1
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci Rep 2016; 6:21066. [PMID: 26875499 PMCID: PMC4753468 DOI: 10.1038/srep21066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 11/08/2022] Open
Abstract
Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation.
Collapse
|
3
|
Jungmann K, Jansen R, Gerth K, Huch V, Krug D, Fenical W, Müller R. Two of a Kind--The Biosynthetic Pathways of Chlorotonil and Anthracimycin. ACS Chem Biol 2015; 10:2480-90. [PMID: 26348978 DOI: 10.1021/acschembio.5b00523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorotonil A is a novel polyketide isolated from the myxobacterium Sorangium cellulosum So ce1525 that features a unique gem-dichloro-1,3-dione moiety. It exhibits potent bioactivity, most notably against the problematic malaria pathogen Plasmodium falciparum in the nanomolar range. In addition, strong antibacterial and moderate antifungal activity were determined. The outstanding biological activity of chlorotonil A as well as its unusual chemical structure triggered our interest in elucidating its biosynthesis, a prerequisite for alteration of the scaffold by synthetic biology approaches. This endeavor was facilitated by a recent report describing the strikingly similar structure of anthracimycin from a marine streptomycete, a compound of considerable interest due to its potent antibacterial activity. In this study, we report the identification and characterization of the chlorotonil A biosynthetic gene cluster from So ce1525 and compare it with that for anthracimycin biosynthesis. Access to both gene clusters allowed us to highlight commonalities between the two pathways and revealed striking differences, some of which can plausibly explain the structural differences observed between these intriguing natural products.
Collapse
Affiliation(s)
- Katrin Jungmann
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research, Department of Microbial Drugs, Braunschweig, Germany
| | - Klaus Gerth
- Helmholtz Centre for Infection Research, Department of Microbial Drugs, Braunschweig, Germany
| | - Volker Huch
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - Daniel Krug
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| | - William Fenical
- Center for Marine
Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States
| | - Rolf Müller
- Department of Microbial
Natural Products, Helmholtz Institute for Pharmaceutical Research
Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
4
|
Oßwald C, Zaburannyi N, Burgard C, Hoffmann T, Wenzel SC, Müller R. A highly unusual polyketide synthase directs dawenol polyene biosynthesis in Stigmatella aurantiaca. J Biotechnol 2014; 191:54-63. [DOI: 10.1016/j.jbiotec.2014.07.447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 01/29/2023]
|
5
|
Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R. Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed Engl 2014; 53:13588-91. [PMID: 25294799 DOI: 10.1002/anie.201406973] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 02/01/2023]
Abstract
Two macrolide glycosides with a unique scaffold were isolated from cultures of the myxobacterium Pyxidicoccus fallax. Their structures, including absolute configurations, were elucidated by a combination of NMR, MS, degradation, and molecular modeling techniques. Analysis of the proposed biosynthetic gene cluster led to insights into the biosynthesis of the polyketide and confirmed the structure assignment. The more active compound, disciformycin B, potently inhibits methicillin- and vancomycin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Frank Surup
- Helmholtz Center for Infection Research (HZI), Department Microbial Drugs, Inhoffenstrasse 7, 38124 Braunschweig (Germany); German Center for Infection Research (DZIF), Location: Braunschweig (Germany)
| | | | | | | | | | | |
Collapse
|
6
|
Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R. Disciformycine A und B: zwölfgliedrige Macrolid-Glycosid-Antibiotika aus dem MyxobakteriumPyxidicoccus fallaxmit Aktivität gegen multiresistente Staphylokokken. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Li SG, Zhao L, Han K, Li PF, Li ZF, Hu W, Liu H, Wu ZH, Li YZ. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats. Microb Biotechnol 2013; 7:130-41. [PMID: 24308800 PMCID: PMC3937717 DOI: 10.1111/1751-7915.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022] Open
Abstract
Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0-75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoffmann T, Müller S, Nadmid S, Garcia R, Müller R. Microsclerodermins from Terrestrial Myxobacteria: An Intriguing Biosynthesis Likely Connected to a Sponge Symbiont. J Am Chem Soc 2013; 135:16904-11. [DOI: 10.1021/ja4054509] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, D-66123 Saarbrücken, Germany
| | - Stefan Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, D-66123 Saarbrücken, Germany
| | - Suvd Nadmid
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, D-66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Zhang PY, Xu PP, Xia ZJ, Wang J, Xiong J, Li YZ. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett 2013; 348:149-56. [PMID: 24111668 DOI: 10.1111/1574-6968.12282] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that antibiotics provide a critical selective pressure for the horizontal transfer of antibiotic resistance between bacterial species. This study demonstrated that a combination of low doses of kanamycin and streptomycin, which inhibited the growth of recipient and donor cells, respectively, had positive effects on the transmission of the conjugation plasmids pRK2013, pSU2007, and RP4 from Escherichia coli DH5α to HB101 at their minimum inhibitory concentrations (MICs). Administration of either antibiotic alone as well as other antibiotics in combination or alone did not have this effect. Two-dimensional electrophoresis revealed that 60 proteins were downregulated and 14 proteins were upregulated in the conjugation of E. coli DH5α (pRK2013) and HB101 in the presence of kanamycin and streptomycin. Of these proteins, 64 were subsequently identified by mass spectrometry. Two antibiotic-induced genes encoding oligopeptide-binding protein (OppA) and ribose-binding protein (RbsB) were further confirmed by quantitative real-time PCR. When these genes were deleted, the number of transconjugants decreased in the same fashion as when the cells were treated with kanamycin and streptomycin. These results indicate that the process of E. coli conjugation may be promoted by combination treatment with kanamycin and streptomycin and that two proteins potentially participated in this process.
Collapse
Affiliation(s)
- Peng-Yi Zhang
- State Key Laboratory of Microbial Technology, school of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
10
|
Sucipto H, Wenzel SC, Müller R. Exploring Chemical Diversity of α-Pyrone Antibiotics: Molecular Basis of Myxopyronin Biosynthesis. Chembiochem 2013; 14:1581-9. [DOI: 10.1002/cbic.201300289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Indexed: 01/30/2023]
|
11
|
Li PF, Li SG, Li ZF, Zhao L, Wang T, Pan HW, Liu H, Wu ZH, Li YZ. Co-cultivation ofSorangium cellulosumstrains affects cellular growth and biosynthesis of secondary metabolite epothilones. FEMS Microbiol Ecol 2013; 85:358-68. [DOI: 10.1111/1574-6941.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peng-fei Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Shu-guang Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Lin Zhao
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Ting Wang
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong-wei Pan
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong Liu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-hong Wu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| |
Collapse
|
12
|
Hilli F, White JM, Rizzacasa MA. Formal total synthesis of the myxobacteria metabolite apicularen A via a transannular oxy-Michael addition. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P, Weissman KJ, Bode HB, Müller R. Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. MOLECULAR BIOSYSTEMS 2011; 7:1549-63. [PMID: 21365089 DOI: 10.1039/c0mb00240b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The anti-fungal leupyrrins are secondary metabolites produced by several strains of the myxobacterium Sorangium cellulosum. These intriguing compounds incorporate an atypically substituted γ-butyrolactone ring, as well as pyrrole and oxazolinone functionalities, which are located within an unusual asymmetrical macrodiolide. Previous feeding studies revealed that this novel structure arises from the homologation of four distinct structural units, nonribosomally-derived peptide, polyketide, isoprenoid and a dicarboxylic acid, coupled with modification of the various building blocks. Here we have attempted to reconcile the biosynthetic pathway proposed on the basis of the feeding studies with the underlying enzymatic machinery in the S. cellulosum strain So ce690. Gene products can be assigned to many of the suggested steps, but inspection of the gene set provokes the reconsideration of several key transformations. We support our analysis by the reconstitution in vitro of the biosynthesis of the pyrrole carboxylic starter unit along with gene inactivation. In addition, this study reveals that a significant proportion of the genes for leupyrrin biosynthesis are located outside the core cluster, a 'split' organization which is increasingly characteristic of the myxobacteria. Finally, we report the generation of four novel deshydroxy leupyrrin analogues by genetic engineering of the pathway.
Collapse
Affiliation(s)
- Maren Kopp
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 Fatty acids. J Bacteriol 2011; 193:1930-42. [PMID: 21317327 DOI: 10.1128/jb.01091-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In an analysis of 47 aerobic myxobacterial strains, representing 19 genera in suborders Cystobacterineae, Nannocystineae, Sorangiineae, and a novel isolate, "Aetherobacter" SBSr008, an enormously diverse array of fatty acids (FAs) was found. The distribution of straight-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) supports the reported clustering of strains in the phylogenetic tree based on 16S rRNA genes. This finding additionally allows the prediction and assignment of the novel isolate SBSr008 into its corresponding taxon. Sorangiineae predominantly contains larger amounts of SCFA (57 to 84%) than BCFA. On the other hand, Cystobacterineae exhibit significant BCFA content (53 to 90%), with the exception of the genus Stigmatella. In Nannocystineae, the ratio of BCFA and SCFA seems dependent on the taxonomic clade. Myxobacteria could also be identified and classified by using their specific and predominant FAs as biomarkers. Nannocystineae is remarkably unique among the suborders for its absence of hydroxy FAs. After the identification of arachidonic (AA) FA in Phaselicystidaceae, eight additional polyunsaturated fatty acids (PUFAs) belonging to the omega-6 and omega-3 families were discovered. Here we present a comprehensive report of FAs found in aerobic myxobacteria. Gliding bacteria belonging to Flexibacter and Herpetosiphon were chosen for comparative analysis to determine their FA profiles in relation to the myxobacteria.
Collapse
|
15
|
Irschik H, Kopp M, Weissman KJ, Buntin K, Piel J, Müller R. Analysis of the sorangicin gene cluster reinforces the utility of a combined phylogenetic/retrobiosynthetic analysis for deciphering natural product assembly by trans-AT PKS. Chembiochem 2011; 11:1840-9. [PMID: 20715267 DOI: 10.1002/cbic.201000313] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Herbert Irschik
- Microbial Drugs, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Binz TM, Maffioli SI, Sosio M, Donadio S, Müller R. Insights into an unusual nonribosomal peptide synthetase biosynthesis: identification and characterization of the GE81112 biosynthetic gene cluster. J Biol Chem 2010; 285:32710-32719. [PMID: 20710026 DOI: 10.1074/jbc.m110.146803] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GE81112 tetrapeptides (1-3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.
Collapse
Affiliation(s)
- Tina M Binz
- From the Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, Saarbrücken 66123, Germany
| | | | | | | | - Rolf Müller
- From the Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, Saarbrücken 66123, Germany.
| |
Collapse
|
17
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Li Y, Weissman KJ, Müller R. Insights into Multienzyme Docking in Hybrid PKS-NRPS Megasynthetases Revealed by Heterologous Expression and Genetic Engineering. Chembiochem 2010; 11:1069-75. [DOI: 10.1002/cbic.201000103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Gong J, Zheng H, Wu Z, Chen T, Zhao X. Genome shuffling: Progress and applications for phenotype improvement. Biotechnol Adv 2009; 27:996-1005. [DOI: 10.1016/j.biotechadv.2009.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Picardeau M. Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 2009; 138:551-8. [PMID: 19757097 DOI: 10.1007/s10709-009-9408-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/31/2009] [Indexed: 01/24/2023]
Abstract
Mariner eukaryotic elements transpose randomly and independently of any host factors, making them ideal tools for random mutagenesis in bacteria, including genetically intractable microorganisms. The transposable element Himar1, a member of the mariner family of transposons, originally isolated from the horn fly (Haematobia irritans), has thus been extensively used to generate large numbers of insertion mutants. Transposon-based approaches greatly facilitate studies of bacterial biology. We summarize the current mariner-based transposon tools and techniques for conducting genetic studies in bacteria.
Collapse
Affiliation(s)
- Mathieu Picardeau
- Unité de Biologie des Spirochètes, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
21
|
Garcia RO, Reichenbach H, Ring MW, Müller R. Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 2009; 59:1524-30. [PMID: 19502347 DOI: 10.1099/ijs.0.003814-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated SBKo001(T) was isolated from a forest soil sample from Mt Makiling in Laguna, Philippines. It shows the general characteristics associated with myxobacteria, such as swarming of Gram-negative, rod-shaped vegetative cells, fruiting body formation and bacteriolytic activity. The strain is mesophilic, strictly aerobic and chemoheterotrophic and also exhibits resistance to various antibiotics. Major fatty acids are iso-C(15 : 0), C(17 : 1) 2-OH and C(20 : 4) (arachidonic acid). The G+C content of the genomic DNA is 69.2 mol%. A reference strain, NOSO-1 (=DSM 53757), isolated from the Etosha Basin in Namibia, shares nearly the same characteristics with SBKo001(T). The identical 16S rRNA gene sequences of the two strains show 94 % identity to strains of the cellulose-degrading Byssovorax and Sorangium species. Phylogenetic analysis reveals a novel branch diverging from the Polyangiaceae, Sorangiineae, Myxococcales. Their uniqueness in morphological growth stages, unusual fatty acid profile, broad-spectrum antibiotic resistance and branch divergence from the Polyangiaceae imply that strains SBKo001(T) and NOSO-1 not only represent a novel genus and species, proposed here as Phaselicystis flava gen. nov., sp. nov., but also belong to a new family, Phaselicystidaceae fam. nov. The type strain of Phaselicystis flava is SBKo001(T) (=DSM 21295(T) =NCCB 100230(T)).
Collapse
Affiliation(s)
- Ronald O Garcia
- UdS - Department of Pharmaceutical Biotechnology, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
22
|
Wenzel SC, Müller R. Myxobacteria--'microbial factories' for the production of bioactive secondary metabolites. MOLECULAR BIOSYSTEMS 2009; 5:567-74. [PMID: 19462013 DOI: 10.1039/b901287g] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this article, we briefly review the potential of myxobacteria as 'natural product factories' by highlighting results from the recently sequenced myxobacterial model strain Myxococcus xanthus. We will focus on the production of polyketides, non-ribosomally-made peptides, and their hybrids, and discuss the evaluation of biosynthetic potential using genome-based methods, as well as biosynthetic process engineering.
Collapse
Affiliation(s)
- Silke C Wenzel
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
23
|
|
24
|
|
25
|
Wenzel SC, Müller R. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 2009; 26:1385-407. [DOI: 10.1039/b817073h] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 2008; 36:e113. [PMID: 18701643 PMCID: PMC2553598 DOI: 10.1093/nar/gkn499] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jun Fu
- Gene Bridges GmbH, BioInnovationsZentrum Dresden, Department of Genomics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xia ZJ, Wang J, Hu W, Liu H, Gao XZ, Wu ZH, Zhang PY, Li YZ. Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. J Ind Microbiol Biotechnol 2008; 35:1157-63. [DOI: 10.1007/s10295-008-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
28
|
Knauber T, Doss SD, Gerth K, Perlova O, Müller R, Treuner-Lange A. Mutation in the rel gene of Sorangium cellulosum affects morphological and physiological differentiation. Mol Microbiol 2008; 69:254-66. [PMID: 18513216 DOI: 10.1111/j.1365-2958.2008.06285.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interruption of the (p)ppGpp synthetase gene (rel) of Sorangium cellulosum So ce56 resulted in loss of ppGpp accumulation after norvaline treatment during exponential growth phase. The rel mutant failed to produce wild-type levels of the polyketides chivosazol and etnangien in production media. In wild-type cells expression of the chivosazol biosynthetic operon can be significantly increased by norvaline or alpha-methylglucoside. This induction does not occur in the rel mutant. The rel mutant also lost the capability to form multicellular fruiting bodies under nutrient starvation.
Collapse
Affiliation(s)
- Tina Knauber
- Department of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Zhao JY, Zhong L, Shen MJ, Xia ZJ, Cheng QX, Sun X, Zhao GP, Li YZ, Qin ZJ. Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus. Appl Environ Microbiol 2008; 74:1980-7. [PMID: 18245244 PMCID: PMC2292591 DOI: 10.1128/aem.02143-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 01/23/2008] [Indexed: 11/20/2022] Open
Abstract
Myxobacteria are very important due to their unique characteristics, such as multicellular social behavior and the production of diverse and novel bioactive secondary metabolites. However, the lack of autonomously replicating plasmids has hindered genetic manipulation of myxobacteria for decades. To determine whether indigenous plasmids are present, we screened about 150 myxobacterial strains, and a circular plasmid designated pMF1 was isolated from Myxococcus fulvus 124B02. Sequence analysis showed that this plasmid was 18,634 bp long and had a G+C content of 68.7%. Twenty-three open reading frames were found in the plasmid, and 14 of them were not homologous to any known sequence. Plasmids containing the gene designated pMF1.14, which encodes a large unknown protein, were shown to transform Myxococcus xanthus DZ1 and DK1622 at high frequencies ( approximately 10(5) CFU/microg DNA), suggesting that the locus is responsible for the autonomous replication of pMF1. Shuttle vectors were constructed for both M. xanthus and Escherichia coli. The pilA gene, which is essential for pilus formation and social motility in M. xanthus, was cloned into the shuttle vectors and introduced into the pilA-deficient mutant DK10410. The transformants subsequently exhibited the ability to form pili and social motility. Autonomously replicating plasmid pMF1 provides a new tool for genetic manipulation in Myxococcus.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, Liu WF, Li YZ. Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium. J Ind Microbiol Biotechnol 2007; 34:615-23. [PMID: 17647035 DOI: 10.1007/s10295-007-0236-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
The epothilones are highly promising prospective anticancer agents that are produced by the myxobacterium Sorangium cellulosum. We mutated the epothilone producing S. cellulosum strain So0157-2 to improve the production of epothilones. For evaluation in high-throughput of a large number of mutants, we developed a simple microtiter method for primary screening. Using the classical UV-mutation method plus selection pressures, the production capacity was increased about 0.5 approximately 2.5 times the starting strain. The mutants with higher production and different phenotypes were further subjected to recursive protoplast fusions and the fusants products were screened under multi-selection pressure. Furthermore, the production was greatly increased by the genome shuffling. For epothilone B, the production of one fusant was increased about 130 times compared to the starting strain, increasing from 0.8 mg l(-1) to 104 mg l(-1).
Collapse
Affiliation(s)
- Guo-li Gong
- State Key Libratory of Microbial Technology, College of Life Science, Shan Dong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kopp M, Rupprath C, Irschik H, Bechthold A, Elling L, Müller R. SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro. Chembiochem 2007; 8:813-9. [PMID: 17407127 DOI: 10.1002/cbic.200700024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycosylations are well-established steps in numerous biosynthetic pathways, and the attached sugar moieties often influence the specificity or pharmacology of the modified compounds. The sorangicins belong to the polyketide family of natural products, and exhibit antibiotic activity through inhibition of bacterial RNA polymerase. We have identified the sorangicin biosynthetic gene cluster in the producing myxobacterium Sorangium cellulosum So ce12. Within the cluster, sorF encodes a putative glycosyltransferase. To determine its function in sorangicin biosynthesis, SorF was heterologously expressed as a fusion protein in Escherichia coli. After purification by affinity chromatography, SorF was found to glucosylate sorangicin A in vitro, utilizing UDP-alpha-D-glucose as the natural donor substrate. Additionally, SorF showed high flexibility towards further UDP- and dTDP-sugars and was able to transfer several other sugar moieties-alpha-D-galactose, alpha-D-xylose, beta-L-rhamnose, and 6-deoxy-4-keto-alpha-D-glucose-onto the aglycon. SorF is therefore one of the rare glycosyltransferases able to transfer both D- and L-sugars, and could thus be used to generate novel sorangiosides.
Collapse
Affiliation(s)
- Maren Kopp
- Saarland University, Department of Pharmaceutical Biotechnology, P. O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Frank B, Knauber J, Steinmetz H, Scharfe M, Blöcker H, Beyer S, Müller R. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. ACTA ACUST UNITED AC 2007; 14:221-33. [PMID: 17317575 DOI: 10.1016/j.chembiol.2006.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/25/2022]
Abstract
Natural products constitute important lead structures in drug discovery. In bacteria, they are often synthesized by large, modular multienzyme complexes. Detailed analysis of the biosynthetic machinery should enable its directed engineering and production of desirable analogs. The myxobacterium Sorangium cellulosum So ce90 produces the cytotoxic spiroketal polyketide spirangien, for which we describe the identification and functional analysis of the biosynthetic pathway. The gene cluster spans 88 kb and encodes 7 type I polyketide synthases and additional enzymes such as a stand-alone thioesterase and 2 methyltransferases. Inactivation of two cytochrome P(450) monooxygenase genes resulted in the production of acyclic spirangien derivatives, providing direct evidence for the involvement of these enzymes in spiroketal formation. The presence of large DNA repeats is consistent with multiple rounds of gene duplication during the evolution of the biosynthetic gene locus.
Collapse
MESH Headings
- Acetals/chemistry
- Acetals/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Fatty Acids, Unsaturated/chemistry
- Fatty Acids, Unsaturated/metabolism
- Genes, Bacterial
- Macrolides/chemistry
- Macrolides/metabolism
- Molecular Structure
- Multigene Family
- Mutagenesis, Site-Directed
- Myxococcales/genetics
- Myxococcales/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Polyketide Synthases/genetics
- Polyketide Synthases/metabolism
- Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Spectrophotometry, Ultraviolet
Collapse
Affiliation(s)
- Bettina Frank
- Pharmaceutical Biotechnology, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Sandmann A, Dickschat J, Jenke-Kodama H, Kunze B, Dittmann E, Müller R. A Type II Polyketide Synthase from the Gram-Negative BacteriumStigmatella aurantiaca Is Involved in Aurachin Alkaloid Biosynthesis. Angew Chem Int Ed Engl 2007; 46:2712-6. [PMID: 17335090 DOI: 10.1002/anie.200603513] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Axel Sandmann
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Rachid S, Gerth K, Kochems I, Müller R. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol Microbiol 2007; 63:1783-96. [PMID: 17367395 DOI: 10.1111/j.1365-2958.2007.05627.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sorangium cellulosum strains produce approximately 50% of the biologically active secondary metabolites known from myxobacteria. These metabolites include several compounds of biotechnological importance such as the epothilones and chivosazols, which, respectively, stabilize the tubulin and actin skeletons of eukaryotic cells. S. cellulosum is characterized by its slow growth rate, and natural products are typically produced in low yield. In this study, biomagnetic bead separation of promoter-binding proteins and subsequent inactivation experiments were employed to identify the chivosazol regulator, ChiR, as a positive regulator of chivosazol biosynthesis in the genome-sequenced strain So ce56. Overexpression of chiR under the control of T7A1 promoter in a merodiploid mutant resulted in fivefold overproduction of chivosazol in a kinetic shake flask experiment, and 2.5-fold overproduction by fermentation. Using quantitative reverse transcription PCR and gel shift experiments employing heterologously expressed ChiR, we have shown that transcription of the chivosazol biosynthetic genes (chiA-chiF) is directly controlled by this protein. In addition, we have demonstrated that ChiR serves as a pleiotropic regulator in S. cellulosum, because mutant strains lack the ability to develop into regular fruiting bodies.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
35
|
Sandmann A, Dickschat J, Jenke-Kodama H, Kunze B, Dittmann E, Müller R. Aurachin-Biosynthese im Gram-negativen Bakterium Stigmatella aurantiaca: Beteiligung einer Typ-II-Polyketidsynthase. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Tu Y, Chen GP, Wang YL. Autonomously Replicating Plasmid Transforms Sorangium cellulosum So ce90 and Induces Expression of Green Fluorescent Protein. J Biosci Bioeng 2007; 104:385-90. [DOI: 10.1263/jbb.104.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/03/2007] [Indexed: 11/17/2022]
|
37
|
Wenzel SC, Müller R. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat Prod Rep 2007; 24:1211-24. [DOI: 10.1039/b706416k] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blöcker H, Müller R. Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. ACTA ACUST UNITED AC 2006; 13:667-81. [PMID: 16793524 DOI: 10.1016/j.chembiol.2006.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/16/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The jaspamide/chondramide family of depsipeptides are mixed PKS/NRPS natural products isolated from marine sponges and a terrestrial myxobacterium that potently affect the function of the actin cytoskeleton. As a first step to improve production in heterologous host cells and permit genetic approaches to novel analogs, we have cloned and characterized the chondramide biosynthetic genes from the myxobacterium Chondromyces crocatus Cm c5. In addition to the expected PKS and NRPS genes, the cluster encodes a rare tyrosine aminomutase for beta-tyrosine formation and a previously unknown tryptophan-2-halogenase. Conditions for gene transfer into C. crocatus Cm c5 were developed, and inactivation of several genes corroborated their proposed function and served to define the boundaries of the cluster. Biochemical characterization of the final NRPS adenylation domain confirmed the direct activation of beta-tyrosine, and fluorinated chondramides were produced through precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bode HB, Müller R. Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 2006; 33:577-88. [PMID: 16491362 DOI: 10.1007/s10295-006-0082-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
During the last 20 years myxobacteria have made their way from highly exotic organisms to one of the major sources of microbial secondary metabolites besides actinomycetes and fungi. The pharmaceutical interest in these peculiar prokaryotes lies in their ability to produce a variety of structurally unique compounds and/or metabolites with rare biological activities. This review deals with the recent progress toward a better understanding of the biology, the genetics, the biochemistry and the regulation of secondary metabolite biosynthesis in myxobacteria. These research efforts paved the way to sophisticated in vitro studies and to the heterologous expression of complete biosynthetic pathways in conjunction with their targeted manipulation. The progress made is a prerequisite for using the vast resource of myxobacterial diversity regarding secondary metabolism more efficiently in the future.
Collapse
Affiliation(s)
- Helge B Bode
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
40
|
Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Müller R. Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol 2006; 185:28-38. [PMID: 16395556 DOI: 10.1007/s00203-005-0059-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/07/2005] [Accepted: 11/10/2005] [Indexed: 11/29/2022]
Abstract
Type III polyketide synthases (PKS) were regarded as typical for plant secondary metabolism before they were found in microorganisms recently. Due to microbial genome sequencing efforts, more and more type III PKS are found, most of which of unknown function. In this manuscript, we report a comprehensive analysis of the phylogeny of bacterial type III PKS and report the expression of a type III PKS from the myxobacterium Sorangium cellulosum in pseudomonads. There is no precedent of a secondary metabolite that might be biosynthetically correlated to a type III PKS from any myxobacterium. Additionally, an inactivation mutant of the S. cellulosum gene shows no physiological difference compared to the wild-type strain which is why these type III PKS are assumed to be "silent" under the laboratory conditions administered. One type III PKS (SoceCHS1) was expressed in different Pseudomonas sp. after the heterologous expression in Escherichia coli failed. Cultures of recombinant Pseudomonas sp. harbouring SoceCHS1 turned red upon incubation and the diffusible pigment formed was identified as 2,5,7-trihydroxy-1,4-naphthoquinone, the autooxidation product of 1,3,6,8-tetrahydroxynaphthalene. The successful heterologous production of a secondary metabolite using a gene not expressed under administered laboratory conditions provides evidence for the usefulness of our approach to activate such secondary metabolite genes for the production of novel metabolites.
Collapse
Affiliation(s)
- Frank Gross
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Perlova O, Gerth K, Kaiser O, Hans A, Müller R. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 2006; 121:174-91. [PMID: 16313990 DOI: 10.1016/j.jbiotec.2005.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/22/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Myxobacteria belonging to the genus Sorangium are known to produce a variety of biologically active secondary metabolites. Chivosazol is a macrocyclic antibiotic active against yeast, filamentous fungi and especially against mammalian cells. The compound specifically destroys the actin skeleton of eucaryotic cells and does not show activity against bacteria. Chivosazol contains an oxazole ring and a glycosidically bound 6-deoxyglucose (except for chivosazol F). In this paper we describe the biosynthetic gene cluster that directs chivosazol biosynthesis in the model strain Sorangium cellulosum So ce56. This biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide synthase genes and one hybrid polyketide synthase/nonribosomal peptide synthetase gene. An additional gene encoding a protein with similarity to different methyltransferases and presumably involved in post-polyketide modification was identified downstream of the core biosynthetic gene cluster. The chivosazol biosynthetic gene locus belongs to the recently identified and rapidly growing class of trans-acyltransferase polyketide synthases, which do not contain acyltransferase domains integrated into the multimodular megasynthetases.
Collapse
Affiliation(s)
- Olena Perlova
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
42
|
Blaesing F, Mühlenweg A, Vierling S, Ziegelin G, Pelzer S, Lanka E. Introduction of DNA into Actinomycetes by bacterial conjugation from E. coli—An evaluation of various transfer systems. J Biotechnol 2005; 120:146-61. [PMID: 16095742 DOI: 10.1016/j.jbiotec.2005.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/19/2005] [Accepted: 06/10/2005] [Indexed: 11/17/2022]
Abstract
Gene transfer is a basic requirement for optimizing bioactive natural substances produced by an increasing number of industrially used microorganisms. We have analyzed quantitatively horizontal gene transfer from Escherichia coli to Actinomycetes. The efficiencies of DNA transfer of four different systems were compared that consist of conjugative and mobilizable plasmids with a broad-host range. Three novel binary vector set-ups were constructed based on: (i) the IncQ group of mobilizable plasmids (RSF1010), (ii) IncQ-like pTF-FC2 and (iii) pSB102 that belongs to a new class of broad-host-range plasmids. The established system based on the IncPalpha group of conjugative plasmids served as the reference. For all plasmids constructed, we confirmed the functional integrity of the selected transfer machineries by intrageneric matings between E. coli strains. We demonstrate that the transfer systems introduced in this study are efficient in mediating gene transfer from E. coli to Actinomycetes and are possible alternatives for gene transfer into Actinomycetes for which the IncPalpha-based transfer system is not applicable. The use of plasmids that integrate into the recipients' chromosomes compared to that of plasmids replicating autonomously is shown to allow the access to a wider range of hosts.
Collapse
Affiliation(s)
- Franca Blaesing
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Dickschat JS, Bode HB, Mahmud T, Müller R, Schulz S. A Novel Type of Geosmin Biosynthesis in Myxobacteria. J Org Chem 2005; 70:5174-82. [PMID: 15960521 DOI: 10.1021/jo050449g] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of geosmin (1) and (1(10)E,5E)-germacradien-11-ol (2), two volatile terpenoid compounds emitted by the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca, was investigated in feeding experiments with different labeled precursors. In these experiments, the volatiles released by the cell cultures grown on agar plates were collected with a closed-loop stripping apparatus (CLSA) and analyzed by GC-MS. [(2)H(10)]Leucine and [4,4,4,5,5,5-(2)H(6)]dimethylacrylate were fed to wild-type strains and bkd mutant strains, which are impaired in the degradation of leucine to isovaleryl-CoA. [(2)H(10)]Leucine was incorporated into 1 and 2 only by the wild-type strains via the biosynthetic pathway that involves leucine degradation and branching into the mevalonate pathway. Dimethylacrylyl-CoA (DMA-CoA) is an intermediate in the leucine degradation and in the recently discovered pathway from HMG-CoA to isovaleryl-CoA. The corresponding free acid, [4,4,4,5,5,5-(2)H(6)]dimethylacrylic acid, was incorporated into 1 and 2 only by the mutants impaired in leucine degradation. [4,4,6,6,6-(2)H(5)]Mevalonic acid lactone (12) was synthesized and fed to M. xanthus and S. aurantiaca wild-type strains and a double mutant strain of M. xanthus. This strain does not degrade leucine and is impaired in the reduction of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid. The mass spectral analysis of labeled 1 and 2 obtained in these feeding experiments led to a biosynthetic scheme to 1 with intermediate 2. This pathway differs from that observed in the liverwort Fossombronia pusilla and thus suggests microbial geosmin biosynthesis following a route different from that in liverworts. Our results are supported by a 1,2-hydride shift of the tertiary hydrogen atom at C-4a into the ring opposite to that in F. pusilla.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
44
|
Kopp M, Irschik H, Pradella S, Müller R. Production of the Tubulin Destabilizer Disorazol in Sorangium cellulosum: Biosynthetic Machinery and Regulatory Genes. Chembiochem 2005; 6:1277-86. [PMID: 15892181 DOI: 10.1002/cbic.200400459] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myxobacteria show a high potential for the production of natural compounds that exhibit a wide variety of antibiotic, antifungal, and cytotoxic activities. The genus Sorangium is of special biotechnological interest because it produces almost half of the secondary metabolites isolated from these microorganisms. We describe a transposon-mutagenesis approach to identifying the disorazol biosynthetic gene cluster in Sorangium cellulosum So ce12, a producer of multiple natural products. In addition to the highly effective disorazol-type tubulin destabilizers, S. cellulosum So ce12 produces sorangicins, potent eubacterial RNA polymerase inhibitors, bactericidal sorangiolides, and the antifungal chivosazoles. To obtain a transposon library of sufficient size suitable for the identification of the presumed biosynthetic gene clusters, an efficient transformation method was developed. We present here the first electroporation protocol for a strain of the genus Sorangium. The transposon library was screened for disorazol-negative mutants. This approach led to the identification of the corresponding trans-acyltransferase core biosynthetic gene cluster together with a region in the chromosome that is likely to be involved in disorazol biosynthesis. A third region in the genome harbors another gene that is presumed to be involved in the regulation of disorazol production. A detailed analysis of the biosynthetic and regulatory genes is presented in this paper.
Collapse
Affiliation(s)
- Maren Kopp
- Saarland University, Pharmaceutical Biotechnology, Im Stadtwald, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
45
|
Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M, Blöcker H, Müller R. Structure and Biosynthesis of Myxochromides S1-3 in Stigmatella aurantiaca: Evidence for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis. Chembiochem 2005; 6:375-85. [PMID: 15651040 DOI: 10.1002/cbic.200400282] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The myxobacterium Stigmatella aurantiaca DW4/3-1 harbours an astonishing variety of secondary metabolic gene clusters, at least two of which were found by gene inactivation experiments to be connected to the biosynthesis of previously unknown metabolites. In this study, we elucidate the structures of myxochromides S1-3, novel cyclic pentapeptide natural products possessing unsaturated polyketide side chains, and identify the corresponding biosynthetic gene locus, made up of six nonribosomal peptide synthetase modules. By analyzing the deduced substrate specificities of the adenylation domains, it is shown that module 4 is most probably skipped during the biosynthetic process. The polyketide synthase MchA harbours only one module and is presumably responsible for the formation of the variable complete polyketide side chains. These data indicate that MchA is responsible for an unusual iterative polyketide chain assembly.
Collapse
Affiliation(s)
- Silke C Wenzel
- Universität des Saarlandes, Institut für Pharmazeutische Biotechnologie, Im Stadtwald, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Zirkle R, Ligon JM, Molnár I. Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. MICROBIOLOGY-SGM 2004; 150:2761-2774. [PMID: 15289572 DOI: 10.1099/mic.0.27138-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antifungal polyketide soraphen A is produced by the myxobacterium Sorangium cellulosum So ce26. The slow growth, swarming motility and general intransigence of the strain for genetic manipulations make industrial strain development, large-scale fermentation and combinatorial biosynthetic manipulation of the soraphen producer very challenging. To provide a better host for soraphen A production and molecular engineering, the biosynthetic gene cluster for this secondary metabolite was integrated into the chromosome of Streptomyces lividans ZX7. The upstream border of the gene cluster in Sor. cellulosum was defined by disrupting sorC, which is proposed to take part in the biosynthesis of methoxymalonyl-coenzyme A, to yield a Sor. cellulosum strain with abolished soraphen A production. Insertional inactivation of orf2 further upstream of sorC had no effect on soraphen A production. The genes sorR, C, D, F and E thus implicated in soraphen biosynthesis were then introduced into an engineered Str. lividans strain that carried the polyketide synthase genes sorA and sorB, and the methyltransferase gene sorM integrated into its chromosome. A benzoate-coenzyme A ligase from Rhodopseudomonas palustris was also included in some constructs. Fermentations with the engineered Str. lividans strains in the presence of benzoate and/or cinnamate yielded soraphen A. Further feeding experiments were used to delineate the biosynthesis of the benzoyl-coenzyme A starter unit of soraphen A in the heterologous host.
Collapse
Affiliation(s)
- Ross Zirkle
- Department of Microbiology, North Carolina State University, 4527 South Gardner Hall, Raleigh, NC 27695, USA
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - James M Ligon
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - István Molnár
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|