1
|
Lakshmikandan M, Li M. Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125018. [PMID: 40106994 DOI: 10.1016/j.jenvman.2025.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.
Collapse
Affiliation(s)
- Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Che D, Lai Y, Weng Z, Li M, Huang G, Zheng M, Wang M. Self-flocculating Spirulina platensis CMB-02 to efficiently treat ammonia nitrogen of rare earth elements wastewater. BIORESOURCE TECHNOLOGY 2024; 411:131360. [PMID: 39197660 DOI: 10.1016/j.biortech.2024.131360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The study aimed to evaluate the cyanobacteria Spirulina platensis CMB-02 (S. platensis CMB-02) with self-flocculation properties to treat the ammonia nitrogen of rare earth elements (REEs) wastewater. The results demonstrated that S. platensis CMB-02 could effectively remove total ammonia nitrogen (TAN) and total inorganic nitrogen within 5 days. Simultaneously, a self-flocculation efficiency of 82.59 % was achieved by microalga in 30 min after wastewater treatment. The pH, tightly bound extracellular polymeric substances (TB-EPS), and cell morphology of S. platensis CMB-02 were identified as key factors influencing its self-flocculation capabilities. Moreover, the established semi-continuous process with a 20 % renewal rate showed a stable treatment effect, representing a TAN degradation rate of 10.9 mg/(L·d). These obtained findings could conclude that the developed approach mediated with self-flocculating S. platensis CMB-02 was a promising way for REEs wastewater treatment.
Collapse
Affiliation(s)
- Dandan Che
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yulin Lai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Ziqi Weng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Ming Li
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of China, Beijing 100006, China
| | - Guanglu Huang
- Longyan rare earth development CO., LTD., Longyan 364000, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China.
| |
Collapse
|
3
|
Gaysina LA. Influence of pH on the Morphology and Cell Volume of Microscopic Algae, Widely Distributed in Terrestrial Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:357. [PMID: 38337891 PMCID: PMC10857513 DOI: 10.3390/plants13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.
Collapse
Affiliation(s)
- Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450008 Ufa, Russia;
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
4
|
Fariz-Salinas EA, Limón-Rodríguez B, Beltrán-Rocha JC, Guajardo-Barbosa C, Cantú-Cárdenas ME, Martínez-Ávila GCG, Castillo-Zacarías C, López-Chuken UJ. Effect of light stress on lutein production with associated phosphorus removal from a secondary effluent by the autoflocculating microalgae consortium BR-UANL-01. 3 Biotech 2024; 14:23. [PMID: 38156038 PMCID: PMC10751278 DOI: 10.1007/s13205-023-03810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2023] [Indexed: 12/30/2023] Open
Abstract
Microalgae have become promising microorganisms for generating high-value commercial products and removing pollutants in aquatic systems. This research evaluated the impact of sunlight intensity on intracellular pigment generation and phosphorus removal from secondary effluents by autoflocculating microalgae consortium BR-UANL-01 in photobioreactor culture. Microalgae were grown in a secondary effluent from a wastewater treatment plant, using a combination of low and high light conditions (photon irradiance; 44 μmol m-2 s-1 and ≈ 1270 μmol m-2 s-1, respectively) and 16:8 h light:dark and 24:0 h light:dark (subdivided into 18:6 LED:sunlight) photoperiods. The autoflocculant rate by consortium BR-UANL-01 was not affected by light intensity and achieved 98% in both treatments. Microalgae produced significantly more lutein, (2.91 mg g-1) under low light conditions. Phosphate removal by microalgae resulted above 85% from the secondary effluent, due to the fact that phosphorus is directly associated with metabolic and replication processes and the highest antioxidant activity was obtained in ABTS•+ assay by the biomass under low light condition (51.71% μmol ET g-1). In conclusion, the results showed that the autoflocculating microalgae consortium BR-UANL-01 is capable of synthesizing intracellular lutein, which presents antioxidant activity, using secondary effluents as a growth medium, without losing its autoflocculating activity and assimilating phosphorus.
Collapse
Affiliation(s)
- Edwin Alexis Fariz-Salinas
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Benjamín Limón-Rodríguez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Julio Cesar Beltrán-Rocha
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda, El Canadá, 66050 General Escobedo, Nuevo León Mexico
| | - Claudio Guajardo-Barbosa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, 66450 San Nicolás de los Garza, Nuevo León Mexico
| | - María Elena Cantú-Cárdenas
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| | | | - Carlos Castillo-Zacarías
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Ulrico Javier López-Chuken
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| |
Collapse
|
5
|
Van Lal Chhandama M, Satyan KB. Sustainable approach for biodiesel production and wastewater treatment by cultivating Pleusrastrum insigne in wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:679-686. [PMID: 35875946 DOI: 10.1080/15226514.2022.2103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The globalized modern world has been confronted with some of the most challenging problems, most of which arise from human activities. Overexploitation of fossil fuels which leads to energy and environmental crisis, and loss of aquatic ecosystem due to improper disposal of household and industrial waste into water bodies constitute some of the biggest emerging global problems. In this study, an unconventional and sustainable approach to produce biodiesel was analyzed by growing Pleurastrum insigne in different wastewater. The growth of P. insigne in wastewater in turn resulted in up to 93.61% reduction in biological oxygen demand, 58.62% reduction in total phosphorus content, and up to 76.61% total nitrogen removal in the wastewater. The total lipid content of the organism was highest in wastewater sample 6 (30.47%). The fatty acid profile also showed a high percentage of C16 and C18 fatty acids which are desirable fatty acids for a high-grade fuel. Production of biodiesel conforming to international standards was predicted from P. insigne cultivated in wastewater confirming the effectiveness of combining wastewater treatment and biodiesel production. Novelty statement: Pleurastrum insigne has never been studied before for phytoremediation of wastewater and biodiesel production. This novel research highlighted the application of P. insigne in wastewater treatment and the viable scope in biodiesel production. This work aimed to provide a significant contribution in reducing the cost of production of biodiesel from microalgae while shedding new light on an eco-friendly approach to wastewater treatment.
Collapse
Affiliation(s)
- Michael Van Lal Chhandama
- Department of Biotechnology, School of Sciences (Block-I), JAIN (Deemed-to-be University), Bengaluru, India
| | - Kumudini Belur Satyan
- Department of Biotechnology, School of Sciences (Block-I), JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
6
|
Acebu PIG, de Luna MDG, Chen CY, Abarca RRM, Chen JH, Chang JS. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. BIORESOURCE TECHNOLOGY 2022; 352:127086. [PMID: 35364235 DOI: 10.1016/j.biortech.2022.127086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The potential of microalgae to remove nutrients from swine wastewater and accumulate carbohydrates was examined. Chlorella sorokiniana AK-1 and Chlorella vulgaris ESP-31 were grown in 10% unsterilized swine wastewater and obtained a maximum carbohydrate content and productivity of 42.5% and 189 mg L-1d-1, respectively. At 25% wastewater and 25% BG-11 concentration, the maximum carbohydrate productivity and total nitrogen removal efficiency of C. vulgaris ESP-31 were improved to 266 mg L-1d-1 and 54.2%, respectively. Further modifications in light intensity, inoculum size, and harvesting period enhanced the biomass growth, carbohydrate concentration, and total nitrogen assimilation to 3.6 gL-1, 1.8 gL-1, and 92.2%, respectively. Ethanol fermentation of the biomass resulted in bioethanol yield and concentration of 84.2% and 4.2 gL-1, respectively. Overall, unsterilized swine wastewater was demonstrated as a cost-effective nutrient source for microalgal cultivation which further increases the economic feasibility and environmental compatibility of bioethanol production with concomitant swine wastewater treatment.
Collapse
Affiliation(s)
- Paula Isabel G Acebu
- Energy Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Mark Daniel G de Luna
- Energy Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines; Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ralf Ruffel M Abarca
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jih-Heng Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
7
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
8
|
Bui-Xuan D, Tang DYY, Chew KW, Nguyen TDP, Le Ho H, Tran TNT, Nguyen-Sy T, Dinh THT, Nguyen PS, Dinh TMH, Nguyen TT, Show PL. Green biorefinery: Microalgae-bacteria microbiome on tolerance investigations in plants. J Biotechnol 2022; 343:120-127. [PMID: 34896159 DOI: 10.1016/j.jbiotec.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/23/2021] [Accepted: 12/05/2021] [Indexed: 12/29/2022]
Abstract
Co-culture of microalgae and microorganisms, supported with the resulting synergistic effects, can be used for wastewater treatment, biomass production, agricultural applications and etc. Therefore, this study aimed to explore the role of Bacillus subtilis (B. subtilis) in tolerance against the harsh environment of seafood wastewater, at which these microalgal-bacterial flocs were formed by microalgae cultivation. In this present study, B. subtilis isolated from the cultivation medium of Chlorella vulgaris and exposed to different salinity (0.1-4% w/v sodium chloride) and various pH range to determine the tolerant ability and biofilm formation. Interestingly, this bacteria strain that isolated from microalgae cultivation medium showed the intense viability in the salt concentration exceeding up to 4% (w/v) NaCl but demonstrated the decrease in cell division as environmental culture undergoing over pH 10. Cell viability was recorded higher than 71% and 92% for B. subtilis inoculum in media with salt concentration greater than 20 gL-1 and external pH 6.5-9, respectively. This showed that B. subtilis isolated from microalgal-bacteria cocultivation exhibited its tolerant ability to survive in the extremely harsh conditions and thus, mitigating the stresses due to salinity and pH.
Collapse
Affiliation(s)
- Dong Bui-Xuan
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Danang 550 000, Viet Nam
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Thi Dong Phuong Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam.
| | - Han Le Ho
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea; University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Thi Ngoc Thu Tran
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Toan Nguyen-Sy
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thi Ha Thuong Dinh
- The University of Danang, University of Science and Education, 459 Ton Duc Thang St., Danang 550 000, Viet Nam
| | - Phuc Son Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thi My Huong Dinh
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang 550 000, Viet Nam
| | - Thanh Thuy Nguyen
- National Institute of Hygiene and Epidemiology, 01 Yecxanh St, Hanoi, Viet Nam
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Lee JC, Lee B, Kim HW, Jeon BH, Lim H. Techno-economic analysis of livestock urine and manure as a microalgal growth medium. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:276-286. [PMID: 34560510 DOI: 10.1016/j.wasman.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have the potential to utilize the nutrients in livestock urine and manure (LUM) for the production of useful biomass, which can be used as a source of bioindustry. This study aims to evaluate the economic benefits of LUM feedstock that have not been clearly discussed before. Two types of photobioreactors were designed with a capacity of 200 m3 d-1. Using the experimental data, the economic feasibility of the suggested processes was evaluated via techno-economic analysis. Itemized cost estimation indicated that the submerged membrane photobioreactor has a lower unit production cost (5.4 $ to 5.1 $ kg-1) than the conventional photobioreactor system (14.6 $ to 13.8 $ kg-1). In addition, LUM-based growth is another good option for reducing the unit production cost of biomass. The revenues from lowering the cost of LUM treatment significantly contribute to enhancing the economic profitability, where the break-even prices were 1.18 $ m-3 (photobioreactor) and 0.98 $ m-3 (submerged membrane photobioreactor). Finally, this study provides several emerging suggestions to reduce microalgal biomass production costs.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Division of advanced biology, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Boreum Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, 06520-8286, United States
| | - Hyun-Woo Kim
- Department of Environment and Energy, Division of Civil/Environmental/Mineral Resources and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Narayanan M, Prabhakaran M, Natarajan D, Kandasamy S, Raja R, Carvalho IS, Ashokkumar V, Chinnathambi A, Alharbi SA, Devarayan K, Pugazhendhi A. Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. CHEMOSPHERE 2021; 277:130246. [PMID: 33780682 DOI: 10.1016/j.chemosphere.2021.130246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Rivers are the most significant natural resources that afford outstanding habitation and nourishment for numerous living organisms. Urbanization and industrialization pollute rivers rendering their water unhealthy for consumption. Hence, this work was designed to find a potential native pollutant removing algae from polluted water. The physicochemical properties of the tested river water such as Electric Conductivity (EC), turbidity, total hardness, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ca, SO2-, and NH3, NO3, NO2, PO4, Mg, F- and Cl- contents were not within the permissible limits. Lab-scale and field-based phycoremediation treatments with the indigenous native microalgal species, Chlorella sp. from the Thirumanimutharu river water sample were set up for 15 days with three different (Group I, II, and III) biomass densities (4 × 104, 8 × 104, and 12 × 104 cells mL-1). Group III of both the lab-scale and field based treatments showed the maximum reduction in the physicochemical parameters compared to the other groups. Further, the group III of the field based study showed an extensive reduction in BOD (34.51%), COD (32.53%), NO3, NO2, free NH3 (100%) and increased dissolved oxygen (DO) (88.47%) compared to the lab scale study. In addition, the trace elements were also reduced significantly. The pollutant absorbing active functional moieties (O-H, CO, and CN) found on Chlorella sp. had been confirmed by Fourier-Transform Infrared Spectroscopy (FTIR) analysis. In the Scanning Electron Microscope (SEM) study, significant morphological changes on the surface of the treated Chlorella sp. were noticed compared with the untreated Chlorella sp. biomass, which also confirmed the absorption of the pollutants during treatment.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, India
| | - Murugan Prabhakaran
- Department of Biotechnology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Devarajan Natarajan
- Department of Biotechnology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | | | - Rathinam Raja
- MED-Mediterranean Institute for Agriculture, Environment and Development, Food Science Laboratory, FCT, Building 8, University of Algarve, Gambelas, 8005-139, Faro, Portugal
| | - Isabel S Carvalho
- MED-Mediterranean Institute for Agriculture, Environment and Development, Food Science Laboratory, FCT, Building 8, University of Algarve, Gambelas, 8005-139, Faro, Portugal
| | - Veeramuthu Ashokkumar
- Department of Chemical Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, 611 002, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Daneshvar E, Sik Ok Y, Tavakoli S, Sarkar B, Shaheen SM, Hong H, Luo Y, Rinklebe J, Song H, Bhatnagar A. Insights into upstream processing of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124870. [PMID: 33652189 DOI: 10.1016/j.biortech.2021.124870] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The aim of this review is to provide insights into the upstream processing of microalgae, and to highlight the advantages of each step. This review discusses the most important steps of the upstream processing in microalgae research such as cultivation modes, photobioreactors design, preparation of culture medium, control of environmental factors, supply of microalgae seeds and monitoring of microalgal growth. An extensive list of bioreactors and their working volumes used, elemental composition of some well-known formulated cultivation media, different types of wastewater used for microalgal cultivation and environmental variables studied in microalgae research has been compiled in this review from the vast literature. This review also highlights existing challenges and knowledge gaps in upstream processing of microalgae and future research needs are suggested.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Samad Tavakoli
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Yongkang Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
13
|
Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. WATER 2020. [DOI: 10.3390/w13010027] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The treatment of different types of wastewater by physicochemical or biological (non-microalgal) methods could often be either inefficient or energy-intensive. Microalgae are ubiquitous microscopic organisms, which thrive in water bodies that contain the necessary nutrients. Wastewaters are typically contaminated with nitrogen, phosphorus, and other trace elements, which microalgae require for their cell growth. In addition, most of the microalgae are photosynthetic in nature, and these organisms do not require an organic source for their proliferation, although some strains could utilize organics both in the presence and absence of light. Therefore, microalgal bioremediation could be integrated with existing treatment methods or adopted as the single biological method for efficiently treating wastewater. This review paper summarized the mechanisms of pollutants removal by microalgae, microalgal bioremediation potential of different types of wastewaters, the potential application of wastewater-grown microalgal biomass, existing challenges, and the future direction of microalgal application in wastewater treatment.
Collapse
|
14
|
Shih YJ, Huang SH, Chen CL, Dong CD, Huang CP. Electrolytic characteristics of ammonia oxidation in real aquaculture water using nano-textured mono-and bimetal oxide catalysts supported on graphite electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Singh A, Ummalyma SB, Sahoo D. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. BIORESOURCE TECHNOLOGY 2020; 307:123233. [PMID: 32240927 DOI: 10.1016/j.biortech.2020.123233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
This work evaluated the potential of microalgae of Chlorella sp., SL7A, Chlorococcum sp., SL7B and Neochloris sp.,SK57 cultivated in river water contaminated with pharmaceutical effluent for biomass and lipid production. It has been observed that fast growing algae in this medium is Neochloris sp.SK57. Maximum biomass and lipid yield was obtained from Neochloris sp. SK57 (0.52 g/l) and Chlorococcum sp. SL7B (0.129 g/l)along with drycell weight of lipid was 28%.The increased in biomass and lipid in this media is could due to assimilation of organic nutrients and stress due to other components present in the river water. Fatty acid profile of algal biomass showed that saturated fatty acids production is enhanced in oils of Neochloris sp. SK57, and its suitability in food and fuel applications. Water quality of the river water was monitored before and after algal cultivation. Results showed that quality of river water was improved after algal cultivation.
Collapse
Affiliation(s)
- Anamika Singh
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India.
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India; Present Address: Department of Botany, University of Delhi, Delhi-110007, India
| |
Collapse
|
16
|
Abd El Fatah HM, El-Baghdady KZ, Zakaria AE, Sadek HN. Improved lipid productivity of Chlamydomonas globosa and Oscillatoria pseudogeminata as a biodiesel feedstock in artificial media and wastewater. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Removal of Nutrients from Fertilizer Plant Wastewater Using Scenedesmus sp.: Formation of Bioflocculation and Enhancement of Removal Efficiency. J CHEM-NY 2020. [DOI: 10.1155/2020/8094272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eutrophication of surface water has become an environmental concern in recent decades. High concentrations of nutrients, especially nitrogen- and phosphorus-rich species, have contributed to the process of eutrophication, highlighting a demand for effective and economical methods of removing nitrogen and phosphorus from wastewater. This study aimed to investigate the ability of a green microalga species, Scenedesmus sp., to remove nitrogen and phosphorus, as well as chemical oxygen demand (COD) and biochemical oxygen demand (BOD5), from fertilizer plant wastewater. Different microalgae concentrations from 10 mg/L to 60 mg/L were used to assess the growth rate, biomass production, and removal ability. The results indicated that Scenedesmus sp. grew well in the wastewater (with a growth rate from 0.3 to 0.38/day) and produced up to 70.2 mg/L of dry biomass. The algal species was able to remove ammonium (NH4+), nitrate (NO3−), phosphate (PO43−), total phosphorus (TP), COD, and BOD5 with removal rates up to 93%, 84%, 97%, 96%, 93%, and 84%, respectively. Autobioflocculation (AFL) was observed in all cultures with flocculation activity of up to 88.3% in the highest algal biomass treatment. The formation of bioflocculation enhanced the removal of nutrients, COD, and BOD5 from wastewater effluent. The results indicated that wastewater from a fertilizer plant could be used as a cost-effective growth medium for algal biomass. The autoflocculation of microalgae could be used as a more practical approach for wastewater treatment using microalgae to eliminate eutrophication.
Collapse
|
18
|
Leite LDS, Dos Santos PR, Daniel LA. Microalgae harvesting from wastewater by pH modulation and flotation: Assessing and optimizing operational parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109825. [PMID: 31733467 DOI: 10.1016/j.jenvman.2019.109825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Microalgae harvesting is one of the major bottlenecks for the production of high-value microalgal products on a large scale, which encourages investigations of harvesting methods with better cost-benefits. Among these harvesting techniques, flotation stands out as a promising method, however it is still minimally explored when compared to the sedimentation method. In this study, the pH modulation followed by dissolved air flotation (DAF) was tested as a harvesting method for Chlorella sorokiniana cultivated in wastewater. The main aims of this study were to optimize the operational parameters of coagulation (pH, velocity gradient, and mixing time) and flotation (recirculation rate), check their reproducibility and resilience with the variability of wastewater characteristics, and evaluate the final wastewater quality after treatment using an optimized harvesting method. Parameter optimization was carried out using the one-factor-at-a-time method. The optimal parameters were a velocity gradient of 500 s-1, mixing time of 30 s, pH 12, and 20% of recirculation rate. High efficiencies were obtained for C. sorokiniana removal (96.5-97.9%), making it a successful process. Moreover, the photobioreactor effluent quality was also improved significantly after microalgae harvesting, with high nutrient removal (88.6-95.1% of total Kjeldahl nitrogen and 91.8-98.3% of total phosphorus) and organic matter removal (80.5-86.8% of chemical oxygen demand). The results showed the pH modulation and DAF as an effective process for wastewater treatment and biomass harvesting. This study also indicated the importance of operational optimization, not studied until now, in which the achieved results could be potentially applied as practical guidelines for microalgae harvesting on a large scale.
Collapse
Affiliation(s)
- Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-59, São Carlos, São Paulo, Brazil.
| | - Priscila Ribeiro Dos Santos
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-59, São Carlos, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-59, São Carlos, São Paulo, Brazil
| |
Collapse
|
19
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
20
|
Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater. ENERGIES 2019. [DOI: 10.3390/en12122282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Algae biorefinery is gaining much attention for the sustainable production of value-added products (e.g., biofuels, protein supplements etc.) globally. The current study aimed to investigate the relationship between lipid production and bacteria growth by an initial microalgae Chlorella vulgaris density culture in seafood wastewater effluent (SWE). According to our results, the initial C. vulgaris concentration in SWE influenced lipid accumulation. The concentration ranged from 25–35 mg·L−1 which corresponds to SWE’s chemical oxygen demand concentration of 365.67 ± 3.45 mg·L−1. A higher microalgae growth rate and lipid content of 32.15 ± 1.45% was successfully attained. A higher lipid content, approximately double, was observed when compared to the control (16.8 ± 0.5%). Moreover, this study demonstrates that bacteria inhibited microalgae growth as the initial cell density stepped over 35 mg·L−1, which also affected lipid accumulation. This study shows an optimal lipid accumulation attained at moderate Chlorella vulgaris density culture in SWE. Hence, wastewater treatment incorporating microalgae culture could be greatly developed in the future to achieve a greener environment.
Collapse
|