez Pinchetti
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Eva Blasco
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Truong TQ, Park YJ, Winarto J, Huynh PK, Moon J, Choi YB, Song DG, Koo SY, Kim SM. Understanding the Impact of Nitrogen Availability: A Limiting Factor for Enhancing Fucoxanthin Productivity in Microalgae Cultivation. Mar Drugs 2024; 22:93. [PMID: 38393064 PMCID: PMC10889934 DOI: 10.3390/md22020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to investigate the regulation of fucoxanthin (FX) biosynthesis under various nitrogen conditions to optimize FX productivity in Phaeodactylum tricornutum. Apart from light, nitrogen availability significantly affects the FX production of microalgae; however, the underlying mechanism remains unclear. In batch culture, P. tricornutum was cultivated with normal (NN, 0.882 mM sodium nitrate), limited (LN, 0.22 mM), and high (HN, 8.82 mM) initial nitrogen concentrations in f/2 medium. Microalgal growth and photosynthetic pigment production were examined, and day 5 samples were subjected to fucoxanthin-chlorophyll a/c-binding protein (FCP) proteomic and transcriptomic analyses. The result demonstrated that HN promoted FX productivity by extending the exponential growth phase for higher biomass and FX accumulation stage (P1), showing a continuous increase in FX accumulation on day 6. Augmented FX biosynthesis via the upregulation of carotenogenesis could be primarily attributed to enhanced FCP formation in the thylakoid membrane. Key proteins, such as LHC3/4, LHCF8, LHCF5, and LHCF10, and key genes, such as PtPSY, PtPDS, and PtVDE, were upregulated under nitrogen repletion. Finally, the combination of low light and HN prolonged the P1 stage to day 10, resulting in maximal FX productivity to 9.82 ± 0.56 mg/L/day, demonstrating an effective strategy for enhancing FX production in microalgae cultivation.
Collapse
Affiliation(s)
- To Quyen Truong
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Republic of Korea; (T.Q.T.); (J.W.); (P.K.H.)
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| | - Yun Ji Park
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| | - Jessica Winarto
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Republic of Korea; (T.Q.T.); (J.W.); (P.K.H.)
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (D.-G.S.); (S.Y.K.)
| | - Phuong Kim Huynh
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Republic of Korea; (T.Q.T.); (J.W.); (P.K.H.)
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| | - Jinyoung Moon
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| | - Yeong Bin Choi
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| | - Dae-Geun Song
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (D.-G.S.); (S.Y.K.)
| | - Song Yi Koo
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (D.-G.S.); (S.Y.K.)
| | - Sang Min Kim
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Republic of Korea; (T.Q.T.); (J.W.); (P.K.H.)
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea; (Y.J.P.); (J.M.); (Y.B.C.)
| |
Collapse
|
4
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
5
|
Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered 2023; 14:2244232. [PMID: 37578162 PMCID: PMC10431731 DOI: 10.1080/21655979.2023.2244232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- ISCO (Nanjing) Biotech-Company, Nanjing, Jiangning, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
An SM, Cho K, Kim ES, Ki H, Choi G, Kang NS. Description and Characterization of the Odontella aurita OAOSH22, a Marine Diatom Rich in Eicosapentaenoic Acid and Fucoxanthin, Isolated from Osan Harbor, Korea. Mar Drugs 2023; 21:563. [PMID: 37999387 PMCID: PMC10671887 DOI: 10.3390/md21110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g-1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g-1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.M.A.); (K.C.); (E.S.K.); (H.K.); (G.C.)
| |
Collapse
|
7
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
8
|
Gao B, Xu M, Shan D, Zhang C, Yang Y, Dong Z, Zhang H, Han B, Huang L, Zhang C. The genomes of Vischeria oleaginous microalgae shed light on the molecular basis of hyper-accumulation of lipids. BMC Biol 2023; 21:133. [PMID: 37280620 DOI: 10.1186/s12915-023-01618-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND With the urgent need to reduce carbon emissions, and the dwindling reserves of easily exploitable fossil fuel, microalgae-based biofuels that can be used for transport systems and CO2 abatement have attracted great attention worldwide in recent years. One useful characteristic of microalgae is their ability to accumulate high levels of lipid content, in particular under conditions of nitrogen deprivation, with numerous species identified so far. However, a trade-off between levels of lipid accumulation and biomass productivity hinders the commercial applicability of lipids from microalgae. Here, we sequenced the genomes of Vischeria sp. CAUP H4302 and Vischeria stellata SAG 33.83, which can accumulate high content of lipids rich in nutraceutical fatty acids and with excellent biomass yield in nitrogen-limiting culture. RESULTS A whole-genome duplication (WGD) event was revealed in V. sp. CAUP H4302, which is a rare event in unicellular microalgae. Comparative genomic analyses showed that a battery of genes encoding pivotal enzymes involved in fatty acids and triacylglycerol biosynthesis, storage polysaccharide hydrolysis, and nitrogen and amino acid-related metabolisms are expanded in the genus Vischeria or only in V. sp. CAUP H4302. The most highlighted is the expansion of cyanate lyase genes in the genus Vischeria, which may enhance their detoxification ability against the toxic cyanate by decomposing cyanate to NH3 and CO2, especially under nitrogen-limiting conditions, resulting in better growth performance and sustained accumulation of biomass under the aforementioned stress conditions. CONCLUSIONS This study presents a WGD event in microalgae, providing new insights into the genetic and regulatory mechanism underpinning hyper-accumulation of lipids and offering potentially valuable targets for future improvements in oleaginous microalgae by metabolic engineering.
Collapse
Affiliation(s)
- Baoyan Gao
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Meng Xu
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yulan Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Hu Zhang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Boping Han
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Luodong Huang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Chengwu Zhang
- Department of Ecology & Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Ma R, You Y, Liu X, Ho SH, Xie Y, Chen J. Highly efficient co-production of fucoxanthin and eicosapentaenoic acid by heterotrophic cultivation of a newly isolated microalga Nitzschia sp. FZU62. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Jin H, Guo Y, Li Y, Chen B, Ma H, Wang H, Wang L, Yuan D. Effective fucoxanthin production in the flagellate alga Poterioochromonas malhamensis by coupling heterotrophic high-cell-density fermentation with illumination. Front Bioeng Biotechnol 2022; 10:1074850. [DOI: 10.3389/fbioe.2022.1074850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
The unicellular flagellate algae Poterioochromonas malhamensis is a potential fucoxanthin-rich resource for sustainable and cost-effective fucoxanthin production. Light and nutrients are critical regulators for the accumulation of fucoxanthin in P. malhamensis. In this study, the maximum fucoxanthin yield of 50.5 mg L−1 and productivity of 6.31 mg L−1 d−1 were achieved by coupling high-cell-density fermentation with illumination. It was found that the combined use of organic and inorganic nitrogen (N) nutrition could improve the fucoxanthin yield as single inorganic or organic N had limitation to enhance cell growth and fucoxanthin accumulation. White light was the optimal light quality for fucoxanthin accumulation. Under white light and a moderate light intensity of 150 μmol m−2 s−1, the highest biomass concentration and fucoxanthin content reached 32.9 g L−1 and 1.56 mg g−1 of dry cell weight (DCW), respectively. This is the first study on effective fucoxanthin production in P. malhamensis by integrating illumination with high-cell-density fermentation, which paved the way for further development of P. malhamensis as a potential source for commercial fucoxanthin production.
Collapse
|
11
|
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydr Polym 2022; 300:120267. [DOI: 10.1016/j.carbpol.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
12
|
Li N, Gao X, Zheng L, Huang Q, Zeng F, Chen H, Farag MA, Zhao C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154352. [PMID: 35917771 DOI: 10.1016/j.phymed.2022.154352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurodegenerative diseases are chronic, currently incurable, diseases of the elderly, which are characterized by protein misfolding and neuronal damage. Fucoxanthin, derived from marine brown algae, presents a promising candidate for the development of effective therapeutic strategies. HYPOTHESIS AND PURPOSE The relationship between neurodegenerative disease management and fucoxanthin has not yet been clarified. This study focuses on the fundamental mechanisms and targets of fucoxanthin in Alzheimer's and Parkinson's disease management, showing that communication between the brain and the gut contributes to neurodegenerative diseases and early diagnosis of ophthalmic diseases. This paper also presents, new insights for future therapeutic directions based on the integrated application of artificial intelligence. CONCLUSION Fucoxanthin primarily binds to amyloid fibrils with spreading properties such as Aβ, tau, and α-synuclein to reduce their accumulation levels, alleviate inflammatory factors, and restore mitochondrial membranes to prevent oxidative stress via Nrf2 and Akt signaling pathways, involving reduction of specific secretases. In addition, fucoxanthin may serve as a preventive diagnosis for neurodegenerative diseases through ophthalmic disorders. It can modulate gut microbes and has potential for the alleviation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjun Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qihui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR, Takahashi K. Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review. Mar Drugs 2022; 20:md20100592. [PMID: 36286416 PMCID: PMC9604996 DOI: 10.3390/md20100592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Fucoxanthin is one of the light-harvesting pigments in brown microalgae, which is increasingly gaining attention due to its numerous health-promoting properties. Currently, the production of microalgal fucoxanthin is not yet feasible from an economic perspective. However, the cultivation of microalgae at favourable conditions holds great potential to increase the viability of this fucoxanthin source. Hence, this study aimed to review the fucoxanthin production of microalgae under different conditions systematically. A literature search was performed using the Web of Science, Scopus and PubMed databases. A total of 188 articles were downloaded and 28 articles were selected for the current review by two independent authors. Microalgae appeared to be a more reliable fucoxanthin source compared to macroalgae. Overall, a consensus fucoxanthin production condition was obtained and proposed: light intensity ranging from 10 to 100 µmol/m2/s could achieve a higher fucoxanthin content. However, the optimal light condition in producing fucoxanthin is species-specific. The current review serves as an antecedent by offering insights into the fucoxanthin-producing microalgae response to different culture factors via a systematic analysis. With the current findings and recommendations, the feasibility of producing fucoxanthin commercially could be enhanced and possibly achieve practical and sustainable fucoxanthin production.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
High-Purity Fucoxanthin Can Be Efficiently Prepared from Isochrysis zhangjiangensis by Ethanol-Based Green Method Coupled with Octadecylsilyl (ODS) Column Chromatography. Mar Drugs 2022; 20:md20080510. [PMID: 36005513 PMCID: PMC9410198 DOI: 10.3390/md20080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.
Collapse
|
15
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, Bonnarme P, Minervini F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022; 11:2065. [PMID: 35885308 PMCID: PMC9319875 DOI: 10.3390/foods11142065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.
Collapse
Affiliation(s)
- Mariagrazia Molfetta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Etiele G. Morais
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Luisa Barreira
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Pascal Bonnarme
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| |
Collapse
|
17
|
Stiefvatter L, Neumann U, Rings A, Frick K, Schmid-Staiger U, Bischoff SC. The Microalgae Phaeodactylum tricornutum Is Well Suited as a Food with Positive Effects on the Intestinal Microbiota and the Generation of SCFA: Results from a Pre-Clinical Study. Nutrients 2022; 14:2504. [PMID: 35745233 PMCID: PMC9229211 DOI: 10.3390/nu14122504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Microalgae such as Phaeodactylum tricornutum (PT) are a sustainable source of nutrients, especially eicosapentaenoic acid (EPA), fucoxanthin (Fx), and chrysolaminarin (Chrl), the concentrations of which can vary depending on the culture conditions. We generated three types of diets containing either an EPA- and Fx-rich (EPA/Fx) or Chrl-rich microalgae (with 5, 15, or 25% added to the diet) or an isocaloric control diet (CD). These diets were evaluated over 14 days in young C57BL/6J mice for safety and bioavailability, short-chain fatty acid (SCFA) production, and microbiome analysis. Both microalgae diets increased body weight gain dose-dependently compared to the CD. Microalgae-derived EPA was well absorbed, resulting in increased liver and fat tissue levels and a decrease in the n-6:n-3 ratio in liver tissue. Both microalgae diets increased the production of selected SCFA and decreased the Firmicutes/Bacteriodota ratio, whereas the Chrl-rich diet led to an increase in Akkermansia. Doses of up to 4621 mg Chrl, 920 mg EPA, and 231 mg Fx per kg body weight daily were tolerated without adverse effects. This pre-clinical study shows that PT is suitable for mouse feed, with positive effects on microbiota composition and SCFA production, suggesting beneficial effects on gut health.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Ulrike Neumann
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Andreas Rings
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany;
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| |
Collapse
|
18
|
Rehmanji M, Nesamma AA, Khan NJ, Fatma T, Jutur PP. Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables. Biotechnol J 2022; 17:e2100684. [PMID: 35666486 DOI: 10.1002/biot.202100684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1 day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.
Collapse
Affiliation(s)
- Mohammed Rehmanji
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
19
|
A DUF4281 domain-containing protein (homologue of ABA4) of Phaeodactylum tricornutum regulates the biosynthesis of fucoxanthin. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Mar Drugs 2022; 20:md20060351. [PMID: 35736154 PMCID: PMC9225646 DOI: 10.3390/md20060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Chrysolaminarin, a kind of water-soluble bioactive β-glucan produced by certain microalgae, is a potential candidate for food/pharmaceutical applications. This study identified a marine microalga Isochrysis zhangjiangensis, in which chrysolaminarin production was investigated via nutrient (nitrogen, phosphorus, or sulfur) deprivations (-N, -P, or -S conditions) along with an increase in light intensity. A characterization of the antioxidant activities of the chrysolaminarin produced under each condition was also conducted. The results showed that nutrient deprivation caused a significant increase in chrysolaminarin accumulation, though this was accompanied by diminished biomass production and photosynthetic activity. -S was the best strategy to induce chrysolaminarin accumulation. An increase in light intensity from 80 (LL) to 150 (HL) µE·m−2·s−1 further enhanced chrysolaminarin production. Compared with -N, -S caused more suitable stress and reduced carbon allocation toward neutral lipid production, which enabled a higher chrysolaminarin accumulation capacity. The highest chrysolaminarin content and concentration reached 41.7% of dry weight (%DW) and 632.2 mg/L, respectively, under HL-S, with a corresponding productivity of 155.1 mg/L/day achieved, which exceeds most of the photoautotrophic microalgae previously reported. The chrysolaminarin produced under HL-N (Iz-N) had a relatively competitive hydroxyl radical scavenging activity at low concentrations, while the chrysolaminarin produced under HL-S (Iz-S) exhibited an overall better activity, comparable to the commercial yeast β-glucan, demonstrating I. zhangjiangensis as a promising bioactive chrysolaminarin producer from CO2.
Collapse
|
21
|
Wu Z, Qiu S, Abbew AW, Chen Z, Liu Y, Zuo J, Ge S. Evaluation of nitrogen source, concentration and feeding mode for co-production of fucoxanthin and fatty acids in Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
22
|
Sun H, Yang S, Zhao W, Kong Q, Zhu C, Fu X, Zhang F, Liu Z, Zhan Y, Mou H, He Y. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit Rev Food Sci Nutr 2022; 63:7996-8012. [PMID: 35319314 DOI: 10.1080/10408398.2022.2054932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fucoxanthin attracts increasing attentions due to its potential health benefits, which has been exploited in several food commodities. However, fucoxanthin available for industrial application is mainly derived from macroalgae, and is not yet sufficiently cost-effective compared with microalgae. This review focuses on the strategies to improve fucoxanthin productivity and approaches to reduce downstream costs in microalgal production. Here we comprehensively and critically discuss ways and methods to increase the cell growth rate and fucoxanthin content of marine microalgae, including strain screening, condition optimization, design of culture mode, metabolic and genetic engineering, and scale-up production of fucoxanthin. The approaches in downstream processes provide promising alternatives for fucoxanthin production from marine microalgae. Besides, this review summarizes fucoxanthin improvements in solubility and bioavailability by delivery system of emulsion, nanoparticle, and hydrogel, and discusses fucoxanthin metabolism with gut microbes. Fucoxanthin production from marine microalgae possesses numerous advantages in environmental sustainability and final profits to meet incremental global market demands of fucoxanthin. Strategies of adaptive evolution, multi-stage cultivation, and bioreactor improvements have tremendous potentials to improve economic viability of the production. Moreover, fucoxanthin is promising as the microbiota-targeted ingredient, and nanoparticles can protect fucoxanthin from external environmental factors for improving the solubility and bioavailability.
Collapse
Affiliation(s)
- Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Feed and Veterinary Drug Quality Center, Jinan, Shandong, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|
24
|
Pajot A, Lavaud J, Carrier G, Garnier M, Saint-Jean B, Rabilloud N, Baroukh C, Bérard JB, Bernard O, Marchal L, Nicolau E. The Fucoxanthin Chlorophyll a/c-Binding Protein in Tisochrysis lutea: Influence of Nitrogen and Light on Fucoxanthin and Chlorophyll a/c-Binding Protein Gene Expression and Fucoxanthin Synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:830069. [PMID: 35251102 PMCID: PMC8891753 DOI: 10.3389/fpls.2022.830069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 06/13/2023]
Abstract
We observed differences in lhc classification in Chromista. We proposed a classification of the lhcf family with two groups specific to haptophytes, one specific to diatoms, and one specific to seaweeds. Identification and characterization of the Fucoxanthin and Chlorophyll a/c-binding Protein (FCP) of the haptophyte microalgae Tisochrysis lutea were performed by similarity analysis. The FCP family contains 52 lhc genes in T. lutea. FCP pigment binding site candidates were characterized on Lhcf protein monomers of T. lutea, which possesses at least nine chlorophylls and five fucoxanthin molecules, on average, per monomer. The expression of T. lutea lhc genes was assessed during turbidostat and chemostat experiments, one with constant light (CL) and changing nitrogen phases, the second with a 12 h:12 h sinusoidal photoperiod and changing nitrogen phases. RNA-seq analysis revealed a dynamic decrease in the expression of lhc genes with nitrogen depletion. We observed that T. lutea lhcx2 was only expressed at night, suggesting that its role is to protect \cells from return of light after prolonged darkness exposure.
Collapse
Affiliation(s)
- Anne Pajot
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Johann Lavaud
- LEMAR-Laboratoire des Sciences de l’Environnement Marin, UMR 6539, CNRS/Univ Brest/Ifremer/IRD, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané, France
| | - Gregory Carrier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Matthieu Garnier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Bruno Saint-Jean
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Noémie Rabilloud
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | - Caroline Baroukh
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| | | | - Olivier Bernard
- Université Côte d’Azur, Biocore, INRIA, CNRS, Sorbonne Université (LOV, UMR 7093), Sophia-Antipolis, France
| | | | - Elodie Nicolau
- IFREMER, Physiology and Biotechnology of Algae Laboratory, Nantes, France
| |
Collapse
|
25
|
Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae - Recent advances in cultivation strategies and downstream processing. BIORESOURCE TECHNOLOGY 2022; 344:126170. [PMID: 34678455 DOI: 10.1016/j.biortech.2021.126170] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Fucoxanthin, a brown-colored pigment from algae, is gaining much attention from industries and researchers recently due to its numerous potential health benefits, including anti-oxidant, anti-cancer, anti-obesity functions, and so on. Although current commercial production is mainly from brown macroalgae, microalgae with rapid growth rate and much higher fucoxanthin content demonstrated higher potential as the fucoxanthin producer. Factors such as concentration of nitrogen, iron, silicate as well as light intensity and wavelength play a significant role in fucoxanthin biosynthesis from microalgae. Two-stage cultivation approaches have been proposed to maximize the production of fucoxanthin and other valuable metabolites. Sustainable fucoxanthin production can be achieved by using low-cost substrates as a culture medium in an open pond cultivation system utilizing seawater with nutrient recycling. For downstream processing, the integration of novel "green" solvents with other extraction techniques emerged as a promising extraction technique.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology. National Cheng Kung University, Tainan, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Seth K, Kumar A, Rastogi RP, Meena M, Vinayak V, Harish. Bioprospecting of fucoxanthin from diatoms — Challenges and perspectives. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102475] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol Adv 2021; 53:107865. [PMID: 34763051 DOI: 10.1016/j.biotechadv.2021.107865] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Fucoxanthin, the most abundant but nearly untapped carotenoid resource, is in the spotlight in the last decade from various perspectives due to a wide range of bioactivities and healthy benefits. The exploitation of fucoxanthin for nutraceutical and pharmaceutical purposes encompasses enormous scientific and economic potentials. Traditional production of fucoxanthin from brown algae (macroalgae) is constrained by limited yield and prohibitively high cost. Microalgae, as the most diverse photoautotrophs, hold the promises as sustainable sources and ideal cell factories for commercial fucoxanthin production, owing to their rich fucoxanthin content and excellent biomass productivity. In this work, the recent progress in upstream (microalgae selection, optimization of culture conditions, trophic modes, cultivation strategies and biosynthesis pathway) as well as downstream processes (extraction) of fucoxanthin production has been comprehensively and critically reviewed. The major bottlenecks, such as screening of fucoxanthin-producers, conflict between biomass and fucoxanthin accumulation under high light condition, unclear steps in biosynthesis pathway and limited evaluation of outdoor scale-up cultivation and extraction, have been pinpointed. Most importantly, the applications of emerging and conventional techniques facilitating commercialization of microalgal fucoxanthin are highlighted. The reviewed and evaluated include breeding and high-throughput screening methods of elite strains; flashing light effect inducing concurrent biomass and fucoxanthin accumulation; fucoxanthin biosynthesis and the regulatory mechanisms associating with its accumulation elucidated with the development of genetic engineering and omics techniques; and photobioreactors, harvesting and extraction techniques suitable for scaling up fucoxanthin production. In conclusion, the prospects of microalgal fucoxanthin commercialization can be expected with the joint development of fundamental phycology and biotechnology.
Collapse
|
28
|
Xiang Q, Wei X, Yang Z, Xie T, Zhang Y, Li D, Pan X, Liu X, Zhang X, Yao C. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146687. [PMID: 33812104 DOI: 10.1016/j.scitotenv.2021.146687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Industrial wastewaters usually possess a wide range of nitrate strength. Microalgae-based nitrate-rich wastewater treatment could realize nitrate recovery along with CO2 sequestration for sustainable biomass production, but the low tolerance of the microalgal strains to high-strength nitrate restricted the treatment process. The present study comprehensively evaluated a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and biomass production in synthetic wastewater with a broad range of nitrate strength (0.24-7.0 g NO3--N/L). This alga could acclimate to high nitrate strength up to 3.5 g NO3--N/L (HN) without compromising biomass production. Nitrate could be completely removed within four days when low nitrate (0.24 g NO3--N/L, LN) was loaded. The maximum nitrate removal rate of 331 mg N/L/day and specific nitrate removal rate of 360 mg N/day/g cell was obtained under medium nitrate condition (1.8 g NO3--N/L, MN). High-nitrate stress under 7.0 g NO3--N/L (SHN) caused an increased light energy dissipation while decreased the density of photosystem II active reaction center, which partially protect the cells from photodamage and contributed to their acclimation to SHN. The algae also enhanced amino acid/fatty acid proportions essential for maintaining intracellular redox states to cope with the stress caused by LN or SHN. HN and SHN was in favor of protein accumulation and maintenance with enhanced proportion of essential amino acids, which entitled the algal biomass to be of high quality for animal feed applied in livestock graziery and aquaculture. LN facilitated productive starch and lipid accumulation with good quality for biofuels production. The nitrate removal rate and biomass productivity exceeded most of the microalgae reported in literature under similar conditions, which highlighted Tetraselmis subcordiformis as a potent strain for flexible nitrate-rich wastewater remediation coupled with fast CO2 bio-mitigation and high-quality biomass production for sustainable algal biorefinery.
Collapse
Affiliation(s)
- Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolong Wei
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zezhou Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Defu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xuerong Pan
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiaolong Liu
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiang Zhang
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
29
|
Marella TK, Bhattacharjya R, Tiwari A. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb Cell Fact 2021; 20:135. [PMID: 34266439 PMCID: PMC8281487 DOI: 10.1186/s12934-021-01627-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diatoms are unicellular photosynthetic protists which constitute one of the most successful microalgae contributing enormously to global primary productivity and nutrient cycles in marine and freshwater habitats. Though they possess the ability to biosynthesize high value compounds like eicosatetraenoic acid (EPA), fucoxanthin (Fx) and chrysolaminarin (Chrl) the major bottle neck in commercialization is their inability to attain high density growth. However, their unique potential of acquiring diverse carbon sources via varied mechanisms enables them to adapt and grow under phototrophic, mixotrophic as well as heterotrophic modes. Growth on organic carbon substrates promotes higher biomass, lipid, and carbohydrate productivity, which further triggers the yield of various biomolecules. Since, the current mass culture practices primarily employ open pond and tubular photobioreactors for phototrophic growth, they become cost intensive and economically non-viable. Therefore, in this review we attempt to explore and compare the mechanisms involved in organic carbon acquisition in diatoms and its implications on mixotrophic and heterotrophic growth and biomolecule production and validate how these strategies could pave a way for future exploration and establishment of sustainable diatom biorefineries for novel biomolecules.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
30
|
Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. Unconventional high-value products from microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124895. [PMID: 33713898 DOI: 10.1016/j.biortech.2021.124895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zvy Dubinsky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vitor Verdelho
- General Manager of the European Algae Biomass Association (EABA), Portugal
| | - David Iluz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Environmental Sciences and Agriculture, Beit Berl Academic College, Israel; Talpiot academic College, Holon, Israel
| |
Collapse
|
31
|
Kanamoto A, Kato Y, Yoshida E, Hasunuma T, Kondo A. Development of a Method for Fucoxanthin Production Using the Haptophyte Marine Microalga Pavlova sp. OPMS 30543. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:331-341. [PMID: 33713238 DOI: 10.1007/s10126-021-10028-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The natural pigment fucoxanthin has attracted global attention because of its superior antioxidant properties. The haptophyte marine microalgae Pavlova spp. are assumed to be promising industrial fucoxanthin producers as their lack of a cell wall could facilitate the commercialization of cultured cells as a whole food. This study screened promising Pavlova strains with high fucoxanthin content to develop an outdoor cultivation method for fucoxanthin production. Initial laboratory investigations of P. pinguis NBRC 102807, P. lutheri NBRC 102808, and Pavlova sp. OPMS 30543 identified OPMS 30543 as having the highest fucoxanthin content. The culture conditions were optimized for OPMS 30543. Compared with f/2 and Walne's media, the use of Daigo's IMK medium led to the highest biomass production and highest fucoxanthin accumulation. The presence of seawater elements in Daigo's IMK medium was necessary for the growth of OPMS 30543. OPMS 30543 was then cultured outdoors using acrylic pipe photobioreactors, a plastic bag, an open tank, and a raceway pond. Acrylic pipe photobioreactors with small diameters enabled the highest biomass production. Using an acrylic pipe photobioreactor with 60-mm diameter, a fucoxanthin productivity of 4.88 mg/L/day was achieved in outdoor cultivation. Thus, this study demonstrated the usefulness of Pavlova sp. OPMS 30543 for fucoxanthin production in outdoor cultivation.
Collapse
Affiliation(s)
- Akihiko Kanamoto
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- OP Bio Factory Co., Ltd., 5-8 Aza-Suzaki, Uruma, Okinawa, 904-2234, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Erina Yoshida
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
32
|
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 fatty acid which is an essential nutrient for both humans and animals. This review examines the global need for EPA, both in human nutrition and aquaculture. The potential shortfall in supply of this important nutrient as well as sustainability issues with wild-caught fish have generated increased interest into alternative sources of EPA. Various approaches are summarized, including heterotrophic production and the use of genetically modified microorganisms and plants. Studies on photoautotrophic production of EPA are extensively reviewed. Widely used species for large-scale production of EPA includes Phaeodactylum tricornutum and Nannochloropsis due to their robustness and relatively high growth rates and EPA content (typically 5% of dry biomass). Approaches for large-scale production have also been reviewed. Closed reactors like flat panels, tubular reactors and bubble columns may be the most suitable due to their high productivity. However, there is no agreement in the literature as to which design generates the lowest cost of production. The economics of the process has also been examined. The best estimates for large-scale (100 hectare) plants give EPA prices of the order 39-90 USD per kilogram. This is approximately ten times higher than the price of EPA derived from fish oil. Potential avenues for lowering the cost are highlighted, along with the need to better understand the advantages and disadvantages of different EPA production methods from a more holistic perspective.
Collapse
Affiliation(s)
- Wenjia Gu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - John M Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - Dale D McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
33
|
Na H, Jo SW, Do JM, Kim IS, Yoon HS. Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100. J Microbiol Biotechnol 2021; 31:387-397. [PMID: 33323676 PMCID: PMC9705891 DOI: 10.4014/jmb.2009.09055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 μg/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.
Collapse
Affiliation(s)
- Ho Na
- Department of Biology, Kyungpook National University, Daegu 41566, Republic of Korea,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Woo Jo
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Mi Do
- Department of Biology, Kyungpook National University, Daegu 41566, Republic of Korea,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author I.S. Kim E-mail:
| | - Ho-Sung Yoon
- Department of Biology, Kyungpook National University, Daegu 41566, Republic of Korea,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea,Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea,H.S. Yoon E-mail:
| |
Collapse
|
34
|
Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct 2020; 11:9338-9358. [PMID: 33151231 DOI: 10.1039/d0fo02176h] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in marine brown algae. The potential therapeutic effects of fucoxanthin on tumor intervention have been well documented, which have aroused great interests in utilizing fucoxanthin in functional foods and nutraceuticals. However, the utilization of fucoxanthin as a nutraceutical in food and nutrient supplements is currently limited due to its low water solubility, poor stability, and limited bioaccessibility. Nano/micro-encapsulation is a technology that can overcome these challenges. A systematic review on the recent progresses in nano/micro-delivery systems to encapsulate fucoxanthin in foods or nutraceuticals is warranted. This article starts with a brief introduction of fucoxanthin and the challenges of oral delivery of fucoxanthin. Nano/micro-encapsulation technology is then covered, including materials and strategies for constructing the delivery system. Finally, future prospective has been discussed on properly designed oral delivery systems of fucoxanthin for managing cancer. Natural edible materials such as whey protein, casein, zein, gelatin, and starch have been successfully utilized to fabricate lipid-based, gel-based, or emulsion-based delivery systems, molecular nanocomplexes, and biopolymer nanoparticles with the aid of advanced processing techniques, such as freeze-drying, high pressure homogenization, sonication, anti-solvent precipitation, coacervation, ion crosslinking, ionic gelation, emulsification, and enzymatic conjugation. These formulated nano/micro-capsules have proven to be effective in stabilizing and enhancing the bioaccessibility of fucoxanthin. This review will inspire a surge of multidisciplinary research in a broader community of foods and motivate material scientists and researchers to focus on nano/micro-encapsulated fucoxanthin in order to facilitate the commercialization of orally-deliverable tumor intervention products.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | | | | | | | | |
Collapse
|
35
|
Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 2020; 40:993-1009. [DOI: 10.1080/07388551.2020.1805402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Runqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
36
|
Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. BIOLOGY 2020; 9:E217. [PMID: 32785088 PMCID: PMC7464044 DOI: 10.3390/biology9080217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing.
Collapse
Affiliation(s)
- Deepak Sethi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Thomas O. Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Faqih Shuhaili
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| |
Collapse
|
37
|
Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16. ENERGIES 2020. [DOI: 10.3390/en13040964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Overproduction of biomass and hyper-accumulation of lipids endow microalgae with promising characteristics to realize the cost-effective potential of advanced bioenergy. This study sought to heuristically optimize the culture conditions on a rarely reported Golenkinia sp. The results indicate that Golenkinia SDEC-16 can withstand the strong light intensity and grow in a modified BG11 medium. The optimal culture conditions for the favorable tradeoff between biomass and lipid accumulation were suggested as follows, 25,000 lux of light intensity, 9 mM of initial nitrogen concentration, and 20 mM of initial sodium chloride concentration. Under these conditions, the biomass concentration and productivity reached 6.65 g/L and 545 mg/L/d, and the synchronous lipid content and productivity reached 54.38% and 296.39 mg/L/d. Hypersalinity significantly promoted lipid contents at the cost of biomass and resulted in an increase of cell size but loss of spines of Golenkinia SDEC-16. The results shed new light on optimizing biomass and lipid productivity.
Collapse
|
38
|
Li Y, Sun H, Wu T, Fu Y, He Y, Mao X, Chen F. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. BIORESOURCE TECHNOLOGY 2019; 282:94-102. [PMID: 30852337 DOI: 10.1016/j.biortech.2019.02.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 05/06/2023]
Abstract
This study explored the co-production of fucoxanthin and stearidonic acid from Isochrysis zhangjiangensis by investigating its carbon metabolism under different light intensities. Results showed high light inhibited the synthesis of fucoxanthin and stearidonic acid, while promoted cell growth and enhanced cellular lipid content compared with low light, achieving 2.4 g/L and 28.55%, respectively. Low light accelerated the accumulation of fucoxanthin and stearidonic acid, which obtained 23.29 mg/g and 17.16% (of total fatty acid). In combination with the molecular analysis, low light redirected carbon skeletons into glyceraldehyde-3-phosphate and diverted into carotenoid especially fucoxanthin. While, high light redistributed the skeletons to Malonyl CoA, citrate and α-Ketoglutarate and then oriented into lipid metabolism. The highest fucoxanthin and stearidonic acid productivity was 2.94 mg L-1 d-1 and 4.33 mg L-1 d-1, respectively, which revealed I. zhanjiangensis is a potential strain for the co-production of fucoxanthin and stearidonic acid.
Collapse
Affiliation(s)
- Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yunlei Fu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|